Тяговые асинхронные электродвигатели. Тяговый асинхронный двигатель. Характеристики тяговых двигателей

Бесколлекторные тяговые двигатели

Около 8-10 лет назад масса поезда (весовая норма) ограничивалась условиями сцепления, т. е. достигнутым значением расчетного коэффициента сцепления. Поэтому не так остро ставился вопрос о существенном повышении силы тяги, а следовательно, и мощности тяговых двигателей электровозов. Исследования и опытная эксплуатация ряда новых устройств показали, что имеются большие возможности повышения расчетного коэффициента сцепления. Этого можно достичь, применив независимое возбуждение, а также осуществив автоматическое выравнивание нагрузок тяговых двигателей. О других возможностях повышения коэффициента сцепления будет рассказано ниже.

Но дальнейшее повышение мощности тяговых двигателей электровозов, необходимой для реализации более высокого расчетного коэффициента сцепления, осуществить все трудней. Этому препятствуют прежде всего размеры тягового двигателя: длина его ограничена расстоянием между бандажами колесных пар, диаметр - расстоянием между осью колесной пары и валом двигателя - централью Ц (см. рис. 3). До сих пор при наличии жестких габаритных ограничений размеров двигателей мощность их повышали путем применения более теплостойких изоляционных материалов, усиления охлаждения, увеличения числа пар полюсов, устройства компенсационной обмотки, выбора оптимального напряжения для тяговых двигателей электровозов переменного тока.

С повышением мощности все напряженнее работает коллекторно-щеточный узел. Его состоянием в значительной мере определяется продолжительность работы электровоза между осмотрами и ремонтами. Повышение мощности тяговых двигателей встречает все больше препятствий и не способствует увеличению их надежности и к. п. д. Поэтому вполне понятно стремление создать мощный бесколлекторный тяговый двигатель.

Электровозы с асинхронными тяговыми двигателями . На протяжении всей истории создания и совершенствования электровозов было много попыток использовать самый простой и дешевый асинхронный двигатель для целей тяги. До недавнего времени этого не удавалось сделать, так как частоту его вращения можно экономично регулировать только изменением частоты питающего тока. Применяемые ранее для этого электромашинные преобразователи были тяжелыми. Появление тиристоров открыло путь для создания легкого и надежного преобразователя частоты.

Устройство асинхронного двигателя, как уже отмечалось, несложно. Он имеет неподвижный статор и вращающийся ротор (рис. 75). Различают асинхронные двигатели: с короткозамкнутым ротором и с фазовым ротором. В качестве тяговых используют асинхронные двигатели с короткозамкнутым ротором. Сердечник такого ротора, как и статора, собирают из листов электротехнической стали. Обмотка ротора состоит из медных стержней, расположенных в пазах сердечника и замкнутых с торцов кольцами. Обмотка без сердечника ротора представляет собой так называемое "беличье колесо".

В пазах статора уложены три обмотки, сдвинутые одна относительно другой на 120°. Эти обмотки обычно соединяют звездой. При включении обмоток в трехфазную цепь по каждой из них проходит переменный ток и создается три переменных магнитных потока. Эти потоки, складываясь, образуют результирующий поток, вращающийся с частотой 3000 об/мин при одной паре полюсов на каждую фазу. Вращающийся магнитный поток статора двигателя, пересекая обмотку ротора, индуктирует в ней э. д. с. Под действием э. д. с. в обмотке ротора проходит ток, создающий собственный магнитный поток. Магнитные потоки статора и ротора взаимодействуют, в результате чего ротор начинает вращаться.

Частота вращения ротора несколько меньше частоты вращения магнитного потока статора, иначе силовые линии не пересекали бы обмотку ротора. Разность этих частот вращения называется скольжением. Увеличивая число пар полюсов, можно получить другие частоты вращения магнитного потока: 1500, 1000, 750 об/мин и т. д. Частота вращения ротора будет несколько меньше этих значений.

Обычно скольжение составляет 1-3% синхронной частоты. Следовательно, если изменять частоту питающего напряжения в широких пределах и тем самым синхронную частоту, вместе с ней будет изменяться и частота вращения ротора. Но, помимо частоты, необходимо регулировать и напряжение, подводимое к асинхронному двигателю для того, чтобы получить тяговую характеристику примерно такую, как при использовании двигателей постоянного тока с последовательным возбуждением.

Регулирование напряжения осуществляется, как и на отечественных электровозах переменного тока, переключением вторичной обмотки тягового трансформатора с помощью главного контроллера ГК (рис. 76) ступенями. Затем в выпрямительной установке В напряжение выпрямляется и подается на инвертор И. В выпрямителе осуществляется плавное регулирование напряжения, подводимого к инвертору И.

Отпирая и запирая тиристоры инверторной установки в определенной последовательности, получают трехфазное напряжение, которое подводится к обмотке статора асинхронного двигателя АД. Напомним, что к обычным асинхронным двигателям подводится переменное трехфазное напряжение, а следовательно, и ток, изменяющийся синусоидально. При этом каждая фаза сдвинута относительно другой на 120°, как показано на рис. 77. Для наглядности изменение напряжения каждой фазы показано на отдельных осях. При формировании трехфазного напряжения на электровозе с асинхронными двигателями переключаемые вентили инвертора создают напряжение ступенчатой формы в каждой фазе.

Частота напряжения, подводимого к асинхронному двигателю, регулируется изменением частоты переключения этих вентилей.

В инверторе предусмотрено специальное устройство, надежно восстанавливающее управляющие свойства тиристоров при срыве инвертирования. Реверсирование тяговых двигателей осуществляют, переключая цепи управления тиристоров инвертора, так как для изменения направления вращения асинхронного двигателя достаточно поменять местами любые две подводимые фазы.

На основе разработок научно-исследовательских и учебных институтов на Новочеркасском электровозостроительном заводе построен электровоз переменного тока с асинхронными тяговыми двигателями ВЛ80 а. Электровоз создан на базе восьмиосного электровоза ВЛ80 К. Мощность каждого тягового двигателя составляет 1200 кВт, т. е. в 1,5 раз больше, чем коллекторного двигателя электровоза ВЛ80 К.

Не исключена возможность создания тягового привода с асинхронным двигателем без редуктора. В этом случае ротор асинхронного двигателя монтируют непосредственно на оси колесной пары, а статор имеет разъемную форму.

Электровозы с вентильными синхронными двигателями . В качестве бесколлекторных тяговых двигателей на электровозе можно использовать синхронные двигатели со статическими (вентильными) преобразователями - так называемые вентильные двигатели.

Поясним принцип работы вентильного двигателя. На его статоре расположена трехфазная обмотка, а на роторе - обмотка возбуждения постоянного тока (рис. 78). Начало и конец обмотки возбуждения соединены с двумя кольцами, электрически изолированными одно от другого. Фазные обмотки статора соединены в звезду; начала их подключены к преобразователю - инвертору И (или источнику постоянного тока). Инвертор И питается от выпрямительной установки В, подключенной к вторичной обмотке тягового трансформатора. Если, например, в какой-либо момент времени открыты тиристоры А1 и Х2 инвертора, ток от выпрямителя В пройдет через тиристор А1, обмотки статора I и II, тиристор Х2, обмотку возбуждения ОВ и возвратится в выпрямительную установку. При указанном стрелками направлении тока в обмотках I, II и обмотке возбуждения результирующий магнитный поток статора, взаимодействуя с потоком обмотки возбуждения, создаст вращающий момент, и ротор повернется по часовой стрелке. Переключая в, определенном порядке выводы статорной обмотки, можно обеспечить непрерывное вращение ротора.

Таким образом, по принципу действия вентильный двигатель подобен машине постоянного тока, где коллектор заменен системой силовых управляемых вентилей инверторной установки. Но в отличие от двигателя постоянного тока вентильный двигатель имеет только три коммутируемых вывода при трехфазной обмотке вместо нескольких сотен коллекторных пластин. Кроме того, обмотка возбуждения в вентильном двигателе стала подвижной, а якорь неподвижным. Вентильная коммутация тока в обмотках допускает значительное напряжение между выводами: до нескольких тысяч вольт. Напомним, что обычный механический коллектор удовлетворительно работает при напряжении между коллекторными пластинами не более 30-32 В. Переключение выводов статорной обмотки в необходимой очередности и соответственно изменение положения ротора осуществляет система управления, имеющая специальный датчик положения ротора.

Вентильный двигатель является многофазной машиной, обмотка якоря которой питается от преобразователя, управляемого синхронно с вращением ротора, снабженного обмоткой возбуждения. Таким образом, вентильный двигатель состоит из электрической машины, вентильного преобразователя и связывающей их системы управления.

Новочеркасским электровозостроительным заводом первоначально был построен опытный образец восьмиосного грузового электровоза ВЛ80 В с вентильными тяговыми двигателями. После испытания его была выпущена небольшая партия подобных электровозов для эксплуатационных испытаний. Электровозы оборудованы системой автоматического управления, действующей в режимах тяги и электрического торможения. На электровозе применено независимое возбуждение вентильных двигателей от выпрямителей-возбудителей, изменяющих ток возбуждения пропорционально току обмотки якоря двигателя. Ротор двигателя имеет шесть полюсов, ток к обмотке возбуждения подводится через два кольца и щетки. Частота вращения двигателя регулируется изменением подводимого напряжения. Напряжение вторичной обмотки, а следовательно, и выпрямительной установки регулируется примерно так же, как и на электровозах переменного тока с коллекторными двигателями. Исключено только встречное включение регулируемой и нерегулируемой обмоток трансформатора и несколько повышено их напряжение. После того, как к двигателям будет подведено номинальное напряжение, дальнейшее увеличение скорости осуществляется регулированием магнитного потока возбуждения.

На электровозах ВЛ80 В применена схема выпрямления и преобразования тока, несколько отличающаяся от изображенной на рис. 78. На рис. 78 показаны отдельные выпрямительная В и инверторная И установки, т. е. приведена так называемая схема с явным звеном постоянного тока. На электровозе ВЛ80 В эти две установки совмещены в общем устройстве.

Трехфазный асинхронный двигатель изобретен в конце 80-х годов XIX в. в Германии в электротехнической компании AEG инженером
русского происхождения Михаилом Осиповичем Доливо-Добровольским. Эта электрическая машина была создана как составная часть системы трехфазных электрических цепей переменного тока, получивших очень широкое распространение в электроэнергетике. В настоящее время трехфазные цепи составляют основу большинства мировых систем производства и передачи электрической энергии.
Трехфазная электрическая система состоит из трех силовых проводов — трех фаз и так называемого нулевого провода (рис. 1.1). Каждый из проводов трех фаз вместе с нулевым проводником представляет собой двухпроводную однофазную электрическую цепь переменного тока. Но переменные напряжения в этих трех однофазных цепях не синхронны, а сдвинуты друг относительно друга во времени (по фазе) строго на 1/3 периода (рис. 1.2). При таком равномерном сдвиге по фазе трех одинаковых по амплитуде фазных переменных напряжений их алгебраическая сумма всегда равна нулю.
Режим работы трехфазной электрической цепи принято характеризовать следующими основными параметрами (см. рис. 1.1):
.фазный ток—ток, протекающий по фазам A, B, C;
.фазное напряжение — напряжение между фазами A, B, C и нулевым проводом ;

Рис. 1.2. Фазные напряжения трехфазной электрической цепи

Линейное напряжение—напряжение между парами фаз A—B, B—C, C—A.
.частота напряжения и тока.
Нагрузка трехфазной электрической цепи в общем случае может быть как трехфазной (например, промышленные электрические машины), так и однофазной (бытовые устройства, освещение).
Трехфазные нагрузки обычно потребляют равную мощность по каждой из фаз. Поэтому фазные токи, которые протекают по фазам под действием трех одинаковых по амплитуде фазных переменных напряжений, также в сумме всегда равны нулю. Это означает, что по нулевому проводу ток не протекает. И поэтому для подключения трехфазных нагрузок к питающей трехфазной цепи нулевой провод часто не используют.
Однофазные нагрузки обычно включают между фазами и нулевым проводом. При этом суммарные мощности нагрузок по каждой
из фаз могут различаться. В этом случае сумма фазных токов трехфазной цепи уже не будет равна нулю и по нулевому проводу будет протекать ток, который зависит от разности мощностей нагрузок фаз.
Физические основы образования вращающего момента у асинхронного двигателя аналогичны традиционным двигателям постоянного тока: если проводник с электрическим током поместить в магнитное поле, на этот проводник начинает действовать сила, направленная перпендикулярно проводнику и поперечно магнитному полю (рис. 1.3).

И у асинхронного двигателя, и у двигателя постоянного тока магнитное поле создают обмотки статора. А ток, образующий вращающий момент при взаимодействии с магнитным полем, протекает по проводникам обмотки ротора.

Асинхронный двигатель отличается от двигателя постоянного тока
двумя принципиальными особенностями:
.магнитное поле статора у асинхронного двигателя—вращающееся, а не неподвижное;
.в асинхронном двигателе в обмотку ротора электрический ток поступает из внешних цепей бесконтактным трансформаторным способом, а не через скользящий контакт между щетками и коллектором.
Отсутствие скользящего электрического контакта между цепями статора и ротора у асинхронных двигателей и является основной причиной широкой популярности таких электрических машин. В целом отсутствие коллектора дает следующие важные практические преимущества:
.упрощение конструкции двигателя;
.повышение надежности двигателя;
.повышение мощности двигателя при тех же габаритах (так как коллектор и щетки в двигателе постоянного тока занимают достаточно много места, в асинхронном двигателе с теми же внешними размерами этот объем можно использовать для увеличения активной электромагнитной части, повышая тем самым мощность и вращающий момент);
.снятие жестких ограничений по рабочему напряжению (так как именно коллектор в двигателе постоянного тока часто лимитирует уровень предельного рабочего напряжения, а соответственно, и мощность).
Вращающееся магнитное поле принципиально необходимо для работы асинхронного двигателя. Только в этом случае процесс трансформации электрической энергии из обмотки статора в обмотку ротора будет формировать вращающий момент на валу двигателя.
Стационарное переменное магнитное поле статора также будет наводить ЭДС в обмотке ротора асинхронного двигателя, как в обычном трансформаторе, и ток в обмотке ротора появится. Но электромагнитная сила, действующая при этом на проводники ротора, также переменная. Она будет создавать вибрации, а не устойчивый вращающий момент определенного направления.
Вращающееся магнитное поле в асинхронном двигателе индуцирует в проводниках обмотки ротора такие токи, которые образуют электромагнитные силы, действующие всегда в одном направлении. Эти силы в сумме и образуют вращающий момент на валу двигателя независимо от того, стоит ротор двигателя на месте или вращается.
Механизм формирования вращающего момента асинхронного двигателя под действием вращающегося магнитного поля имеет две важные особенности.

Первая особенность заключается в следующем. В соответствии с фундаментальными законами электротехники существуют два вида процессов, при которых в некоем проводнике наводится ЭДС индукции:
.изменение напряженности магнитного поля, пронизывающего проводник;
.движение проводника в стабильном магнитном поле.
Иными словами, если проводник просто держать неподвижно в стабильном магнитном поле, ЭДС в этом проводнике не появляется.
Именно такая ситуация возникает в асинхронном двигателе, когда
скорость вращения ротора равна скорости вращения магнитного поля.
При таком синхронном вращении ротора и магнитного поля перемещение проводников обмотки ротора относительно магнитного поля будет отсутствовать и напряженность магнитного поля, пронизывающего каждый из проводников, всегда будет одна и та же. В таком режиме ЭДС индукции в проводниках обмотки ротора не появляется, ток в обмотке ротора не возникает и вращающий момент двигателя равен нулю.
Именно из-за этого свойства такой двигатель и получил наименование «асинхронный», потому что он развивает вращающий момент на валу, только если вращение ротора «отстает» от вращения магнитного поля.
Вторая особенность заключается в следующем. Если частота вращения ротора по каким-либо причинам становится больше частоты вращения магнитного поля, двигатель автоматически переходит в режим генераторного торможения. Это происходит вследствие того, что, когда вращение проводников обмотки ротора начинает опережать вращение магнитного поля, полярность ЭДС индукции и направление тока в этих проводниках меняются на противоположные. Соответственно меняют направление вращения на противоположное электромагнитные силы, действующие на проводники обмотки ротора.
Сформировать вращающееся магнитное поле статора можно, например, следующим образом. Если взять статор шестиполюсного двигателя постоянного тока и включать пары противоположных полюсов поочередно, то в этом статоре появится вращающееся магнитное поле (рис. 1.4).
Такой же эффект может быть достигнут, если три пары полюсов запитать от трехфазной цепи. Как было сказано выше, в такой цепи напряжения и токи фаз равномерно сдвинуты друг относительно друга по времени. Это означает, что максимального значения токи в фазах достигают поочередно. Соответственно и максимальная напряженность магнитного поля в парах магнитов на рис. 1.4 будет возникать поочередно, что эквивалентно поочередному включению пар магнитов.
Скорость вращения магнитного поля статора, показанного на рис.
1.4, зависит от того, как часто переключаются пары магнитов. При питании же от трехфазной сети скорость вращения магнитного поля статора определяется частотой тока. У статора, показанного на рис. 1.4, на
каждую фазу приходится одна пара полюсов. Это означает, что магнитное поле будет делать один полный оборот за время, равное одному пе риоду питающего тока. Например, при частоте тока обмотки статора 50 Гц скорость вращения магнитного поля в таком статоре составит 50 об/с, или 3000 об/мин.

Рис. 1.4. Формирование вращающегося магнитного поля статора двигателя с шестью полюсами
Если на статоре разместить не 6, а 12 магнитов и повторить очередность чередования фаз два раза за один полный механический оборот, то скорость вращения поля снизится в два раза и при частоте тока статора 50 Гц составит 25 об/с, или 1500 об/мин, и т. д.
В принципе, можно сделать асинхронный двигатель не только трехфазным, но и четырехфазным, пятифазным и т. д. Но это уже мало что дает в практическом смысле и заметно усложняет обмотку статора. Поэтому вместе с системой трехфазного тока классической стала конструкция именно трехфазного асинхронного двигателя.
Существуют также одно- и двухфазные асинхронные двигатели, но такие электрические машины имеют специфичные характеристки и используются только в маломощных бытовых устройствах.
Трехфазный асинхронный двигатель является электрически и магнитно симметричным по фазам. Обмотки трех фаз имеют идентичные
параметры и развивают одинаковую мощность. В этом случае, как говорилось выше, нулевой провод трехфазной питающей цепи не требуется, и поэтому статоры асинхронных двигателей, как правило, имеют только фазные выводы. При этом обмотки магнитных полюсов трех фаз обычно соединяют двумя способами: «звездой» или «треугольником» (рис. 1.5).

Рис. 1.5. Схемы соединения фазных обмоток асинхронного двигателя

Рис. 1.6. Общий вид статора асинхронного тягового двигателя
Обмотка ротора асинхронного двигателя является короткозамкнутой, так как никаких других элементов в ее цепи нет. Конечно, эта обмотка всегда имеет определенные активное сопротивление и индуктивность, как любая обмотка вообще.
В современных асинхронных двигателях статор не делают с явными полюсами, как показано на рис. 1.4. Чтобы более эффективно использовать объем, обмотку статора в асинхронном двигателе распределяют равномерно в пазах (рис. 1.6), так же как это делают на роторе коллекторного двигателя постоянного тока. Если представить статор такой машины в плоском развернутом виде,
то размещение проводников обмотки трехфазного двигателя с шестью фазными полюсами будет выглядеть, как показано на рис. 1.7. На этом рисунке обмотка каждого из полюсов условно показана размещенной в двух пазах.
Реально в асинхронном двигателе на каждый полюс обычно делают больше пазов и витков для повышения плавности распределения магнитного потока вдоль воздушного зазора между статором и ротором.

Рис. 1.7. Упрощенная развернутая схема обмотки статора асинхронного двигателя

Рис. 1.8. Общий вид ротора асинхронного тягового двигателя
Обмотку ротора асинхронного двигателя делают также в виде расположенных в пазах проводников, замкнутых между собой с торцов кольцами (рис. 1.8). Такая конструкция обмотки ротора получила название «беличья клетка». Так как все проводники обмотки ротора замкнуты между собой накоротко, изолировать проводники ротора от стального тела ротора не имеет смысла. Это дополнительно упрощает конструкцию двигателя и повышает его надежность.

Основные технические данные двигателя.

Мощность часового режима – 170кВт, частота вращения часового режима – 1290 об/мин, номинальное напряжения питания – 530 В, номинальная частота – 43 Гц, масса – 805 кг.

3-х фазный двигатель, самовентилируемый с короткозамкнутым ротором. Тяговые двигатели, установлены на вагонах 81-740/741, с опорой только на раму тележки, что снижает ударные нагрузки на двигатель при прохождении неровностей и стыков ходовых.

Двигатели могут работать как электродвигателями так и генераторами. В первом случае электрическая энергия, потребляемая от контактной сети (3-ий рельс), преобразуется в механическую, развивая при этом вращающий момент на валу двигателя.

Во втором случае двигатель преобразует, приведенную к валу механическую энергию от вращения колесных пар в электрическую, которая может быть вновь возвращена в контактную сеть (рекуперативное торможение) или гасится на тормозном реостате (сопротивление), при реостатном электрическом торможении.

Асинхронная электрическая машина характеризуется тем, что при ее работе возбуждается вращающее магнитное поле, которое вращается асинхронно относительно скорости вращения ротора.

Устройство тягового двигателя.

Тяговый двигатель состоит из: статора, ротора, двух подшипниковых щитов, вентилятора.

Статор (неподвижная часть) – предназначен для укладки в него обмотки. Имеет форму полого цилиндра, собранного из пластин электротехнической стали, толщиной 0,5мм, изолированных друг от друга слоем лака, что обеспечивает уменьшение потерь от вихревых токов.

Фазные обмотки, которые возбуждают вращающее магнитное поле, размещаются в пазах на внутренней стороне сердечника статора. Обмотка статора подсоединяется к 3-х фазному источнику переменного тока – инвертору.

1,2 отверстия крепления подшипникового щита

3. вылет обмотки

4. отверстие центровки подшипникового щита; 5. обмотка

Ротор (вращающаяся часть) – короткозамкнутый.

Собирается также из штампованных пластин электротехнической стали, определенной конфигурации, в результате чего на внутренней стороне сердечника ротора образуются пазы. В пазы ротора вставляют обмотку, которая изготовляется в виде цилиндрической(беличьей) клетки из медных или алюминиевых стержней. Стержни вставляются без изоляции. Концы стержней замыкают накоротко кольцами, которые изготавливают из того же материала. Обмотка ротора не соединяется с сетью и с обмоткой статора. Ротор насажен на вал тягового двигателя. Вентилятор устанавливается на конце вала ротора со стороны привода. Вал т/д изготавливается из высоколегированной стали. Имеет несколько шеек различной длинны и диаметра для посадки на них подшипниковых щитов, ротора, вентилятора.

1- вентилятор; 2 и 5 – вал; 3 - беличья клетка; корпус статора.

Подшипниковые щиты


Подшипниковые щиты устанавливаются в статор с двух сторон. Подшипники щитов опираются на вал тягового двигателя.

Конструкция асинхронного тягового двигателя

В пазы статора укладывают обмотку, которая в простейшем случае состоит из трех катушек - фаз, сдвинутых в пространстве на 120 эл. градусов. Ротор асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали. На поверхности ротора имеются продольные пазы для обмотки. Листы сердечника ротора специально не изолируют, т.к. в большинстве случаев достаточно изоляции от окалины. В зависимости от типа обмотки роторы двигателей обычного исполнения делятся на короткозамкнутые и фазные.

Обмотка короткозамкнутого ротора представляет собой медные стержни, забитые в пазы. С двух сторон эти стержни замыкаются кольцами. Соединения стержней с кольцами осуществляется пайкой или сваркой. Чаще всего короткозамкнутую обмотку выполняют расплавленным, алюминием и литьем под давлением. При этом вместе со стержнями и кольцами отливаются и лопатки вентилятора.


Короткозамкнутый ротор

ПРИНЦИП ОБРАЗОВАНИЯ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ МАШИНЫ.

На статоре трехфазного двигателя расположены 3 обмотки (фазы), которые смещены в пространстве по отношению друг к другу на 120 эл. градусов. Токи, подаваемые в фазные обмотки, отодвинуты друг от друга во времени на 1/3 периода.


Токи в трехфазной обмотке

Образование вращающегося магнитного поля.

Асинхронные двигатели широко применяются в промышленности. Эти двигатели состоят из двух основных частей: неподвижной – статора и вращающейся – ротора. В асинхронном двигателе переменный трехфазный ток включается в обмотку статора, состоящую из трех самостоятельных частей. Как видно из графика изменений трехфазного тока напряжение достигает максимального значения не одновременно во всех трех фазах, а попеременно, через равные промежутки времени, то в одной, то в другой, то в третьей фазе. Следователь но, если включить такой ток в три обмотки, расположенные так, как это показано на рисунке:

Максимальное значение магнитного потока будет создаваться то в первой, то во второй, то в третьей обмотке, соответственно максимальным значениям тока в фазах, подключенных к этим обмоткам. Магнитное поле, перемещающееся таким образом по замкнутому кругу, называется вращающимся магнитным полем.

Описанное создание вращающегося магнитного поля поясняется рис. Если подключить фазу к первой катушке обмотки двигателя, фазу 2 ко второй катушке, а фазу 3 к третьей катушке обмотки, то в момент времени t 1 максимальный поток будет в первой катушке, так как в это время сила тока в фазе 1, подключенной к первой катушке, будет иметь максимальное значение. Затем сила тока в фазе 1 постепенно ослабевает и, переходя через нуль, меняет направление, в это время увеличивается значение силы тока в фазе 2 и к моменту времени t 2 сила тока в фазе 2 достигает максимального значения, поэтому максимальный поток уже создастся не первой катушкой, а второй. Это в свою очередь означает, что магнитное поле повернулось на 120°. К моменту времени t 3 максимум тока будет в фазе 3, а максимум потока будет создаваться третьей катушкой - магнитное поле повернулось еще на 120º.

К моменту времени t 4 создается такая же картина поля, как и в момент времени t 1, т. е. снова максимума ток достигает в фазе 1, а максимальный магнитный поток создается первой катушкой Это значит, что за время t 1 - t 2 магнитное поле повернулось на 360° (совершило полный оборот).

Обмотка ротора асинхронного двигателя замкнута на себя, или на сопротивление. При неподвижном роторе и наличии тока в обмотке статора силовые линии вращающегося магнитного ноля пересекают неподвижные витки обмотки ротора, в результате чего в обмотке ротора появляется ЭДС и ток. Этот ток, взаимодействуя с полем статора, создает вращающий момент, стремящийся повернуть ротор в сторону вращения поля. Ротор двигателя начнет вращаться. По мере увеличения скорости ротора уменьшаются число пересекаемых силовых линий и ЭДС и, следовательно, ток ротора асинхронного двигателя. Однако ротор никогда не достигает скорости поля, а всегда вращается. Это отставание ротора от ноля статора называют скольжением. Чем больше нагрузка на валу двигателя, тем больше скольжение. Выражается скольжение в процентах или в относительных единицах.

Обычно асинхронные двигатели имеют при полной нагрузке скольжение 2-4%.

Скорость вращения ротора асинхронного двигателя определяется по формуле:


где n-скорость вращения ротора, об/мин;

f - частота питающей сети;

p- число пар полюсов;

s - скольжение.

ПРИНЦИП ДЕЙСТВИЯ АСИНХРОННОГО ДВИГАТЕЛЯ .

Вращающееся магнитное поле статора пересекает проводники обмотки ротора и наводит в них ЭДС. Так как роторная обмотка замкнута, то в проводниках ее возникают токи. Ток каждого проводника, взаимодействуя с полем статора, создает электромагнитную силу – F эм. Совокупность сил всех проводников обмотки создает электромагнитный момент М, который приводит ротор во вращение в направлении вращающего поля.

Частота вращения ротора n 2 будет всегда меньше синхронной частоты n 1 т.е. ротор всегда отстает от поля статора. Поясним это следующим образом. Пусть ротор вращается с частотой п 2 равной частоте вращающегося поля статора n 1 . В этом случае поле не будет пересекать проводники роторной обмотки. Следовательно, в них не будет наводиться ЭДС и не будет токов, а это значит, что вращающий момент М = 0. Таким образом, ротор асинхронного двигателя принципиально не может вращаться синхронно с полем статора. Разность между частотами поля статора n 2 и ротора n 1 называется частотой скольжения Δn:

Отношение частоты скольжения к частоте поля называется скольжением:


В общем случае скольжение в асинхронном двигателе может изменяться от нуля до единицы. Однако номинальное скольжение S H обычно составляет от 0,01 до 0,1 %. Преобразуя выражение *), получим выражение частоты вращения ротора:

Обмотка ротора асинхронного двигателя электрически не связана с обмоткой статора. В этом отношении двигатель подобен трансформатору, в котором обмотка статора является первичной обмоткой, а обмотка ротора - вторичной. Разница состоит в том, что ЭДС в обмотках трансформатора наводится не изменяющимся во времени магнитным потоком, а ЭДС в обмотках двигателя - потоком постоянным по величине, но вращающимся в пространстве. Эффект в том и в другом случаях будет одинаковым. В отличие от вторичной обмотки трансформатора, неподвижной, обмотка ротора двигателя вместе с ним вращается. ЭДС роторной обмотки, в свою очередь, зависит от частоты вращения ротора. В этом нетрудно убедиться, анализируя процессы, протекающие в асинхронном двигателе. Синхронная частота вращения магнитного поля статора перемещается относительно ротора с частотой скольжения Δn. Она же наводит в обмотке ротора ЭДС Е 2 , частота которой f 2 связана со скольжением S:

Учитывая, что fi=pn 1 /60, f 2 =pn 1 S/60.

Приняв величину номинального скольжения порядка 0,01-0,1, можно подсчитать частоту изменения ЭДС в роторной обмотке, которая составляет 0,5-5 Гц (при ^=50 Гц).

Эксплуатация серийных тепловозов и электровозов с передачей постоянного и переменно-постоянного тока показывает, что тяговый электродвигатель является одним из наименее надежных узлов электрооборудования. Основные неисправности их связаны с повреждением коллектора , щеток и изоляции, а главными причинами их повреждения являются механические, электрические и тепловые перегрузки, возникающие вследствие тряски, боксования, загрязнения воздушных фильтров в системе охлаждения , загрязнения и увлажнения охлаждающего воздуха и т. д.

Надежность работы тяговых двигателей постоянного тока в передачах переменно-постоянного тока существенно снижается вследствие пульсаций выпрямленного напряжения: ухудшаются условия коммутации, увеличиваются потери и т. д. Дальнейшее применение коллекторных тяговых электродвигателей постоянного тока на локомотивах считается малоэффективно, затруднительно и поэтому бесперспективно.

Асинхронный тяговый двигатель на локомотивах нового поколения позволяет решить задачу улучшения показателей железных дорог. Увеличение мощности асинхронных тяговых электродвигателей позволяет поднять расчетную скорость и частично силу тяги локомотивов и, следовательно, общую массу состава. Полная унификация механического и электрического оборудования в сочетании с простейшими асинхронными тяговыми электродвигателями и бесконтактным преобразовательным оборудованием повысят надежность локомотивов и сократят эксплуатационные расходы.

Асинхронные тяговые электродвигатели с короткозамкнутым ротором имеет относительно малый пусковой момент и большой пусковой ток. Увеличение пускового момента и уменьшение пускового тока возможно при выполнении беличьей клетки ротора с повышенным активным сопротивлением.

Основное уравнение, связывающее частоту вращения ротора с параметрами асинхронного электродвигателя и питающей сети,

где f – частота питающего тока;
р – число пар полюсов электрической машины;
s - скольжение.

Наибольшее распространение получил способ изменения частоты вращения за счет f . Частотное управление тяговым асинхронным электродвигателем осуществляется одновременным изменением ряда параметров питающей сети. Текущее значение напряжения U1 частоты тока f 1 и вращающего момента М1 для обеспечения экономичного регулирования необходимо обеспечить требуемые соотношения параметров с номинальными величинами UН, f Н, МН.

При частотном управлении можно придать тяговым характеристикам любую желаемую форму и обеспечить заданную скорость движения.

В случаях поддержания постоянной мощности тягового асинхронного электродвигателя магнитный поток его должен уменьшаться с ростом частоты тока. Особенность работы тягового асинхронного электродвигателя состоит в том, что возбуждение его идет по силовой цепи и ток статора равен геометрической сумме активного и намагничивающего токов.

На тепловозах с передачами переменного тока с целью наиболее полного использования установленной мощности электрооборудования принято трехзонное управление асинхронными тяговыми электродвигателями. В зоне I поддерживается постоянная сила тяги FТ электродвигателя, работающего при максимальном магнитном потоке. Линейное напряжение U1 и частота f 1тока статора по мере увеличения частоты вращения ротора n возрастают. Зона управления заканчивается при достижении ограничения по мощности дизеля.

В зоне II тяговые асинхронные электродвигатели работают с постоянной мощностью Р2, ограниченной мощностью дизель-генератора. В этой зоне частота тока ротора f 2, ток статора и магнитный поток уменьшаются с увеличением скорости движения тепловоза.

В зоне III напряжение тяговых асинхронных электродвигателей U1 остается постоянным. Для поддержания постоянной мощности электродвигателей, работающих в этой зоне с ослабленным магнитным потоком, частота тока ротора f 2 увеличивается.

Принцип широтно-импульсной модуляции заключается в том, что период изменения переменного напряжения распределяется на отдельные равные по времени отрезки, в которых иизменяется продолжительность включения (скважность) напряжения питания от минимального до максимального. Это приводит к изменению эффективного значения тока в нагрузке. При определенном подборе продолжительностей включения напряжения питания в нагрузке можно получить практически синусоидальное изменение тока переменной частоты.

Система формирования базовых векторов состоит в следующем: для любого заданного вектора напряжения статора US выбираются три ближайших базовых вектора (один из них может быть нулевым) и рассчитываются скважности включения базовых векторов так, чтобы сумма скважностей на периоде широтно-импульсного модулятора была равна 1, а результирующий вектор, образованный компонентами базовых векторов равнялся заданному. Если при этом период широтно-импульсного модулятора достаточно мал, то обмотка статора асинхронного электродвигателя, обладающая свойствами фильтра нижних частот и вся электрическая машина в целом будут реагировать практически на средние за период модуляции значения напряжений, а импульсный характер мгновенных значений напряжений скажется только в наличии высокочастотных пульсаций токов двигателя, вызывающих дополнительные потери энергии. Так как достижимые в настоящее время частоты переключений силовых транзисторов составляют примерно 1 ... 2 кГц, можно считать, что средние за период широтно-импульсной модуляции напряжения с практической точки зрения являются величинами, управляемыми по мгновенным значениям.

Техническая система, которая путем управления относительной длительностью “включения” состояний автономного инвертора напряжения на каждом периоде широтно-импульсной модуляции (скважностью) позволяет преобразовать управляющие воздействия в пропорциональные им по средним значениям напряжения на нагрузке.

При этом на выходе генератора формируются широтно-модулируемые сигналы, поступающие далее на драйверы силовых модулей. Приведенная методика реализована в современных преобразователях напряжения и частоты.

Опытный шестивагонный скоростной электропоезд «Сокол» состоит из двух головных, двух трансформаторных и двух моторных вагонов. Тяговый электропривод электропоезда «Сокол» обеспечивает работу асинхронных тяговых электродвигателей при питании от контактной сети постоянного и переменного тока с минимально необходимым количеством элементов, обеспечивающим работу асинхронных тяговых электродвигателей в заданных условиях. При работе от контактной сети переменного тока переключатели рода тока S1 … S2 включены в положение переменного тока схема включает тяговый генератор, сетевой реактор, входной преобразователь ВУ и тяговый преобразователь. Входной преобразователь, независимо от режима работы асинхронных тяговых электродвигателей и изменения напряжения в контактной сети, обеспечивает преобразование переменного напряжения в выпрямленное промежуточного звена и стабилизирует его.

При питании от контактной сети постоянного тока первичная обмотка тягового трансформатора закорочена, переключатель рода тока включен в положение постоянного тока. Входной преобразователь включен так, что образует входной импульсный прерыватель постоянного напряжения.

Выходной преобразователь напряжения и частоты собран на базе IGBT-модулей по двухточечной схеме. Для шестивагонного электропоезда разработана и изготовлена схема управления тяговыми электродвигателями переменного тока на базе автономных инверторов напряжения с системой управления.

В схеме тягового привода с асинхронными тяговыми двигателями постоянное напряжение контактной сети преобразуется в переменное трехфазное, регулируемое по амплитуде и частоте. В качестве тяговых используются асинхронные двигатели с короткозамкнутым ротором. При регулировании амплитуды и частоты напряжения сила тяги изменяется плавно без скачков, характерных для систем с тяговыми двигателями постоянного тока и контакторно-реостатным регулированием.

В каждую из трех цепей трехуровневого инвертора включены по четыре силовых ключа с обратными диодами. К средним точкам подключены обмотки трехфазного асинхронного двигателя. Напряжение звена постоянного тока Ud конденсаторами С1 и С2 делится на две равные частиUd/2. «Искусственная» нулевая точка через дополнительные диоды соединена со средними точками каждой пары верхних и пары нижних силовых ключей. В таком инверторе питание двигателя может быть организовано от нижней конденсаторной батареи, от верхней или от обеих батарей одновременно. Таким образом, обеспечиваются три возможных уровня питания инвертора 0,Ud/2, Ud.

Направление движения изменяют за счет изменения порядка чередования фаз на выходе преобразователя без переключений в силовой схеме. Переход в режим торможения также осуществляется без переключений в схеме.

Преобразователи подключены к контактной сети через реактор фильтра Др и быстродействующий вакуумный выключатель БВ. Тормозные резисторы RT служат для поглощения энергии электрического торможения, если другие потребители, подсоединенные к контактной сети, не потребляют энергию или тяговые подстанции не обеспечивают возврат электроэнергии в систему первичного энергоснабжения .

Тяговые двигатели подключаются по два параллельно из разных тележек. К первому преобразователю подсоединены первый и третий двигатели, ко второму - второй и четвертый. Так выравниваются нагрузки на каждый преобразователь, поскольку разгружена первая по ходу и догружена вторая по ходу тележки в режиме тяги. Особенностью схемы силовых цепей электропоезда является прямое подключение преобразователя к контактной сети напряжением 3000 В. Последнее стало возможным благодаря достижениям в области силовой электроники, в частности, созданию и освоению силовых полупроводниковых транзисторных модулей с рабочим напряжением 3300 В и рабочими токами до 1200 А.

Инверторы напряжения выполнены на основе IGBT-модулей по трехточечной схеме. Инверторы осуществляют регулирование подводимого к асинхронному тяговому электродвигателю напряжения и частоты методом широтно-импульсной модуляции. При разгоне электропоезда до номинальной скорости движения регулирование напряжения осуществляется двумя основными и двумя переходными методами широтно-импульсной модуляции. Переходом в одноимпульсный режим заканчивается регулирование напряжения, и дальнейшее увеличение скорости движения происходит путем увеличения частоты подводимого к асинхронному тяговому электродвигателю напряжения.

К недостаткам такой схемы следует отнести увеличенное по сравнению с двухточечной схемой с промежуточным звеном постоянного напряжения количество силовых модулей.

Достижения силовой полупроводниковой техники позволяют принципиально усовершенствовать электрические машины. Механический коллектор электрической машины постоянного тока может быть заменен вентильным устройством. Электрическая машина в этом случае называется вентильной. Как и тяговый асинхронный привод, вентильный привод состоит из трех основных элементов: электрической машины, преобразователя частоты, аппаратуры управления . Однако устройство и взаимодействие этих элементов в каждой схеме различны.

По конструкции вентильного двигателя электрическая машина подобна синхронной. На статоре располагается многофазная обмотка переменного тока, в роторе – обмотка возбуждения постоянного тока. При вращении ротора ток в фазах статора переключается преобразователем частоты, причем коммутация происходит под воздействием ЭДС самой электрической машины. Система управления, контролируя вращение электрической машины, отпирает очередные вентили в определенных положениях ротора.

По своему принципу действия вентильный двигатель подобен машине постоянного тока, в которой механический коллектор заменен преобразователем частоты. Однако в отличие от нее вентильный двигатель имеет малое число коммутируемых выводов. Вполне удовлетворительные результаты по использованию активных материалов машины достигаются при простейшей обмотке статора в виде трехфазной звезды. Вентильная коммутация тока в обмотке статора допускает значительное напряжение между выводами, достигающее несколько сотен и даже тысяч вольт.

Вентильный двигатель подобен двигателю постоянного тока также и по электромеханическим характеристикам, которые определяются схемой питания обмотки возбуждения. Как и машина постоянного тока, вентильный двигатель имеет обычный для тяговых электродвигателей воздушный зазор в несколько миллиметров, что очень важно для эксплуатации.
К недостаткам вентильного двигателя можно отнести наличие щеточного аппарата на роторе. Однако именно возбуждение постоянным током обеспечивает коммутацию тока в обмотках статора без специальных коммутирующих устройств, одновременно появляется возможность дополнительного регулирования скорости за счет ослабления возбуждения.

Управление тяговыми электродвигателями электровоза ЭП200 рассмотрим на примере одного тягового электродвигателя. Первичная обмотка тягового трансформатора типа ОНДЦЭ-11500/25 мощностью 11500 кВА подключен к контактному проводу через токоприемник ХА1 и главный выключатель QF1. Второй вывод первичной обмотки тягового трансформатора соединен с рельсовой цепью через токосъемное устройство.
х900 В) получает питание выпрямительно-инверторный преобразователь ВИП1.1. Наличие двух секций тяговой обмотки трансформатора соответствует мостовой схеме включения тиристоров и обеспечивает в тяговом режиме плавное двухзонное регулирование напряжения на выходе от нуля до 1425 В. От вторичной обмотки (а1-1-х1) трансформатора напряжение 1800 В (2

К выходам ВИП1.1 через сглаживающий реактор L1 подключен инвертор тока ВИП1.2, а к нему статорные обмотки тягового электродвигателя ТЭД. Для повышения коэффициента мощности на ВИП1.2 установлен компенсатор реактивной мощности, состоящий из дросселя L2, емкости С1 и тиристорного ключа, входящего в ВИП1.1.

Тяговый вентильный электродвигатель НТВ-1000 – восьмиполюсный с часовой мощностью 1000 кВт и максимальной частотой вращения 3100 об/мин. Он выполнен с распределенной обмоткой возбуждения на роторе (с неявно выраженными полюсами).

Питание на обмотку возбуждения подается от обмотки а5-х5 тягового трансформатора через управляемый выпрямительный мост УВ и разделительный дроссель L3. Цепи питания остальных тяговых электродвигателей аналогичны описанному.

Все полупроводниковые модули ВИП, инверторов и управляемых выпрямителей возбуждения конструктивно в две силовые преобразовательные установки СПУ-5700. Каждая из них питает четыре тяговых электродвигателя одной тележки. Система автоматического регулирования частоты и напряжения питания обеспечивает получение предельной тяговой характеристики и поддерживает постоянную силу тяги в зоне низких скоростей до выхода на номинальную мощность, а в зоне высоких скоростей – постоянную мощность.

При разгоне поезда автоматическая система поддерживает заданный ток тяговых электродвигателей до выхода на выбранную скорость движения, а затем поддерживается эта скорость движения. Автоматическая система позволяет выравнивать нагрузки тяговых электродвигателей и ограничивает токи тяговых электродвигателей при достижении предельных значений.

Новочеркасским электровозостроительным заводом разработаны пассажирские электровозы постоянного тока ЭП2 и переменного тока ЭП3. Их проектирование проводилось на основе опыта, полученного при создании и эксплуатации электровоза ЭП10 и его предшественников.

Регулирование режима работы тяговых двигателей предусмотрено осуществлять с помощью статических преобразователей частоты и числа фаз, состоящих из импульсного регулятора напряжения (ИРН) на ЭП2 и четырехквадрантного регулятора-выпрямителя (Вх. пр) на ЭП3, от которых питается автономный инвертор напряжения (АИН) с широтно-импульсной модуляцией. Тяговый трансформатор электровоза ЭП3 имеет три обмотки для питания тяговых преобразователей, две для питания преобразователей собственных нужд и обмотку отопления поезда.

Каждый тяговый преобразователь питает два тяговых двигателя АДТ1 и АДТ2. Электровозы обеих серий имеют рекуперативное и реостатное торможение. При переходе из тягового режима в режим электрического торможения и при обратных переходах никаких переключений в силовой цепи не происходит. Асинхронные тяговые двигатели переводятся в генераторный режим за счет понижения частоты напряжения на статорной обмотке относительно синхронной, соответствующей фактической скорости движения, а инверторы переводятся в режим выпрямления.

Вспомогательные преобразователи электровозов ЭП2 и ЭП3 имеют два канала. Приводные двигатели вентиляторов получают питание от канала с регулируемым напряжением и частотой. Регулирование частоты ступенчатое: 50, 33 и 17 Гц. Двигатели главных компрессоров, масляных насосов и некоторые другие потребители системы собственных нужд питаются нерегулируемым трехфазным напряжением от второго канала. Охлаждение преобразователя осуществляется диаметральными вентиляторами.

Управление электровозом осуществляется с помощью двухуровневой микропроцессорной системы. На первом уровне осуществляются сбор, обработка информации и управление электровозом в целом (кроме тягового привода) и его отдельными системами. На этом уровне отрабатывается алгоритм режимов тяги, торможения, поддержания скорости, управления вспомогательным приводом. На втором уровне для каждого тягового преобразователя отрабатываются задания от системы первого уровня (в соответствии с протоколом обмена) по силе тяги или торможения, алгоритмы защиты от перегрузок, боксования, юза и т. д.

Электровоз оборудуется системой диагностики, которая обеспечивает предрейсовый контроль исправности оборудования, автоматический контроль состояния оборудования в пути следования, оперативное определение причин отказа, а также позволяет считывать информацию о состоянии контролируемого оборудования стационарными диагностическими устройствами.

Несмотря на то что к настоящему времени выполнен большой объем исследований на компьютерных моделях, макетных и опытных образцах, а также испытаний оборудования на стендах, еще предстоит решить ряд вопросов.

К ним относится, в частности, проблема электромагнитной совместимости электровозов с системой тягового электроснабжения. Применение полупроводниковых преобразователей частоты и числа фаз вызывает искажение форм тока и напряжения в контактном проводе и, как следствие, нарушения в системах железнодорожной автоматики, сигнализации и обеспечения безопасности движения.

Увеличение осевой мощности электровозов с асинхронным тяговым приводом привело к тому, что частым явлением в условиях эксплуатации стало синхронное боксование колесных пар. Применяемые в настоящее время системы защиты от боксования, основанные на использовании различий в режимах работы тяговых двигателей отдельных осей, оказались в ряде случаев неэффективными.

Повышение осевой мощности при применении асинхронных тяговых двигателей и улучшение состояния железнодорожного пути позволяют повысить скорость движения поездов. При этом увеличивается боковой износ рельсов и гребней бандажей колес при движении в кривых участках пути. Для снижения износа в настоящее время применяют смазывание гребней.

Применению в массовом порядке электровозов с асинхронным тяговым приводом должны предшествовать оснащение электровозных депо специальным оборудованием и подготовка для депо локомотивных бригад, инженерно-технического и ремонтного персонала требуемой квалификации.

Специалистами ВНИКТИ разработана схема преобразователя напряжения и частоты для перспективных локомотивов на IGBT-транзисторах мощностью 1500 кВт из расчета на три электродвигателя мощностью каждый по 470 кВт с индивидуальным приводом на каждую ось и встроенной микропроцессорной системой управления. Преобразователь предназначен для установки на перспективных магистральных грузовых и пассажирских тепловозах нового поколения с асинхронными тяговыми двигателями (2ТЭ25А, ТЭ25, ТЭ35, ТЭП35) при их работе как в режиме тяги, так и в режиме электрического реостатного торможения. Допускается применение преобразователя и на маневровых тепловозах типа ТЭМ10, ТЭМ15. На магистральные тепловозы устанавливается по два силовых преобразователя, а на маневровые достаточно одного, но с подключением к каждому из трех инверторов напряжения, имеющихся в составе преобразователя по два тяговых электродвигателя параллельно общей мощностью не более 470 кВт.

Питание преобразователя выполняется от тягового генератора переменного тока. Преобразователь оборудован необходимым набором датчиков: постоянного напряжения на выходе выпрямителя (один на все автономные инверторы напряжения), фазных токов на выходе автономных инверторов напряжения. Данные датчики совместно с датчиками частоты вращения валов асинхронных двигателей позволяют реализовать векторный способ управления преобразователями в широком диапазоне входного питающего напряжения при переводе позиции контроллера машиниста с первой до пятнадцатой, а также обеспечивают диагностирование его элементов с передачей диагностической информации на верхний уровень управления.

Синхронные двигатели с возбуждением от постоянных магнитов, обладающие преимуществами в отношении массогабаритных показателей и потребления энергии, все чаще находят применение в тяговом приводе, хотя они требуют использования сложных систем управления и пока имеют недостаточную надежность.

За последние несколько лет от ведущих мировых поставщиков подвижного состава поступило много предложений, касающихся использования синхронных тяговых двигателей с возбуждением от постоянных магнитов (СДПМ). Такие двигатели имеют меньшие габариты и массу по сравнению с преобладавшими до сих пор на рынке трехфазными асинхронными двигателями.

СДПМ использовались, в частности, на установившем 3 апреля 2007 г. мировой рекорд скорости электропоезде AGV V150 постройки компании Alstom (рис. 1). Они находят применение на подвижном составе различного назначения (таблица) - от трамвая-поезда Citadis Dualis (рис. 2) до двухэтажного междугородного электропоезда Twindexx (рис. 3) для железных дорог Швейцарии (SBB).

Рис. 1. Высокоскоростной электропоезд AGV V150 во время рекордного пробега Рис. 2. Трамвай-поезд Citadis Dualis (фото: Alstom) Рис. 3. Электропоезд Twindexx (источник: Bombardier)

Считается, что железнодорожные компании-операторы консервативны в отношении применения новых технологий. В то же время разработчики и изготовители тягового подвижного состава заинтересованы в скорейшей реализации передовых технических решений. Если использование новых разработок способствует существенному улучшению эксплуатационных показателей, эти разработки достаточно быстро находят применение, что подтверждается опытом внедрения импульсных преобразователей для питания тяговых двигателей постоянного тока последовательного возбуждения, тяговых двигателей постоянного тока независимого возбуждения, синхронных двигателей и трехфазных асинхронных двигателей с короткозамкнутым ротором. С развитием технологий повышалась эффективность тягового привода и совершенствовалось управление им, что позволило улучшить характеристики сцепления и снизить потребление энергии.

СДПМ и электронная аппаратура управления ими представляют собой наиболее современную технологию в области тягового привода. Миллионы СДПМ благодаря своей сравнительно малой массе и хорошей управляемости уже используются в приводах гибридных автомобилей. Более крупные двигатели предоставляют такие же возможности для повышения эффективности тягового привода железнодорожного подвижного состава. Данная технология внедряется на новом подвижном составе различного назначения. Однако при этом выявились несколько существенных проблем, требующих решения.

На автомобилях с двигателями внутреннего сгорания для регулирования скорости обычно используют сложное механическое устройство - коробку передач, благодаря чему двигатель может работать в оптимальном скоростном диапазоне. Тяговые двигатели подвижного состава железных дорог должны эффективно работать во всем диапазоне скорости, обеспечивая передачу крутящего момента на колеса через одноступенчатый редуктор либо непосредственно. Такое простое в плане механического оборудования решение позволяет создать надежные системы привода, не требующие сложного технического обслуживания.

Таким образом, первое требование, предъявляемое при проектировании тяговых двигателей, - их способность обеспечивать крутящий момент или тяговое усилие в широком диапазоне скорости (от 0 до 320 км/ч).

Безусловно, важно, чтобы тяговый двигатель работал надежно. В то же время, с точки зрения машиниста и железнодорожной компании-оператора, в равной степени имеет значение точное и плавное регулирование момента во всем диапазоне скорости при помощи системы управления тяговым приводом. Надлежащее регулирование крутящего момента обеспечивает оптимальное использование сцепления между колесом и рельсом, плавное ускорение, способность поддержания постоянной скорости и возможность применения электрического торможения.

При взаимодействии колес с рельсами крутящий момент тягового двигателя преобразуется в линейную силу тяги или торможения. На рис. 4 представлен график зави-симости силы тяги от скорости, а также кривая сопротивления движению поезда. Кривая силы тяги пересекает кривую сопротивления движению в точке так называемой установившейся скорости, т. е. максимальной теоретически возможной скорости. Вблизи этой точки величина изменения силы тяги, за счет которой создается ускорение поезда (на рис. 4 обозначена красной стрелкой), невелика. На рис. 5 показаны характеристики мощности тягового привода и потребной тяговой мощности (мощность равна произведению скорости и силы тяги).

Тяговые двигатели, как правило, рассчитываются на определенный режим работы. Двигатель должен развивать требуемый момент при нулевой скорости и поддерживать его до номинальной во всей зоне 1 кривой силы тяги. Выше этой скорости тяговый двигатель развивает максимальную выходную мощность. В зоне 2 сила тяги обратно пропорциональна скорости. В зоне 3 вследствие ограничений характеристик тягового двигателя сила тяги обратно пропорциональна квадрату скорости.


Рис. 4. Тяговая характеристика и сопротивление движению
Рис. 5. Характеристики мощности

При низкой скорости крутящий момент двигателя теоретически может быть больше, чем передаваемый при взаимодействии колеса и рельса. Однако это привело бы к перегрузке двигателя, поэтому таких режимов следует избегать посредством соответствующих действий машиниста или электронной системы управления.

Ранее для управления тяговыми двигателями постоянного тока применялось регулирование напряжения посредством изменения схемы их соединения с последо-вательного на параллельное и регулирование тока с помощью пускотормозных резисторов. На современном подвижном составе для управления как коллекторными двигателями постоянного тока, так и синхронными и асинхронными двигателями переменного тока ис-пользуются электронные системы, обеспечивающие изменение напряжения или как напряжения, так и частоты. Применяемые ныне системы тягового электропривода позволяют достичь качественного управления во всем диапазоне скорости при относительно простых алгоритмах регулирования.

Регулирование СДПМ позволяет достаточно легко достичь требуемых характеристик в зоне постоянного крутящего момента, однако для регулирования в зоне постоянной мощности требуются более сложные алгоритмы.

Двигатели переменного и постоянного тока, как и СДПМ, по существу работают на основе одних и тех же физических законов. Поэтому принципы управления ими до неко-торой степени подобны. В электрических машинах всех видов крутящий момент возникает при взаимодействии двух магнитных полей. Для появления крутящего момента между векторами напряженности этих магнитных полей должен быть определенный угол, в идеальном случае равный 90 эл. град. Упомянутые поля могут быть созданы токами, про-текающими по обмоткам двигателя, или постоянными магнитами.

В настоящее время в тяговом приводе находят применение главным образом трехфазные асинхронные двигатели. Тем не менее весьма важно понимать природу и поведение магнитных полей статора и ротора электрических машин других типов.

В традиционном двигателе постоянного тока северные и южные полюса поля статора всегда ориентированы в одном и том же направлении, в то время как поле якоря (ротора) сдвинуто на 90 эл. град вследствие использования коллектора. В двигателе последовательно-го возбуждения один и тот же ток проходит как через обмотку статора, так и через обмотку ротора, тогда как в случае использования двигателя независимого возбуждения имеется возможность независимо управлять полями ротора и статора.

В традиционном трехфазном синхронном двигателе магнитное поле ротора создается током, протекающим по его обмотке, а ориентация поля определяется физическим положением обмотки ротора. Поле статора создается током, протекающим по его обмотке, и вращается со скоростью, определяемой частотой инвертора, от которого получает питание обмотка статора. Угол между полями статора и ротора увеличивается в зависимости от крутящего момента, а частоты вращения ротора и поля статора одинаковы. Когда угол становится отрицательным, двигатель переходит в тормозной режим.

В трехфазном асинхронном двигателе магнитное поле статора индуцирует в обмотке ротора ток (рис. 6), который, в свою очередь, генерирует магнитное поле. Последнее, взаимодействуя с полем статора, создает тяговый или тормозной момент. В режиме тяги частота вращения ротора ниже частоты вращения поля статора, заданной преобразователем, а в режиме торможения - выше. Крутящий момент не возникает, если частоты вращения равны. Соотношение частот вращения ротора и поля статора характеризуется величиной, на-зываемой скольжением.

В СДПМ поле ротора создается магнитами, которые либо распределены по поверхности ротора, либо размещены в его пазах (рис. 7). В последнем случае обеспечивается большая механическая прочность и меньшие потери на вихревые токи в роторе. В качестве материала для постоянных магнитов получил распространение сплав неодим-железобор (Nd2Fe14B) благодаря его оптимальным магнитным свойствам. Магнитное поле статора создается с помощью трехфазной многополюсной обмотки, размещенной в пазах шихтованного сердечника.


Рис. 6. Принцип работы асинхронного двигателя с короткозамкнутым ротором
Рис. 7. Принцип работы СДПМ

Во всех электрических машинах вращающееся магнитное поле генерирует ЭДС, противоположную по направлению питающему напряжению - так называемую противо-ЭДС. При нулевой частоте вращения она равна нулю, однако с ее ростом линейно возрастает. Для поддержания постоянной величины крутящего момента в зоне 1 (см. рис. 4 и 5) следует увеличивать напряжение питания.

Крутящий момент электрической машины представляет собой произведение магнитного потока и тока. Силовой полупроводниковый преобразователь регулирует питающее постоянное или однофазное напряжение таким образом, чтобы значения тока в обмотках двигателя находились в допустимых пределах. Наиболее современным решением является использование преобразователей на основе биполярных транзисторов с изолированным затвором (IGBT) с широтно-импульсной модуляцией.

В зоне 1, где сила тяги постоянна, напряжение (а в случае асинхронного двигателя - и частота) должно возрастать пропорционально частоте вращения двигателя, при этом значение произведения магнитного потока и тока, т. е. крутящего момента, поддерживается постоянным. При превышении номинального значения частоты вращения приложенное напряжение не может быть увеличено из-за ограничений параметров силового пре-образователя и изоляции двигателя. Однако с точки зрения механических характеристик частота вращения может быть выше.

Переход в зону 2 осуществляется посредством ослабления поля, при этом уменьшается противо-ЭДС или (для СДПМ) осуществляется противодействие ее влиянию. В двигателях постоянного тока это достигается уменьшением величины тока, протекающего через обмотку возбуждения, за счет включения параллельно ей сопротивления ослабления поля, в традиционном синхронном двигателе - путем уменьшения тока в обмотке ротора. В асинхронном двигателе ослабление поля происходит автоматически с увеличением частоты тока обмотки статора, в то время как питающее напряжение остается неизменным. В СДПМ осуществить ослабление поля сложнее, поскольку поле ротора создается постоянными магнитами.

В зоне 3 магнитный поток и ток уменьшаются быстрее, чем в зоне постоянной мощности, чтобы избежать превышения предельных электрических и механических характеристик двигателя. Например, в двигателе постоянного тока независимого возбуждения ток якоря также снижается в зависимости от скорости.

Основная причина расширения применения СДПМ в тяговом приводе - их существенные преимущества по сравнению с трехфазными асинхронными двигателями. В пределах примерно 80% рабочего диапазона КПД СДПМ больше на 1-2%, а удельная мощность - на 30-35%, вследствие чего при равной мощности габариты и масса СДПМ примерно на 25% меньше.

В асинхронном двигателе имеет место нагрев ротора вследствие наличия мощности скольжения. В СДПМ он фактически отсутствует, благодаря чему нет необходимости в охлаждении ротора. Статор СДПМ обычно полностью герметичен и имеет жидкостное охлаждение, что способствует повышению надежности двигателя. Кроме того, при использовании СДПМ возможно осуществлять электрическое торможение при низких значениях скорости, что делает принципиально возможным самоуправляемое торможение при замыкании накоротко обмоток статора. Однако достижение этих преимуществ невозможно без компромисса. Выявлены семь основных факторов, препятствующих распространению СДПМ для целей электрической тяги, хотя уже разработаны методы решения этих проблем.

Ограничения размеров и стоимости четырехквадрантного преобразователя и двигателя не позволяют использовать их во всем диапазоне скорости только путем поддержания величины питающего напряжения, настолько превышающей противо-ЭДС, чтобы величина тока была достаточна для достижения требуемого крутящего момента. Проблема может быть решена с помощью ослабления поля, благодаря чему создаются зоны постоянного момента и постоянной мощности. Поскольку регулирование поля, создаваемого постоянными магнитами, затруднительно, ослабление поля достигается подачей тока в обмотки статора. Таким образом создается поле с вектором напряженности, направленным против вектора напряженности поля, создаваемого постоянными магнитами ротора. При этом возникают потери в меди обмотки статора, что в некоторой степени снижает положительный эффект, получаемый благодаря низким потерям при использовании ротора с постоянными магнитами.

Для управления токами, создающими эффект ослабления поля, необходимо определить положение ротора с точностью до 1-2 эл. град. Для четырехполюсного двигателя требуется механическое разрешение не менее чем 1,5 эл. град. Если использовать датчики, от них требуются весьма высокие точность и надежность, чтобы обеспечить нормальную работу системы управления. Возможно управление и без применения датчиков, однако при этом может быть снижена точность регулирования.

Магнитный поток зависит от температуры, при этом напряженность поля снижается примерно на 1% при увеличении температуры ротора на 10 К. Для СДПМ, которые работают в температурном диапазоне 200 К (от -40 до +160 °С), это имеет существенное значение. Поэтому электронная система управления должна контролировать рабочую температуру и учитывать ее при формировании управляющего сигнала.

Каждый СДПМ требует индивидуального силового полупроводникового регулятора, гарантирующего подачу управляющего импульса на включение силовой цепи строго в требуемый момент времени. Впрочем, в современном тяговом при-воде все чаще используются индивидуальные системы управления каждым двигателем. Таким образом, эта проблема решается.

При значительных токах и высоких температурах может произойти необратимое размагничивание, даже если температура ротора не достигает точки Кюри между 310 и 370 °C. Однако более опасно короткое замыкание в обмотке статора, которое может привести к разрушению двигателя, поскольку создаваемое постоянными магнитами вращающееся поле продолжает индуцировать значительные токи в статоре. Здесь размагничивание может быть полезным, поскольку снижает эти токи.

Еще одна проблема связана с тем, что при работе без нагрузки (когда поезд движется в режиме выбега) вращающийся ротор двигателя с постоянными магнитами продолжает индуцировать токи в сердечнике статора. Возникающие вихревые токи наряду с эффектом гистерезиса вызывают потери в стали, что снижает КПД двигателя.

Редкоземельные металлы, используемые в СДПМ, обладают хорошими магнитными свойствами, но довольно чувствительны к механическому и тепловому воздействию. Конструкция ротора у СДПМ сложнее, чем у асинхронных двигателей. Схема управления СДПМ также сложнее в связи с наличием многократных контуров обратной связи и необходимости преобразования сигнала.

Существует достаточно много областей применения, где преимущества СДПМ безусловно преобладают над их недостатками, и это делает их привлекательными для разработчиков тягового привода. Меньшие размеры и масса имеют особое значение при ограниченности пространства — например, в случае необходимости размещения двигателя на оси колесной пары без редуктора.

Более высокий КПД и меньшие потери в роторе обеспечивают существенные преимущества СДПМ с точки зрения совершенствования эксплуатационных характеристик подвижного состава и сокращения потребления энергии (рис. 8). Это видно, в частности, на примере электропоезда V150 компании Alstom. Асинхронные двигатели устанавливаются на тележках, расположенных под кузовами моторных вагонов, тогда как СДПМ могут быть размещены на тележках под узлами сочленения, что позволяет уменьшить сложность и массу тягового привода.


Рис. 8. Электромеханическая характеристика и КПД СДПМ

СДПМ могут в перспективе получить намного более широкое применение в тяговом приводе (таблица), подобно тому, как в середине 1980-х годов завоевали популярность трех-фазные асинхронные тяговые двигатели, пришедшие на смену двигателям постоянного тока.

Примеры применения тяговых СДПМ

Оператор, страна

Подвижной состав

Изготовитель

NTV (Италия) 25 высокоскоростных поездов AGV Alstom
SBB (Швейцария) 59 двухэтажных электропоездов Twindexx Bombardier
SNCF (Франция) 31 трамвай-поезд Citadis Dualis Alstom
SNCF (Франция) Электропоезда Regiolis (рамочный контракт) Alstom
SNCF (Франция) Электропоезда Omneo (рамочный контракт) Bombardier
Прага (Чехия) Низкопольные трамвайные вагоны типа 15T Skoda
Метрополитен Токио (Япония) Электропоезда серии 16000 Kawasaki
JR East (Япония) Пригородные электропоезда серии E331 для Токио Toshiba
Опытные образцы
Метрополитен Мюн­хена (Германия) Электропоезд типа C19 с тележками Syntegra Siemens
Китай Прототип локомотива на топливных элементах CNR Yongji
Швеция Электропоезд Grona Taget Bombardier
Турция Низкопольный трамвай Citadis X04 Alstom
Япония Поезд с изменяемой шириной колеи RTRI

Железные Дороги Мира - 2011