Облегченный маховик. Местный износ центрирующего кольца. Деформация центровочных штифтов и отверстий

Задача распознавания сводится к селекции (выделению) заданных для вскрытия объектов среди других обнаруженных объектов естественного и искусственного происхождения. В задачу распознавания входит также определение класса и типа выделенных объектов и их функционального состояния. Особенно важной и ответственной задачей при принятии решения является распознавание специальных ложных целей (надувных макетов, уголковых отражателей и т.п.), а также объектов по принадлежности свой - чужой.

Повышение эффективности решения задачи распознавания объектов достигается двумя путями:

повышением информативности используемых распознавательных признаков (характеристик) объекта;

формированием в РСА новых распознавательных признаков заданных объектов.

Обычно критерием выбора распознавательных признаков и методов повышения их эффективности является принцип разумной достаточности, так как формирование новых и повышение характеристик используемых признаков требует перераспределения (расходования) располагаемых ресурсов (вычислительных, энергетических, временных) РСА, которые всегда ограничены критическими технологиями и тактическими требованиями.

Быстрое развитие технологий РСА позволяет использовать распознавательные признаки все более широкого класса. Далее анализируются основные распознавательные признаки объектов при их наблюдении РСА.

Характерные размеры РЛИ объекта. К характерным размерам объекта относятся его длина, ширина, высота, площадь и объем, определяемые числом элементов разрешения в РЛИ объекта. Дополнительным признаком является форма РЛИ объекта.

Рассмотрим методику расчета вероятности распознавания цели на примере использования площади объекта в качестве распознавательного признака. Вероятность распознавания целей определяется многими факторами:

ансамблем распознаваемых целей;

априорными сведениями о классе наблюдаемых целей;

свойствами выбранных распознавательных признаков;

алгоритмом принятия решения о классе цели.

В качестве ансамбля распознаваемых целей принимается набор типовых целей. При этом каждый раз при определении вероятности распознавания целей предполагается наличие двух целей с наиболее близкими параметрами, т.е. наихудший случай. Кроме того, полагаем, что априорные сведения о наличии той или иной цели отсутствуют, т.е. наличие двух близких по параметрам целей равновероятно.

такая точность достигается с запасом.

О классе цели №2.

Пиксела), одинаковых заданных потерях при ошибках классификации первого и второго рода, отсутствии потерь при точных решениях и одинаковых априорных вероятностях появления целей каждого класса значение площади раздела равно:

правильной классификации первой цели равна:

то

Площади изображения цели можно аппроксимировать гауссовой кривой:

при наблюдении первой цели определяется интегралом вероятности:

- нормированное граничное значение разделения

площади первой цели относительно второй.

для различных нормированных значений границы раздела

вероятность распознавания будет равна 0,7.

на характерном размере изображения. В табл. 7.4 даны значения требуемой разрешающей способности РСА для обнаружения и распознавания типовых объектов при наблюдении их РЛИ опытным оператором.

В настоящее время достигнута разрешающая способность 0,3x0,3 м, а в отдельных

экспериментах даже 0,1x0,1 м,

что позволяет распознавать малоразмерные цели, имеющие размеры единицы метров.

Решение задачи селекции ложных целей, имеющих такие же характерные размеры, как и заданные цели, требует привлечения дополнительных распознавательных признаков.

Амплитудный портрет объекта. Амплитудный портрет - это детальное изображение объекта в виде распределения ЭПР объекта по элементам разрешения РЛИ. В качестве распознавательных признаков используются статистические характеристики ЭПР.

Среднее значение ЭПР, полученное усреднением реализации амплитуды РЛИ за несколько обзоров, характеризует распределение отражающей способности объекта по элементам разрешения.

Корреляционная функция характеризует взаимосвязь амплитуд РЛИ как в разрешаемом элементе от обзора к обзору, так и между элементами. Рассматриваются также законы распределения плотности вероятности амплитуд РЛИ.

Трудностью использования этих признаков является получение банка данных для заданного класса (типов) объектов, что требует больших экспериментальных работ. Рассматривается также возможность расчета на ЭВМ статистических характеристик РЛИ объектов.

Поляризационные портреты объекта. В настоящее время при распознавании объекта используются в основном однополяризационные функции отражения, когда излучаемая и принимаемая электромагнитная волна имеет одну и ту же поляризацию (ГГ или ВВ). Развитие техники антенн-поляриметров дало возможность формировать полную поляризационную матрицу функции отражения объекта. При этом РЛИ объекта, полученные при различных поляризациях, несут информацию о конструкции и структуре материала объекта. Так, значительно отличаются РЛИ объектов естественного и искусственного происхождения в зависимости от поляризации, а также у специальных ложных целей.

Основной проблемой при создании полнополяриметрической РСА является значительное усложнение аппаратной и программной (алгоритмической) частей. Фактически работают параллельно четыре канала приема сигнала и обработки данных. Также весьма сложной задачей является определение (в основном экспериментальное) поляризационной матрицы функции отражения объектов для различных условий наблюдения.

Трехмерный портрет объекта. Обычно РЛИ объекта формируется в виде плоской картины в проекции на земную поверхность. В то же время значительная информация о классе и типе объекта заключена в высоте объекта. Кроме естественного изменения высоты земной поверхности (рельефа местности), РСА позволяет получать изображение микрорельефа объекта, т.е. изменение рельефа местности, связанное с наличием вскрываемого объекта (капониры, карьеры, отдельные сооружения, техника и т.п.).

Угол визирования (в радианах). Так, при угле визирования в 6° объект высотой Ь = 10 м дает тень длиной 100 м.

При средних и больших углах визирования, а также при сложном характере рельефа Земли в районе объекта метод радиолокационных теней не работает. Поэтому для измерения высоты объекта используют угломерный способ с помощью реальной антенны РСА. Чем больше размер антенны, тем выше точность измерения высоты. Для упрощения конструкции антенны обычно используют две разнесенных в угломестной плоскости антенны (интерферометр). Разность фаз сигналов одного и того же разрешаемого по дальности и азимуту элемента объекта, принимаемых антеннами интерферометра, пропорциональна высоте объекта. По этой информации строится трехмерный портрет объекта.

Основным направлением развития таких интерферометрических РСА является повышение точности измерения высоты. Для этого увеличивают разнос антенн. Так, в экспериментальных РСА получена точность измерения высоты рельефа местности 0,3 м с дискретностью изображения 1...3 м.

Для уменьшения влияния растительности, покрывающей объекты, интерферометрическая РСА может работать в дециметровом диапазоне.

Рассматриваются также сверхширокополосные системы в диапазонах 215...900 МГц и 100...600 МГц, которые могут работать в двух поддиапазонах дециметровом и метровом - с полосой частот 100 МГц. На малых дальностях (единицы километров) обеспечивается высокое разрешение по азимуту и дальности, что позволяет получать детальные изображения объектов в различных диапазонах волн.

Динамический портрет объекта. Движение объекта и его отдельных частей является одним из самых важных распознавательных признаков, который лежит в основе не только распознавания класса и типа, но и функционального состояния объекта.

Задача формирования динамического портрета отдельных сосредоточенных объектов, наблюдаемых на фоне подстилающей поверхности, решается на различных уровнях.

В первом случае используется режим СДЦ, который позволяет селектировать движущиеся объекты по их радиальной скорости. Основное направление развития режима СДЦ - снижение минимальной радиальной скорости цели, при которой принимается решение о движении объекта. В настоящее время считается возможным обнаружение целей, движущихся со скоростью 1...2 м/с. При этом для подавления сигнала неподвижного фона используют антенну-интерферометр с двумя разнесенными вдоль линии пути фазовыми центрами.

В режиме СДЦ осуществляется не только селекция, но и измерение радиальной составляющей скорости и азимута объектов. Для этого используется пространственно-временная обработка сигналов, при которой необходима антенна с тремя и более фазовыми центрами. При одновременном формировании изображений движущихся и неподвижных объектов число необходимых фазовых центров возрастает. Возможно также одновременное измерение тангенциальной и радиальной составляющих скорости объекта при точности измерения порядка 2.. .3 м/с.

При распознавании движущегося (вращающегося) объекта возможно получение детального РЛИ методами обратного (инверсного) синтезирования. При этом даже небольшое изменение угла наблюдения объекта (угол поворота объекта относительно линии объект - РСА) или его отдельных элементов позволяет получить высокое разрешение. Например, при изменении угла на 3° возможно разрешение в плоскости поворота, равное 5... 10 длинам волн.

Вторым основным направлением использования динамического портрета является определение функционального состояния объекта. Боевая работа (стрельба, пуск ракет), а также маневрирование, движение отдельных частей объекта, работа двигателя вызывают пространственно-временную модуляцию функции отражения объекта и соответственно траекторного сигнала РСА. Обнаружение и определение параметров этой модуляции позволяет распознавать объект (класс, тип, ложная цель) и судить о его функциональном состоянии.

В случае распределенного объекта (например, водной поверхности) имеется возможность формирования динамического (частотного, фазового) портрета поверхности. Так, скоростной портрет морской поверхности (радиальная скорость движения морской поверхности в координатах дальность - азимут) позволяет определять степень регулярного волнения, турбулентности различного рода, течения. Скоростной портрет позволяет обнаруживать и распознавать морские объекты по их следам на морской поверхности, определять степень волнения в интересах судовождения и участки загрязнения (экология, следы катастроф).

Важным распознавательным признаком являются также конфигурация и взаимное перемещение группы объектов, что требует точного измерения координат и вектора скорости всех объектов в группе.

Селекция ложных целей. Проблема селекции (выделения) среди обнаруженных объектов специально созданных ложных целей (ЛЦ), схожих по ряду распознавательных признаков с заданными объектами, является одной из наиболее сложных.

Методы создания ЛЦ непрерывно совершенствуются. На первом этапе в качестве ЛЦ использовались уголковые отражатели с ЭПР, равной ЭПР объекта. С ростом разрешающей способности потребовались более сложные по конфигурации ЛЦ, которые стали повторять геометрический образ объекта (например, надувные макеты), что определяло сходство РЛИ объекта и ложной цели. Буксируемые (движущиеся) ЛЦ повторяют динамику движения объекта.

Основным направлением решения задачи селекции ЛЦ является увеличение числа распознавательных признаков объекта, формируемых РСА. Чем больше распознавательных признаков используется в РСА, тем сложнее имитировать функцию отражения, схожую с функцией отражения объекта. В этом плане эффективно использование поляризационных и частотных различий функции отражения.

Режимы формирования поляризационных, трехмерных и динамических портретов будут рассмотрены в дальнейших разделах.

Аннотация: В лекции рассматриваются характеристики задач распознавания образов и их типы, основы теории анализа и распознавания изображений (признаковый метод), распознавание по методу аналогий. Среди множества интересных задач по распознаванию рассмотрены принципы и подход к распознаванию в задачах машинного чтения печатных и рукописных текстов.

Современные роботы, снабженные телевизионными камерами, способны достаточно хорошо видеть, чтобы работать с реальным миром. Они могут делать заключения о том, какого типа объекты присутствуют, в каких они находятся отношениях между собой, какие группы образуют, какой текст содержат и т. д. Однако сложные задачи распознавания, например, распознавание похожих трехмерных быстродвижущихся объектов или неразборчивого рукописного текста требуют совершенствования методов и средств для своего решения. В этой лекции мы рассмотрим основы некоторых традиционных методов распознавания. Наше рассмотрение мы начнем с наиболее часто применяемого признакового метода распознавания [ 1.4 ] , [ 4.1 ] .

Общая характеристика задач распознавания образов и их типы.

Под образом понимается структурированное описание изучаемого объекта или явления, представленное вектором признаков , каждый элемент которого представляет числовое значение одного из признаков , характеризующих соответствующий объект . Общая структура системы распознавания и этапы в процессе ее разработки показаны на рис. 4.1 .


Рис. 4.1.

Суть задачи распознавания - установить, обладают ли изучаемые объекты фиксированным конечным набором признаков , позволяющим отнести их к определенному классу.

Задачи распознавания имеют следующие характерные черты .

  1. Это информационные задачи , состоящие из двух этапов: а) приведение исходных данных к виду, удобному для распознавания ; б) собственно распознавание (указание принадлежности объекта определенному классу).
  2. В этих задачах можно вводить понятие аналогии или подобия объектов и формулировать понятие близости объектов в качестве основания для зачисления объектов в один и тот же класс или разные классы.
  3. В этих задачах можно оперировать набором прецедентов-примеров , классификация которых известна и которые в виде формализованных описаний могут быть предъявлены алгоритму распознавания для настройки на задачу в процессе обучения.
  4. Для этих задач трудно строить формальные теории и применять классические математические методы (часто недоступна информация для точной математической модели или выигрыш от использования модели и математических методов не соизмерим с затратами).
  5. В этих задачах возможна "плохая" информация (информация с пропусками, разнородная, косвенная, нечеткая, неоднозначная, вероятностная).

Целесообразно выделить следующие типы задач распознавания .

  1. Задача распознавания - отнесение предъявленного объекта по его описанию к одному из заданных классов ( обучение с учителем ).
  2. Задача автоматической классификации - разбиение множества объектов (ситуаций) по их описаниям на систему непересекающихся классов ( таксономия , кластерный анализ , обучение без учителя).
  3. Задача выбора информативного набора признаков при распознавании .
  4. Задача приведения исходных данных к виду, удобному для распознавания .
  5. Динамическое распознавание и динамическая классификация - задачи 1 и 2 для динамических объектов.
  6. Задача прогнозирования - это задачи 5, в которых решение должно относиться к некоторому моменту в будущем.

Основы теории анализа и распознавания изображений.

Пусть дано множество M объектов ; на этом множестве существует разбиение на конечное число подмножеств (классов) i = {1,m} , Объекты задаются значениями некоторых признаков x j , j= {1,N}. Описание объекта называют стандартным, если принимает значение из множества допустимых значений.

Пусть задана таблица обучения ( таблица 4.1). Задача распознавания состоит в том, чтобы для заданного объекта и набора классов , ..., по обучающей информации в таблице обучения о классах и описанию вычислить предикаты:

где i= {1,m}, - неизвестно.

Таблица 4.1. Таблица обучения
Объект Признаки и их значения Класс
x 1 x j x n
...
r11
...
...

Рассмотрим алгоритмы распознавания , основанные на вычислении оценок. В их основе лежит принцип прецедентности (в аналогичных ситуациях следует действовать аналогично).

Пусть задан полный набор признаков x 1 , ..., x N . Выделим систему подмножеств множества признаков S 1 , ..., S k . Удалим произвольный набор признаков из строк , , ..., и обозначим полученные строки через , , ..., , .

Правило близости, позволяющее оценить похожесть строк и состоит в следующем. Пусть "усеченные" строки содержат q первых символов, то есть и Заданы пороги ... , Строки и считаются похожими, если выполняется не менее чем неравенств вида

Величины ... , входят в качестве параметров в модель класса алгоритмов на основе оценок.

Пусть - оценка объекта по классу .

Описания объектов , предъявленные для распознавания , переводятся в числовую матрицу оценок. Решение о том, к какому классу отнести объект , выносится на основе вычисления степени сходства распознавания объекта (строки) со строками, принадлежность которых к заданным классам известна.

Проиллюстрируем описанный алгоритм распознавания на примере. Задано 10 классов объектов (рис. 4.2а). Требуется определить признаки таблицы обучения , пороги и построить оценки близости для классов объектов, показанных на рис. 4.2б . Предлагаются следующие признаки таблицы обучения :

x 1 - количество вертикальных линий минимального размера;

Я продолжаю серию статей посвящённую тематике pattern recognition, computer vision и machine learning. Сегодня я вам представляю обзор алгоритма, который носит название eigenface.

В основе алгоритма лежит использование фундаментальных статистических характеристик: средних (мат. ожидание) и ковариационной матрицы ; использование метода главных компонент . Мы также коснёмся таких понятий линейной алгебры, как собственные значения (eigenvalues) и собственные вектора (eigenvectors) (wiki: , eng). И вдобавок, поработаем в многомерном пространстве.
Как бы страшно всё это не звучало, данный алгоритм, пожалуй, является одним из самых простых рассмотренных мною, его реализация не превышает нескольких десятков строк, в тоже время он показывает неплохие результаты в ряде задач.


Для меня eigenface интересен поскольку последние 1.5 года я занимаюсь разработкой, в том числе, статистических алгоритмов обработки различных массивов данных, где очень часто приходится иметь дело со всеми вышеописанными «штуками».

Инструментарий

По сложившейся, в рамках моего скромного опыта, методике, после обдумывания какого-либо алгоритма, но перед его реализацией на С/С++/С#/Python etc., необходимо быстро (насколько это возможно) создать математическую модель и опробовать её, что-нибудь посчитать. Это позволяет внести необходимые коррективы, исправить ошибки, обнаружить то, что не было учтено при размышлении над алгоритмом. Для этого всего я использую MathCAD . Преимущество MathCAD в том, что наряду с огромным количеством встроенных функций и процедур, в нём используется классическая математическая нотация. Грубо говоря, достаточно знать математику и уметь писать формулы.

Краткое описание алгоритма

Как и любой алгоритм из серии machine learning, eigenface необходимо сначала обучить, для этого используется обучающая выборка (training set), представляющая собой изображения лиц, которые мы хотим распознать. После того как модель обучена, мы подадим на вход некоторое изображение и в результате получим ответ на вопрос: какому изображению из обучающей выборки с наибольшей вероятностью соответствует пример на входе, либо не соответствует никакому.

Задача алгоритма представить изображение как сумму базисных компонент (изображений):

Где Ф i – центрированное (т.е. за вычетом среднего) i-ое изображение исходной выборки, w j представляют собой веса и u j собственные вектора (eigenvectors или, в рамках данного алгоритма, eigenfaces).

На рисунке выше мы получаем исходное изображение взвешенным суммированием собственных векторов и прибавлением среднего. Т.е. имея w и u, мы можем восстановить любое исходное изображение.

Обучающую выборку необходимо спроецировать в новое пространство (причём пространство, как правило, гораздо больше размерности, чем исходное 2х мерное изображение), где каждая размерность будет давать определённый вклад в общее представление. Метод главных компонент позволяет найти базис нового пространство таким образом, чтобы данные в нём располагались, в некотором смысле, оптимально. Чтобы понять, просто представьте, что в новом пространстве некоторые размерности (aka главные компоненты или собственные вектора или eigenfaces) будут «нести» больше общей информации, тогда как другие будут нести только специфичную информацию. Как правило, размерности более высокого порядка (отвечающие меньшим собственным значениям) несут гораздо меньше полезной (в нашем случае под полезной понимается нечто, что даёт обобщённое представление о всей выборке) информации, чем первые размерности, соответствующие наибольшим собственным значениям. Оставляя размерности только с полезной информацией, мы получаем пространство признаков, в котором каждое изображение исходной выборки представлено в обобщённом виде. В этом, очень упрощённо, и состоит идея алгоритма.
Далее, имея на руках некоторое изображение, мы можем отобразить его на созданное заранее пространство и определить к какому изображению обучающей выборки наш пример расположен ближе всего. Если он находится на относительно большом расстоянии от всех данных, то это изображение с большое вероятностью вообще не принадлежит нашей базе.

За более подробным описанием я советую обращаться к списку External links википедии.

Небольшое отступление. Метод главных компонент имеет достаточно широкое применение. Например, в своей работе я его использую для выделения в массиве данных компонент определённого масштаба (временного или пространственного), направления или частоты. Он может быть использован как метод для сжатия данных или метод уменьшения исходной размерности многомерной выборки.

Создание модели

Для составления обучающей выборки использовалась Olivetti Research Lab"s (ORL) Face Database . Там имеются по 10 фотографий 40 различных людей:

Для описания реализации алгоритма я буду вставлять сюда скриншоты с функциями и выражениями из MathCAD и комментировать их. Поехали.

FaceNums задаёт вектор номеров лиц, которые будут использоваться в обучении. varNums задаёт номер варианта (согласно описанию базы у нас 40 директорий в каждой по 10 файлов изображений одного и того же лица). Наша обучающая выборка состоит из 4х изображений.
Далее мы вызываем функцию ReadData. В ней реализуется последовательное чтение данных и перевод изображения в вектор (функция TwoD2OneD):

Таким образом на выходе имеем матрицу Г каждый столбец которой является «развёрнутым» в вектор изображением. Такой вектор можно рассматривать как точку в многомерном пространстве, где размерность определяется количеством пикселей. В нашем случае изображения размером 92х112 дают вектор из 10304 элементов или задают точку в 10304-мерном пространстве.

2. Необходимо нормализовать все изображения в обучающей выборке, отняв среднее изображение. Это делается для того, чтобы оставить только уникальную информацию, убрав общие для всех изображений элементы.

Функция AverageImg считает и возвращает вектор средних. Если мы этот вектор «свернём» в изображение, то увидим «усреднённое лицо»:

Функция Normalize вычитает вектор средних из каждого изображения и возвращает усреднённую выборку:

3. Следующий шаг это вычисление собственных векторов (они же eigenfaces) u и весов w для каждого изображения в обучающей выборке. Другими словами, это переход в новое пространство.

Вычисляем ковариационную матрицу, потом находим главные компоненты (они же собственные вектора) и считаем веса. Те, кто познакомятся с алгоритмом ближе, въедут в математику. Функция возвращает матрицу весов, собственные вектора и собственные значения. Это все необходимые для отображения в новое пространство данные. В нашем случае, мы работаем с 4х мерным пространством, по числу элементов в обучающей выборке, остальные 10304 - 4 = 10300 размерности вырождены, мы их не учитываем.

Собственные значения нам, в целом, не нужны, но по ним можно проследить кое-какую полезную информацию. Давайте взглянем на них:

Собственные значения на самом деле показывают дисперсию по каждой из осей главных компонент (каждой компоненте соответствует одна размерность в пространстве). Посмотрите на правое выражение, сумма данного вектора = 1, а каждый элемент показывает вклад в общую дисперсию данных. Мы видим, что 1 и 3 главные компоненты дают в сумме 0.82. Т.е. 1 и 3 размерности содержат 82% всей информации. 2ая размерность свёрнута, а 4ая несёт 18% информации и нам она не нужна.

Распознавание

Модель составлена. Будем тестировать.

Мы создаём новую выборку из 24 элементов. Первые 4ре элемента те же, что и в обучающей выборке. Остальные это разные варианты изображений из обучающей выборки:

Далее загружаем данные и передаём в процедуру Recognize. В ней каждое изображение усредняется, отображается в пространство главных компонент, находятся веса w. После того как вектор w известен необходимо определить к какому из существующих объектов он ближе всего расположен. Для этого используется функция dist (вместо классического евклидова расстояния в задачах распознавания образов лучше применять другую метрику: расстояние Махалонобиса). Находится минимальное расстояние и индекс объекта к которому данное изображение расположено ближе всего.

На выборке из 24 показанных выше объектов эффективность классификатора 100%. Но есть один ньюанс. Если мы подадим на вход изображение, которого нет в исходной базе, то всё равно будет вычислен вектор w и найдено минимальное расстояние. Поэтому вводится критерий O, если минимальное расстояние < O значит изображение принадлежит к классу распознаваемых, если минимальное расстояние > O, то такого изображения в базе нет. Величина данного критерия выбирается эмпирически. Для данной модели я выбрал O = 2.2.

Давайте составим выборку из лиц, которых нет в обучающей и посмотрим насколько эффективно классификатор отсеет ложные образцы.

Из 24 образцов имеем 4 ложных срабатывания. Т.е. эффективность составила 83%.

Заключение

В целом простой и оригинальный алгоритм. В очередной раз доказывает, что в пространствах большей размерности «скрыто» множество полезной информации, которая может быть использована различным образом.  Вкупе с другими продвинутыми методиками eigenface может применятся с целью повышения эффективности решения поставленных задач.

Например, у нас в качестве классификатора применяется простой distance classifier. Однако мы могли бы применить более совершенный алгоритм классификации, например

Прежде всего, почему бомба? Что общего у двигателя, пусть даже маховичного, и бомбы? Общего, как это ни печально, много. Случайно разорвавшись при вращении, маховик ведет себя во многом схоже c этим орудием разрушения. Если же подсчитать механическую энергию, выделяемую при взрыве бомбы и разрыве маховика с высокой плотностью энергии, то сравнение будет не в пользу бомбы. Хотя понятие «польза» тут весьма условно. Тяжелые осколки разорвавшегося маховика, несущиеся со сверхзвуковой скоростью, пробивают все на своем пути. Бывали случаи, когда разорвавшийся в подвале здания маховик, пробивал осколками все междуэтажные перекрытия, включая крышу. Эта «опасность» вынуждает принимать при их проектировании, очень высокий запас прочности, используя всего третью или четвертую часть прочности материала. Конечно, запас энергии при этом тоже будет составлять треть или четверть возможного предела накопленной энергии. И все-таки случайный разрыв маховика не исключен. Например, вовсе нежелательно, чтобы пустяковое столкновение транспортного средства, работающего от маховичного двигателя, сопровождалось взрывом фугасной бомбы - такого источника энерии, повредившегося при аварии.

Конечно, развитие техники почти всегда сопровождается риском. И бензобак с горючим на автомобиле - далеко не безобидная штучка. Перспективные электроаккумуляторы, которые ставят на электромобили, содержат в себе расплавленный натрий или литий при температуре около 600 градусов (один из ведущих работников фирмы «Дженерал Моторс» Дж. Роч говорил по этому поводу, что если с этим электромобилем случится авария, то он не хотел бы оказаться рядом). Не меньшую опасность таят в себе баллоны с водородом, радиоактивные электробатареи и другие источники энергии будущего. И все-таки хотелось бы, чтобы маховичный двигатель, будучи совершенно безвредным в смысле загрязнения окружающей среды, не представлял бы опасности, как это ни парадоксально, и в случае возможного разрыва. Но не является ли это требование утопией? Можно ли представить себе безопасный разрыв маховика? Оказывается, можно. И это ценнейшее свойство, он приобретает вместе с огромной плотностью накопленной энергии!

Все началось с попытки изготовления маховика из материалов высокой прочности. Известно, что максимальную прочность металл развивает в виде лент или проволок. Лента или проволока, благодаря своей внутренней структуре, образованной холодной прокаткой или волочением, имеет прочность, в несколько раз превышающую прочность исходного материала. Но как изготовить маховик из ленты? Да это даже проще, чем отлить или отковать его. Берется легкий центр (например, катушка из дюралюминия или пластмассы) и на него навивается тонкая лента, предварительно смазанная клеем (рис. 17).

Рис. 17. Маховик, навитый из ленты

Клей должен быть достаточно эластичным, чтобы заполнять собой зазоры между витками ленты, образованные неодинаковым расширением витков разного диаметра при вращении. Почему витки разного диаметра расширяются неодинаково, можно понять из рассмотрения формулы (4) напряжений во вращающемся тонком кольце. Заменив здесь окружную скорость V ее выражением через угловую скорость W и радиус кольца R, V = WR, получим

Стало быть при одинаковой угловой скорости и плотности ленты виток, имеющий больший диаметр, напряжен сильнее. А раз напряжен сильнее, то сильнее и деформируется, что и вызывает межвитковые зазоры. Так вот, основная функция клея и состоит в том, чтобы заполнять эти зазоры, не позволяя виткам «освободиться» один от другого. Последний виток также приклеивается к предпоследнему, причем предпочтительно срезать его по ширине, оставив тонкую полоску ленты и намотав ее на обод по спирали, а затем, смазав клеем, подсунуть под остальные витки. Тогда закрепление этого витка при вращении становится еще прочнее. Схема такого закрепления последнего витка дана на рис. 18.

Рис. 18. Схема крепления последнего витка ленты на ободе

В последнее время показано, правда пока только теоретически, что можно обойтись и без клея, навивая ленту с предварительным натягом. Этот натяг создает, как говорят, «отрицательный зазор» между витками, который частично уменьшается (не доходя, конечно, до положительного, т. е. обычного зазора!) при вращении.

Первый такой «витой» ленточный маховик был изготовлен автором в домашней обстановке самым что ни на есть кустарным образом. И лента была не лучшего качества - обычная углеродистая сталь. Но испытания этого маховика на разрыв при вращении показали, что плотность энергии в нем почти в 6 раз выше, чем у швейцарского гиробуса, изготовленного из высококачественной, но монолитной стали! Но самое главное, испытания показали, что витой маховик совершенно безопасен при разрыве!


Прежде чем говорить о причине «безопасности» ленточных маховиков, скажу несколько слов о том, как их испытывают на разрыв при вращении, и об испытательной машине - разгонном стенде.

Для того чтобы испытать маховикна разрыв при вращении, необходимоне только раскрутить его до очень большой скорости, но и обезопасить все находящееся рядом от разрушительного действия осколков. Для этого камеры, где вращается испытуемый маховик, обычно помещают глубоко под землю и окружают многослойной броней - свинцовыми брусками, стальными и бетонными кольцами (рис. 19). Свинец нужен для того, чтобы осколки не очень деформировались бы при ударе о броню и по их форме можно было бы сделать выводы о характере разрыва. Естественно, что вся измерительная аппаратура и пульт управления разгонным стендом находятся наверху, далеко за пределами бронированной камеры, и связь с датчиками и разгонными двигателями осуществляется по проводам. Частоту вращения маховика можно измерять электрическими, механическими или стробоскопическими тахометрами - измерителями угловой скорости. Но наиболее точен такой метод, который фиксировал бы даже каждый оборот вала.

На рис. 19 показан фотоэлектрический измеритель угловой скорости, основанный на том, что вращающийся вал, выполненный с поперечной щелью при вращении, то пропускает свет лампы к датчику - фотоэлементу, то прерывает его, а сигналы фотоэлемента фиксируются на пульте управления частотомером, счетчиком импульсов или записываются на пленку осциллографа.


Рис. 19. Разгонный стенд:

1-пульт управления; 2-фотоэлемент; 3-люк; 4-камера вращения; 5-подшипник с уплотнением; 6-испытуемый маховик; 7-свинцовая броня; 5-бетонная броня; 9-гибкий валик; 10-турбина

Разгон маховика может осуществляться двигателями разных типов, но наиболее удобна, пожалуй, воздушная турбина, развивающая очень высокую угловую скорость и простая в управлении. «Мягкая» рабочая характеристика турбины, заключающаяся в том, что она реализует почти постоянную мощность как при малой, так и при высокой угловой скорости, наиболее приемлема при трогании с места и разгоне. Воздух в турбину подается от компрессора, установленного отдельно.

Маховик подвешивается в камере вращения на гибком валу, имеющем возможность некоторого, пусть даже небольшого поперечного смещения. Делается это для того, чтобы разбалансированный маховик мог бы «установиться» при высоких частотах вращения и не создавал бы больших нагрузок на подшипник (подробнее об этом см. гл. IV).

Для уменьшения потерь мощности на трение о воздух при вращении (а они, как будет показано ниже, могут достигать значительных величин) воздух из камеры вращения непрерывно удаляется небольшим вакуум-насосом, а на подшипнике в камере вращения ставится уплотнение.

Вот, пожалуй, и все про разгонный стенд, на котором проводят испытания на разрыв. Остается сказать, что перед началом разгона люк на входе в испытательную камеру задраивается, люди покидают даже верхнее помещение, в подвале которого находится стенд, и управление ведется с пульта, находящегося в другом месте.

Так проводились испытания первых ленточных маховиков на разгонном стенде Центрального научно-исследовательского института технологии машиностроения (ЦНИИТМАШ). Но оказывается, можно было и не задраивать люки, не переходить в другое помещение, короче, не соблюдать меры предосторожности, обязательные при испытании обычных механизмов. Ленточный маховик разрывался совершенно безопасно, не пробивая даже стенки камеры вращения толщиной 1-2 мм, несмотря на то что накопленной в нем энергии было в несколько раз больше, чем в монолитных маховиках того же веса. Почему же ленточный вариант разрывается безопасно? Обратимся к рис. 20.


Рис. 20. Схема разрыва ленточного маховика:

1-трущийся конец ленты; 2- кожух; 3-маховик

Выше мы говорили, что чем дальше виток ленты расположев от центра, тем сильнее он напряжен. Стало быть, первым разорваться может только этот внешний виток. К тому же он ослаблен креплением к предпоследнему витку склейкой и т. д. А разрываясь, отслоившийся конец ленты тотчас же прижимается центробежными силами к внутренней поверхности кожуха и активно трется об нее, автоматически тормозя. Этот последний виток ленты играет ту же роль, что и предохранительная мембрана на паровом котле - разрываясь сам, предохраняет от разрыва весь маховик. Разумеется, все сказанное относится к случаю вращения маховика в направлении навивки ленты; при противоположном направлении вращения маховик может разорваться весь, хотя и без образования опасных осколков.

Оказалось, что безопасный разрыв характерен для всех маховиков, изготовленных из слоисто-волокнистых композитных материалов высокой прочности. Правда, они разрываются целиком (как и ленточный в случае вращения не в ту сторону), но опасных осколков, как при разрыве монолитного, не образуется, и меры защиты тут гораздо проще. Маховики, изготовленные из таких композитных материалов, накопляя энергию с гораздо большей плотностью, чем обычные монолитные, и обладая безопасным разрывом, получили название «супермаховиков».

При вращении колес, дисков и т. п. возникают деформации того же типа, что и деформации связей, заставляющих тело двигаться по окружности. Именно силы, обусловленные такими деформациями, и сообщают частям вращающегося тела центростремительные ускорения, необходимые для того, чтобы эти части двигались по окружностям. Если тела жесткие, то деформации очень малы и их непосредственное наблюдение затруднительно. Однако эти деформации могут привести к разрушению вращающегося тела: были случаи, когда маховики и другие вращающиеся части машин разрывались при движении. Разрушение связано обычно с превышением допустимой скорости вращения.

Выясним картину разрушения вращающегося тела. Начнем с движения грузика, закрепленного на резиновой нити, по окружности. Если скорость грузика, движущегося по окружности, увеличить, то установившееся растяжение нити окажется недостаточным для поддержания движения грузика с увеличенной скоростью по той же окружности. Грузик опять начнет удаляться от центра, и растяжение нити будет возрастать до тех пор, пока снова не установится растяжение, соответствующее новой скорости и новому, слегка увеличенному радиусу окружности. Если мы будем все более и более увеличивать скорость грузика, то растяжение нити будет продолжаться. Но резиновая нить, как и всякое тело, не может удлиняться беспредельно. При некотором удлинении должен наступить разрыв. Поэтому, если мы будем продолжать увеличивать скорость грузика, то в конце концов нить оборвется. Как мы уже знаем, после обрыва нити грузик полетит по касательной к траектории в точке, в которой произошел обрыв нити.

Подобно этому происходит и разрыв махового колеса при слишком быстром вращении. Если скорость вращения настолько велика, что даже при наибольшем растяжении, которое могут выдержать спицы, они не могут сообщить частям обода необходимое центростремительное ускорение, то удлинение спиц продолжается, и когда оно превосходит допустимый предел, наступает разрыв. Части колеса разлетаются по касательным к окружности колеса. Так как центростремительное ускорение быстро растет с увеличением радиуса траектории и особенно угловой скорости вращающегося тела (см. формулу (116.2)), то крупногабаритные и быстро вращающиеся части машин, например роторы быстроходных турбин, приходится делать исключительно прочными. Невозможность обеспечить требуемую прочность вращающихся частей часто ставит предел увеличению быстроходности машины.

Рис. 186. Сушильная машина

Явления, по существу сходные с теми, которые происходят при разрыве маховика, наблюдаются в сушильной машине (рис. 186). Мокрая ткань закладывается в решетчатый барабан, который приводят в быстрое вращение. При большой скорости вращения силы сцепления между каплями влаги и тканью оказываются недостаточными для того, чтобы сообщить каплям центростремительное ускорение, необходимое для движения по окружности. Капли влаги отрываются от ткани и улетают через отверстия в решетке. Таким образом, в рассмотренных случаях (разрушение быстро вращающихся тел, отрыв капель от высушиваемой ткани и т. п.) причиной оказывается недостаточность тех сил, которые могут возникнуть без разрушения тела, по сравнению с теми силами, которые необходимы для сообщения частям вращающегося тела или каплям воды центростремительного ускорения, требуемого при данной скорости движения. Здесь ярко проявляется различие между равномерным прямолинейным и равномерным криволинейным движением: при равномерном прямолинейном движении ускорение отсутствует, для поддержания движения никакие силы не требуются, и поэтому, как бы велика ни была постоянная скорость этого движения, никаких разрушений она вызвать не может.

118.1. На конце стержня, имеющего длину 30 см и вращающегося вокруг точки (рис. 187), закреплен груз массы 50 кг. Найдите частоту вращения, при которой произойдет разрыв стержня, если, для того чтобы разорвать стержень неподвижной нагрузкой, к его концу нужно подвесить массу, равную 1 т?

Рис. 187. К упражнению 118.1