Бесколлекторный электродвигатель. Электродвигатели бесколлекторные: принцип работы, управление бесколлекторными электродвигателями. Бесколлекторный электродвигатель своими руками

Двигатели в мультироторных аппаратах бывают двух типов: коллекторные и бесколлекторные. Их главное отличие в том, что у коллекторного двигателя обмотки находятся на роторе (вращающейся части), а у бесколлекторного — на статоре. Не вдаваясь в подробности скажем, что бесколлекторный двигатель предпочтительнее коллекторного поскольку наиболее удовлетворяет требованиям, ставящимся перед ним. Поэтому в этой статье речь пойдёт именно о таком типе моторов. Подробно о разнице между бесколлекторными и коллекторными двигателями можно прочесть в .

Несмотря на то, что применяться БК-моторы начали сравнительно недавно, сама идея их устройства появилась достаточно давно. Однако появление транзисторных ключей и мощных неодимовых магнитов сделало возможным их коммерческое использование.

Устройство БК — моторов

Конструкция бесколлекторного двигателя состоит из ротора на котором закреплены магниты и статора на котором располагаются обмотки. Как раз по взаиморасположению этих компонентов БК-двигатели делятся на inrunner и outrunner.

В мультироторных системах чаще применяется схема Outrunner, поскольку она позволяет получать наибольший вращательный момент.

Плюсы и минусы БК — двигателей

Плюсы:

  • Упрощённая конструкция мотора за счёт исключения из неё коллектора.
  • Более высокий КПД.
  • Хорошее охлаждение
  • БК-двигатели могут работать в воде! Однако не стоит забывать, что из-за воды на механических частях двигателя может образоваться ржавчина и он сломается через какое-то время. Для избежания подобных ситуаций рекомендуется обрабатывать двигатели при помощи водоотталкивающей смазки.
  • Наименьшие радиопомехи

Минусы:

Из минусов можно отметить только невозможность применения данных двигателей без ESC (регуляторы скорости вращения). Это несколько усложняет конструкцию и делает БК-двигатели дороже коллекторных. Однако если сложность конструкции является приоритетным параметром, то существуют БК-двигатели с встроенными регуляторами скорости.

Как выбрать двигатели для коптера?

При выборе бесколлекторных двигателей в первую очередь следует обратить внимание на следующие характеристики:

  • Максимальный ток — эта характеристика показывает какой максимальный ток может выдержать обмотка двигателя за небольшой промежуток времени. Если превысить это время, то неизбежен выход двигателя из строя. Так же этот параметр влияет на выбор ESC.
  • Максимальное напряжение — так же как и максимальный ток, показывает какое напряжение можно подать на обмотку в течение короткого промежутка времени.
  • KV - количество оборотов двигателя на один вольт. Поскольку этот показатель напрямую зависит от нагрузки на вал мотора, то его указывают для случая, когда нагрузки нет.
  • Сопротивление — от сопротивления зависит КПД двигателя. Поэтому чем сопротивление меньше - тем лучше.

Наверняка задавался вопросом, чем же отличается такой двигатель от других двигателей, например от тех, что стоят в сверлильных станках. Двигатели, установленные в не очень мощных станках, обычно не искрят, и работают они не так шумно, как та же дрель, обладающая меньшей чем станок мощностью.

В чем же дело? Дело в том, что двигатель с щетками — это коллекторный двигатель, а двигатель без щеток — бесколлекторный . Для решения разных задач подойдет свой тип двигателя — где-то лучше подойдет коллекторный, а где-то можно установить только бесколлекторный.

Коллекторный двигатель

Двигатель коллекторный имеет, как правило, всего два провода питания, он прост в управлении, достаточно регулировать постоянное или переменное напряжение питания и обороты станут соответственно меняться. Управлять коллекторным двигателем можно даже при помощи нехитрого диммера. Главное достоинство коллекторного двигателя — высокие обороты (десятки тысяч в минуту) при высоком крутящем моменте.

Принцип работы коллекторного двигателя очень прост. По сути, ротор его представляет собой набор медных рамок в магнитопроводе, которые поочередно коммутируются к источнику питания на коллекторно-щеточном узле. Статор может быть как из постоянных магнитов, так и с обмоткой, питаемой от того же источника, что и ротор, или от отдельного источника, а иногда статор и ротор включены в единую последовательную цепь (как например двигатели стиральных машинок-автоматов).

На каждую из секций обмотки ротора, через коллекторно-щеточный узел, поочередно, в процессе вращения ротора, подается электрический ток, в результате ротор перемагничивается, приобретая четко выраженные северный и южный магнитные полюсы, благодаря которым и происходит вращение ротора внутри статора (полюсы ротора выталкиваются полюсами статора, затем ротор дальше перемагничивается и вновь выталкивается). Поскольку ротор каждый раз коммутируется к источнику питания очередной секцией, вращение не останавливается, пока на коллектор подается питание.

Основной недостаток коллекторного двигателя

Обороты коллекторного двигателя очень удобно регулировать, но когда они достаточно высоки, щетки дают о себе знать. Поскольку щетки все время плотно прилегают к коллектору, на высоких оборотах они быстро изнашиваются, со временем так или иначе засоряются, и в конце концов начинают искрить.

Износ щеток, и вообще коллекторно-щеточного узла, ведет к снижению эффективности коллекторного двигателя. Таким образом, сам коллекторно-щеточный узел — это и есть главный недостаток коллекторных двигателей . Сегодня от коллекторных двигателей стараются отказываться в пользу бесщеточных шаговых.

У бесколлекторного двигателя нет ни коллектора, ни щеток. Простейший пример бесколлекторного двигателя — асинхронный трехфазный двигатель с ротором типа «беличья клетка». Еще один пример бесколлекторного двигателя — более современный - шаговый двигатель с магнитным ротором . Обмотки статора бесколлекторного двигателя сами перемагничиваются так, чтобы ротор все время разворачивался и непрерывно таким образом вращался.

Чаще всего современные бесколлекторные двигатели оснащаются датчиком положения ротора, по сигналам с которого работает регулятор скорости вращения двигателя. Сигнал с датчика положения ротора передается на процессор более 100 раз в секунду, в результате получается точное позиционирование ротора и высокий крутящий момент. Бывают, конечно, бесколлекторные двигатели и без датчика положения ротора, яркий пример — тот же асинхронный трехфазный мотор. Моторы без датчика положения стоят дешевле чем с датчиком.

Достоинства бесколлекторных двигателей

Поскольку ресурс подшипников ротора крайне велик, можно сказать, что в бесколлекторном двигателе практически отсутствуют изнашиваемые со временем детали, и он вообще не требует обслуживания в процессе эксплуатации. Здесь сведено к минимуму трение, отсутствует проблема перегрева коллектора, в целом надежность и эффективность бесколлекторных двигателей очень высоки.

Нет искрящих щеток, датчик положения ротора поможет сделать управление точным, - недостатков практически нет, одни достоинства. Разве что цена качественных шаговых двигателей выше чем у коллекторных (плюс драйвер), но это ничто по сравнению с регулярной заменой пружин, щеток и коллекторов у коллекторных двигателей.

Двигатели используются во многих областях техники. Для того чтобы происходило вращение ротора двигателя необходимо наличие вращающегося магнитного поля. В обычных двигателях постоянного тока это вращение осуществляется механическим способом с помощью щеток, скользящих по коллектору. При этом возникает искрение, а, кроме того, из-за трения и износа щеток для таких двигателей необходимо постоянное техническое обслуживание.

Благодаря развитию техники стало возможным генерировать вращающееся магнитное поле электронным способом, что было воплощено в бесколлекторных двигателях постоянного тока (БДПТ).

Устройство и принцип действия

Основными элементами БДПТ являются:

  • ротор , на котором укреплены постоянные магниты;
  • статор , на котором установлены обмотки;
  • электронный контроллер .

По конструкции такой двигатель может быть двух типов:

с внутренним расположением ротора (inrunner)

с внешним расположением ротора (outrunner)

В первом случае ротор вращается внутри статора, а во втором – ротор крутится вокруг статора.

Двигатель типа inrunner используется в том случае, когда необходимо получить большие обороты вращения. Этот двигатель имеет более простую стандартную конструкцию, которая позволяет использовать неподвижный статор для крепления двигателя.

Двигатель типа outrunner подходит для получения большого момента при низких оборотах. В этом случае крепление двигателя производится с использованием неподвижной оси.

Двигатель типа inrunner — большие обороты, низкий крутящий момент. Двигатель типа outrunner — маленькие обороты, высокий крутящий момент.

Число полюсов в БДПТ может быть разным. По числу полюсов можно судить о некоторых характеристиках двигателя. Например, двигатель с ротором, имеющим 2 полюса, имеет большее число оборотов и малый момент. Двигатели с увеличенным количеством полюсов имеют больший момент, но меньшее число оборотов. Изменением числа полюсов ротора можно менять число оборотов двигателя. Таким образом, изменяя конструкцию двигателя, производитель может подобрать необходимые параметры двигателя по моменту и числу оборотов.

Управление БДПТ

Регулятор оборотов, внешний вид

Для управления бесколлекторным двигателем используется специальный контролер — регулятор скорости вращения вала двигателя постоянного тока. Его задачей является генерация и подача в нужный момент на нужную обмотку необходимого напряжения. В контроллере для приборов с питанием от сети 220 В чаще всего используется инверторная схема, в которой происходит преобразование тока с частотой 50 Гц сначала в постоянный ток, а затем в сигналы с широтно-импульсной модуляцией (ШИМ). Для подачи питающего напряжения на обмотки статора используются мощные электронные ключи на биполярных транзисторах или других силовых элементах.

Регулировка мощности и числа оборотов двигателя осуществляется изменением скважности импульсов, а, следовательно, и действующим значением напряжения, подаваемого на обмотки статора двигателя.

Принципиальная схема регулятора оборотов. К1-К6 — ключи D1-D3 — датчики положения ротора (датчики Холла)

Важным вопросом является своевременное подключение электронных ключей к каждой обмотке. Для обеспечения этого контроллер должен определять положение ротора и его скорость . Для получения такой информации могут быть использованы оптические или магнитные датчики (например, датчики Холла ), а также обратные магнитные поля.

Более распространено использование датчиков Холла , которые реагируют на наличие магнитного поля . Датчики размещаются на статоре таким образом, чтобы на них действовало магнитное поле ротора. В некоторых случаях датчики устанавливают в устройствах, которые позволяют изменять положение датчиков и, соответственно, регулировать угол опережения (timing).

Регуляторы оборотов вращения ротора очень чувствительны к силе тока, проходящего через него. Если вы подберете аккумуляторную батарейку с большей выдаваемой силой тока, то регулятор сгорит! Правильно подбирайте сочетания характеристик!

Достоинства и недостатки

По сравнению с обычными двигателями БДПТ имеют следующие достоинства:

  • большой кпд ;
  • высокое быстродействие ;
  • возможность изменения частоты вращения ;
  • отсутствие искрящих щеток ;
  • малые шумы , как в звуковом, так и высокочастотном диапазонах;
  • надежность ;
  • способность противостоять перегрузкам по моменту ;
  • отличное соотношение габаритов и мощности .

Бесколлекторный двигатель отличается большим кпд. Он может достигать 93-95%.

Высокая надежность механической части БД объясняется тем, что в нем используются шарикоподшипники и отсутствуют щетки. Размагничивание постоянных магнитов происходит довольно медленно, особенно, если они выполнены с использованием редкоземельных элементов. При использовании в контроллере защиты по току срок службы этого узла довольно высок. Фактически срок службы БДПТ может определяться сроком службы шарикоподшипников .

Недостатками БДПТ является сложность системы управления и высокая стоимость.

Применение

Области применения БДТП следующие:

  • создание моделей ;
  • медицина ;
  • автомобилестроение ;
  • нефтегазовая промышленность ;
  • бытовые приборы ;
  • военная техника .

Использование БД для авиамоделей дает значительное преимущество по мощности и габаритам. Сравнение обычного коллекторного двигателя типа Speed-400 и БДТП того же класса Astro Flight 020 показывает, что двигатель первого типа имеет кпд 40-60%. Кпд второго двигателя в тех же условиях может достигать 95%. Таким образом, использование БД позволяет увеличить почти в 2 раза мощность силовой части модели или время ее полета.

Благодаря малому шуму и отсутствию нагревания при работе БДПТ широко используются в медицине, особенно в стоматологии.

В автомобилях такие двигатели используются в подъемниках стекол, электростеклоочистителях, омывателях фар и электрорегуляторах подъема кресел .

Отсутствие коллектора и искрения щеток позволяет использовать БД в качестве элементов запорных устройств в нефтегазовой промышленности .

В качестве примера использования БД в бытовой технике можно отметить стиральную машину с прямым приводом барабана компании LG. Эта компания использует БДТП типа Outrunner. На роторе двигателя имеется 12 магнитов, а на статоре – 36 катушек индуктивности, которые намотаны проводом диаметром в 1 мм на сердечники из магнитопроводящей стали. Катушки соединены последовательно по 12 штук в фазе. Сопротивление каждой фазы равно 12 Ом. В качестве датчика положения ротора используется датчик Холла. Ротор двигателя крепится к баку стиральной машины.

Повсеместно данный двигатель используется в жестких дисках для компьютеров, что делает их компактными, в CD и DVD приводах и системах охлаждения для микро-электронотехнических устройств и не только.

Наряду с БД малой и средней мощности в промышленности с тяжелыми условиями работы, судовой и военной промышленностях все больше используются большие БДПТ.

БД большой мощности разработаны для американских ВМС. Например, компания Powertec разработала БДТП мощностью 220 кВт со скоростью в 2000 об/мин. Момент двигателя достигает 1080 Нм.

Кроме указанных областей, БД применяются в проектах станков, прессов, линий для обработки пластмасс, а также в ветроэнергетике и использовании энергии приливных волн.

Характеристики

Основные характеристики двигателя:

  • номинальная мощность ;
  • максимальная мощность ;
  • максимальный ток ;
  • максимальное рабочее напряжение ;
  • максимальные обороты (или коэффициент Kv);
  • сопротивление обмоток ;
  • угол опережения ;
  • режим работы ;
  • габаритно-массовые характеристики двигателя.

Основным показателем двигателя является его номинальная мощность, то есть мощность, вырабатываемая двигателем в течение длительного времени его работы.

Максимальная мощность – это мощность, которую может отдать двигатель в течение кратковременного отрезка времени, не разрушаясь. Например, для упомянутого выше бесколлекторного двигателя Astro Flight 020 она равна 250 Вт.

Максимальный ток . Для Astro Flight 020 он равен 25 А.

Максимальное рабочее напряжение – напряжение, которое могут выдержать обмотки двигателя. Для Astro Flight 020 задан диапазон рабочих напряжений от 6 до 12 В.

Максимальное число оборотов двигателя . Иногда в паспорте указывается коэффициент Kv – число оборотов двигателя на один вольт. Для Astro Flight 020 Kv= 2567 об/В. В этом случае максимальное число оборотов можно определить умножением этого коэффициента на максимальное рабочее напряжение.

Обычно сопротивление обмоток для двигателей составляет десятые или тысячные доли Ома. Для Astro Flight 020 R= 0,07 Ом. Это сопротивление влияет на кпд БДПТ.

Угол опережения представляет собой опережение переключения напряжений на обмотках. Оно связано с индуктивным характером сопротивления обмоток.

Режим работы может быть длительным или кратковременным. При долговременном режиме двигатель может работать длительное время. При этом выделяемое им тепло полностью рассеивается и он не перегревается. В таком режиме работают двигатели, например, в вентиляторах, конвейерах или эскалаторах. Кратковременный режим используется для таких устройств, как например, лифт, электробритва. В этих случаях двигатель работает короткое время, а затем долгое время остывает.

В паспорте на двигатель приводятся его размеры и масса. Кроме того, например, для двигателей, предназначенных для авиамоделей, приводятся посадочные размеры и диаметр вала. В частности, для двигателя Astro Flight 020 приведены следующие характеристики:

  • длина равна 1,75”;
  • диаметр равен 0,98”;
  • диаметр вала равен 1/8”;
  • вес равен 2,5 унции.

Выводы:

  1. В моделировании, в различных технических изделиях, в промышленности и в оборонной технике используются БДПТ, в которых вращающееся магнитное поле формируется электронной схемой.
  2. По своей конструкции БДПТ могут быть с внутренним (inrunner) и внешним (outrunner) расположением ротора.
  3. По сравнению с другими двигателями БДПТ имеют ряд преимуществ, основными из которых являются отсутствие щеток и искрения, большой кпд и высокая надежность.

Это разновидность электродвигателя переменного тока, у которого коллекторно-щеточный узел заменен бесконтактным полупроводниковым коммутатором, управляемым датчиком положения ротора. Иногда можно встретить такую аббревиатуру: BLDС - это brushless DC motor. Для простоты буду называть его двигатель-бесколлекторник или просто БК.

Бесколлекторные двигатели достаточно популярны из-за своей специфики: отсутствуют расходные материалы типа щеток, отсутствует угольная/металлическая пыль внутри от трения, отсутствуют искры (а это огромное направление взрыво и огне безопасных приводов/насосов). Используются начиная от вентиляторов и насосов заканчивая высокоточными приводами.
Основное применение в моделизме и любительских конструкциях: двигатели для радиоуправляемых моделей.

Общий смысл этих двигателей - три фазы и три обмотки (или несколько обмоток соединенных в три группы) управление которыми осуществляется сигналом в виде синусоиды или приближенной синусоиды по каждой из фаз, но с некоторым сдвигом. На рисунке простейшая иллюстрация работы трехфазного двигателя.

Соответственно, одним из специфичных моментов управления БК двигателями является применение специального контроллера-драйвера, который позволяет регулировать импульсы тока и напряжения по каждой фазе на обмотках двигателя, что в итоге дает стабильную работу в широком диапазоне напряжений. Это так называемые ESC контроллеры.

БК моторы для р/у техники бывают различных типоразмеров и исполнения. Одни из самых мощных это серии 22 мм, 36 мм и 40/42 мм. По конструкции они бывают с внешним ротором и внутренним (Outrunner, Inrunner). Моторы с внешним ротором по факту не имеют статичного корпуса (рубашки) и являются облегченными. Как правило, используют в авиамоделях, в квадракоптерах и т.п.
Двигатели с внешним статором проще сделать герметичными. Подобные применяют для р/у моделей, которые подвергаются внешним воздействиям тип грязи, пыли, влаги: багги, монстры, краулеры, водные р/у модели).
Например, двигатель типа 3660 можно запросто установить в р/у модель автомобиля типа багги или монстра и получить массу удовольствия.

Также отмечу различную компоновку самого статора: двигатели 3660 имеют 12 катушек, соединенных в три группы.
Это позволяет получить высокий момент на валу. Выглядит это примерно так.


Соединены катушки примерно вот так


Если разобрать двигатель и извлечь ротор, то можно увидеть катушки статора.
Вот что внутри 3660 серии


еще фото

Любительское применение подобным двигателей с высоким моментом - в самодельных конструкциях, где требуется малогабаритный мощный оборотистый двигатель. Это могут быть вентиляторы турбинного типа, шпиндели любительских станков и т.п.

Так вот, с целью установки в любительский станок для сверления и гравировки был взят набор бесколлекторного двигателя вместе с ESC контроллером
GoolRC 3660 3800KV Brushless Motor with ESC 60A Metal Gear Servo 9.0kg Set


Плюсом в наборе был сервопривод на 9 кг, что очень удобно для самоделок.

Общие требования при выборе мотора были следующие:
- Количество оборотов/вольт не менее 2000, так как планировалось использование с низковольтными источниками (7.4...12В).
- Диаметр вала 5мм. Рассматривал варианты с валом 3.175 мм (это серия 24 диаметра БК двигателей, например, 2435), но тогда бы пришлось докупать новый патрон ER11. Есть варианты еще мощнее, например, двигатели 4275 или 4076, с валом 5 мм, но они соответственно дороже.

Характеристики бесколлекторного мотора GoolRC 3660:
Модель: GoolRC 3660
Мощность: 1200W
Рабочее напряжение: до 13V
Предельный ток: 92A
Обороты на вольт (RPM/Volt): 3800KV
Максимальные обороты: до 50000
Диаметр корпуса: 36mm
Длина корпуса: 60mm
Длина вала: 17mm
Диаметр вала: 5mm
Размер установочных винтов: 6 шт * M3 (короткие, я использовал М3*6)
Коннекторы: 4mm позолоченные «бананы» male
Защита: от пыли и влаги

Характеристики ESC контроллера:
Модель: GoolRC ESC 60A
Продолжительный ток: 60A
Пиковый ток: 320A
Применяемый аккумуляторные батареи: 2-3S Li-Po / 4-9S Ni-Mh Ni-Cd
BEC: 5.8V / 3A
Коннекторы (Вход): T plug male
Коннекторы (вызод.): 4mm позолоченные «бананы» female
Размеры: 50 х 35 х 34mm (без учета длины кабелей)
Защита: от пыли и влаги

Характеристики сервомашинки:
Рабочее напряжение: 6.0V-7.2V
Скорость поворота (6.0V): 0.16sec/60° без нагрузки
Скорость поворота (7.2V): 0.14sec/60° без нагрузки
Момент удержания (6.0V): 9.0kg.cm
Момент удержания (7.2V): 10.0kg.cm
Размеры: 55 х 20 х 38mm (Д * Ш * В)

Параметры комплекта:
Размер упаковки: 10.5 х 8 х 6 см
Масса упаковки: 390 гр
Фирменная упаковка с логотипом GoolRC

Состав комплекта:
1 * GoolRC 3660 3800KV Motor
1 * GoolRC 60A ESC
1 * GoolRC 9KG Servo
1 * Информационный листок


Размеры для справки и внешний вид двигателя GoolRC 3660 с указанием основных моментов

Теперь несколько слов о самой посылке.
Посылка пришла в виде небольшого почтового пакета с коробкой внутри


Доставлялась альтернативной почтовой службой, не почтой России, о чем и гласит транспортная накладная


В посылке фирменная коробочка GoolRC


Внутри комплект бесколлекторного двигателя типоразмера 3660 (36х60 мм), ESC-контроллера для него и сервомашинки с комплектом


Теперь рассмотрим весь комплект по отдельным составляющим. Начнем с самого главного - с двигателя.

БК двигатель GoolRC представляет собой цилиндр из алюминия, размеры 36 на 60 мм. С одной стороны выходят три толстых провода в силиконовой оплетке с «бананами», с другой стороны вал 5 мм. Ротор с двух сторон установлен на подшипниках качения. На корпусе присутствует маркировка модели


Еще фотография. Внешняя рубашка неподвижная, т.е. тип мотора Inrunner.


Маркировка на корпусе


С заднего торца видно подшипник


Заявлена защита от брызг и влаги
Выходят три толстых, коротких провода для подключения фаз: u v w. Если будете искать клеммы для подключения - это бананы 4 мм


Провода имеют термоусадку разного цвета: желтый, оранжевый и синий


Размеры мотора: диаметр и длина вала совпадают с заявленными: Вал 5х17 мм




Габариты корпуса двигателя 36х60 мм




Сравнение с коллекторным 775 двигателем


Сравнение с б/к шпинделем на 300Вт (и ценой около $100). Напоминаю, что у GoolRC 3660 заявлена пиковая мощность 1200Вт. Даже если использовать треть мощности, все равно это дешевле и больше, чем у этого шпинделя


Сравнение с другими модельными двигателями


Для корректной работы двигателя потребуется специальный ESC контроллер (который есть в комплекте)

ESC контроллер - это плата драйвера двигателя с преобразователем сигнала и мощными ключами. На простых моделях вместо корпуса используется термоусадка, на мощных - корпус с радиатором и активным охлаждением.


На фото контроллер GoolRC ESC 60A по сравнению с «младшим» братом ESC 20A


Обратите внимание: присутствует тумблер выключения-выключения на отрезке провода, который можно встроить в корпус устройства/игрушки


Присутствует полный комплект разъемов: входные Т-коннекторы, 4 мм бананы-гнезда, 3-пиновый вход управляющего сигнала


Силовые бананы 4 мм - гнезда, маркируются аналогично по цветам: желтый, оранжевый и синий. При подключении перепутать можно только умышленно


Входные Т-коннекторы. Аналогично перепутать полярность можно если вы очень сильный)))))


На корпусе присутствует маркировка с названием и характеристиками, что очень удобно


Охлаждение активное, работает и регулируется автоматически.

Для оценки размеров приложил PCB ruller

В наборе также присутствует сервомашинка GoolRC на 9 кг.


Плюс как и для любой другой сервомашинки в комплекте идет набор рычагов (двойной, крест, звезда, колесо) и крепежная фурнитура (понравилось, что есть проставки из латуни)


Макрофото вала сервомашинки


Пробуем закрепить крестообразный рычаг для фотографии


На самом деле интересно проверить заявленные зарактеристики - это металлический комплект шестерен внутри. Разбираем сервомашинку. Корпус сидит на герметике по кругу, а внутри присутствует обильная смазка. Шестерни и правда металлические.


Фото платы управления сервой

Для чего все это затевалось: для того, чтобы попробовать БК двигатель как сверлилку/гравировалку. Все таки заявлена пиковая мощность 1200Вт.
Я выбрал проект сверлильного станка для подготовки печатных плат на . Там есть множество проектов для изготовления светильного настольного станка. Как правило, все эти проекты малогабаритные и предназначены для установки небольшого двигателя постоянного тока.


Я выбрал один из и доработал крепление в части держателей двигателя 3660 (родной двигатель был меньше и имел другие размеры креплений)

Привожу чертеж посадочных мест и габаритов двигателя 3660


В оригинале стоит более слабый двигатель. Вот эскиз крепления (6 отверстий для М3х6)


Скрин из программы для печати на принтере


Заодно напечатал и хомут для крепления сверху


Мотор 3660 с установленным цанговым патроном типа ER11




Для подключения и проверки БК мотора потребуется собрать следующую схему: источник питания, сервотестер или плата управления, ESC-контроллер двигателя, двигатель.
Я использую самый простой сервотестер, он также дает нужный сигнал. Его можно использовать для включения и для регулировки оборотов двигателя


При желании можно подключить микроконтроллер (Ардуино и т.п.). Привожу схему из интернета с подключением аутраннера и 30А контроллера. Скетчи найти не проблема.


Соединяем все, по цветам.


Источник показывает, что холостой ток контроллера небольшой (0.26А)


Теперь сверлильный станок.
Собираем все и крепим на стойку




Для проверки собираю без корпуса, потом допечатаю корпус, куда можно установить штатный выключатель, крутилку сервотестера


Еще одно применение подобного 3660 БК двигателя - в качестве шпинделя станков для сверления и фрезеровки печатных плат






Про сам станок обзор доделаю чуть позже. Будет интересно проверить гравировку печатных плат с помощью GoolRC 3660

Заключение

Двигатель качественный, мощный, крутящий момент с запасом подойдет под любительские цели.
Конкретно живучесть подшипников при боковом усилии при фрезеровки/гравировки покажет время.
Определенно существует выгода применения модельных двигателей в любительских целях, а также простота работы и сборки конструкций на них по сравнению с шпинделями для ЧПУ, которые дороже и требуют специального оборудования (источники питания с регулировкой оборотов, драйверы, охлаждение и т.п.).

При заказе пользовался купоном SALE15 со скидкой 5% на все товары магазина.

Спасибо за внимание!

Планирую купить +59 Добавить в избранное Обзор понравился +92 +156

Чем отличаются коллекторные двигатели от бесколлекторных, главные преимущества и недостатки обоих типов.

В инженерном деле не существует идеальных решений, возможно, найти только оптимальное решение для конкретной прикладной задачи. Возможные технические решения для управления движением широко варьируются в зависимости от задач - от устройств для исследования космоса, где стоимость является несущественной и требуется абсолютная надежность работы, до скоростных упаковочных линий, которые работают в круглосуточном режиме без выходных. К счастью, команды разработчиков имеют множество вариантов для выбора. Одно из ключевых решений, которое нужно принять - использовать коллекторный или бесщеточный электродвигатель постоянного тока. Для этого нужно понять чем отличаются коллекторные двигатели от бесколлекторного аналога.

Щеточные электродвигатели постоянного тока

Прежде чем перейти к рассмотрению за и против, давайте рассмотрим конструкцию электродвигателя. Электродвигатель состоит из ротора (также называемого якорем) и статора. Хотя также существуют некоторые вариации, когда двигатели со стационарным ротором и вращающимся статором, для целей этой статьи давайте ограничимся обсуждением двигателя со стационарным статором, окружающим центральный вращающийся ротор. Статор состоит из пары постоянных магнитов с противоположным расположением полюсов, а ротор - из перекладины, обмотанной проволокой в противоположных направлениях с каждой стороны (см. Рис. 1). Когда обе катушки подключены к , они действуют как электромагниты с противоположными полярностями.


Электродвигатели работают за счет сил Лоренца, которые возникают при прохождении электрического тока через обмотки, расположенные в магнитном поле. Воздействие этих сил заставляет ротор поворачиваться вокруг своей оси. Крутящий момент, создаваемый силой Лоренца, является векторным произведением, что означает, что когда полюса электромагнитов, образованных обмотками ротора, выровнены с противоположными полюсами магнитов статора, сила падает до нуля, а ротор прекращает вращение.

Однако изменение направления тока в обмотках приведет к изменению полярности электромагнитов. Сила будет восстановлена и ротор возобновит движение. Если это изменение будет происходить каждый раз, при прохождении вертикали статора, ротор будет продолжать вращаться и выполнять полезную работу.
Для изменения направления тока с контролируемой частотой, щеточным двигателям постоянного тока требуют коллектор. Коллектор - это разделенное на сегменты кольцо соответствующим образом подключенное к каждой из обмоток ротора. Когда ротор вращается - тоже происходит и с коллектором. Для того чтобы подвести ток к коллектору к нему с противоположных сторон прижимается пара неподвижных щеток (см. Рис. 2). Когда коллектор/ротор поворачивается, каждый сегмент коллектора последовательно контактирует сначала с одной щеткой/источником тока, а затем с другой. В результате ток в роторных катушках меняется каждый раз при повороте ротора на 180°, поддерживая вращение двигателя.

Это очень простая модель, представленная для примера. Как поясняется в учебном пособии, из практических соображений - щеточные двигатели постоянного тока обычно имеют три или более фаз.
Щетки могут быть изготовлены из различных материалов: сплавы на основе углерода, такие как графит-медь или графит-серебро, драгоценные металлы - золото, серебро или платина. Выбор подходящего материала щеток – зависит от конкретной прикладной задачи.

Графитовые щетки изготавливают из цельных кусков графита. Щетки из графита являются самосмазывающимися и достаточно прочными. Они подходят для больших двигателей, работающих на высокой скорости (выше 1000 об/мин). Недостатком графитовых щеток является то, что они со временем образовывают мусор, который может загрязнить коллектор и привести к сбоям в работе двигателя. Очень важно, чтобы такие щетки использовались при достаточно высоких скоростях для очистки от загрязнений.
Щетки из драгоценных металлов состоят из отдельных нитей, что делает их более хрупкими, чем щетки на основе графита. В тоже время щетки из драгоценных металлов обеспечивают лучшую производительность при более низком электрическом шуме и звуковом загрязнении. Они более компактны и эффективны в приложениях с низким рабочим циклом. Они также хорошо подходят для низковольтных систем, потому что падение напряжения между коллектором и щеткой имеет тенденцию быть низким. С другой стороны, они не обладают эффектом самосмазывания, что приводит к большему износу и необходимости использования внешних смазочных материалов .

Бесщеточные или коллекторные двигатели - За и против

Чтобы в полной мере понять чем отличается коллекторный двигатель от бесколлекторного, стоит взвесить все преимущества и недостатки обоих типов. Щеточные электродвигатели постоянного тока являются лучшим решением в области управления движением. Они экономичны и просты в использовании. Поскольку им не требуется встроенная электроника, они могут выдерживать экстремальные условия. При условии, что щетки выбраны правильно и своевременно обслуживаются, щеточные двигатели постоянного тока могут служить длительное время. Они хорошо подходят для применения в устройствах с умеренными и низкими скоростями.

Щеточные двигатели требуют квалифицированной эксплуатации. Прохождение определенной плотности тока, к примеру, приводит к выгоранию щеток. При избыточной скорости щетки могут слетать с коллектора. Для применения щеточных двигателей на высоте может потребоваться специальное обслуживание – как-то применение таких присадок, как дисульфид молибдена или карбонат лития.

Необходимость в коллекторе и щетках увеличивает размер двигателя. Щетки требуют регулярного обслуживания, поэтому двигатели должны находиться в доступном месте. Поскольку ротор с обмотками находится внутри (статора), щеточные двигатели могут рассеивать тепло только через воздушный зазор, что усложняет задачу теплообмена. Падение напряжения на щетках снижает эффективность щеточных двигателей.

Наконец, трение щеток о контакты коллектора дополнительно снижает эффективность и создает слышимый шум. Трение приводит к уменьшению крутящего момента на высоких скоростях. Кроме выше приведенных недостатков трение щеток о коллектор также может вызвать появление дуги и увеличение электромагнитных помех (EMI); а в худшем случае, могут генерироваться искры, что делает щеточные электродвигатели постоянного тока непригодными для использования во взрывоопасных средах.

Бесколлекторные двигатели постоянного тока (Вентильные двигатели)

Альтернативой являются бесколлекторные двигатели постоянного тока (BLDC) (Вентильные двигатели (ВД)) или двигатели с электронным коммутатором (ECM). Двигатели BLDC представляют собой синхронные двигатели с постоянными магнитами. Они могут работать как серводвигатели, а также как шаговые двигатели. Это определение также включает двигатели с переключением сопротивлением. С целью сравнения рассмотрим конструкцию двигателя BLDC, которая представляет собой коллекторный двигатель постоянного тока, вывернутый наизнанку. Постоянные магниты установлены на роторе, а статор состоит из ламинированной рамы с катушками. В результате ротор не нуждается в какой-либо проводке, и двигатель не нуждается в коллекторе и щетках.

Хотя двигатели BLDC классифицируются как двигатели постоянного тока и запитываются от источника постоянного тока, они имеют много общего с двигателями переменного тока. Чтобы поддерживать поворот ротора, обмотки статора должны запитываться последовательно; принципиально, это выглядит как импульсный источник тока, как правило, с синусоидальной формой сигнала, когда используется для сервомоторного управления. Для согласования распределения магнитного поля, генерируемое обмотками статора, с распределением магнитного поля ротора, в BLDC двигателях контролируеться угловое положение ротора, как правило, при помощи датчиков Холла. Эта обратная связь используется для управления переключением тока на обмотках.

Поскольку в двигателях BLDC не применяются щетки и коллекторы, они более компактны, чем коллекторные двигатели. Они обеспечивают более высокую производительность в одном типоразмере. Отсутствие щеток снижает необходимость обслуживания и позволяет ротору вращаться на более высоких скоростях. Отсутствие трения выравнивает кривую скорость/крутящий момент, устраняет вероятность искрения и снижает электромагнитное помехи (EMI). Перемещение теплогенерирующих обмоток наружу упрощает теплоотвод. Этот подход также снижает инерционность ротора, позволяя сервомоторам BLDC обеспечивать лучший динамический отклик. Отсутствие падения напряжения на щетках также повышает эффективность BLDC двигателей.

С другой стороны, двигатели BLDC сложнее, чем их коллекторные аналоги. Использование встроенной электроники значительно увеличивает их стоимость.

Как обсуждалось в начале этой статьи, выбор типа двигателя обуславливается требованиями, которые к нему выставляются. Проект с ограниченным бюджетом и с умеренными требованиями к характеристикам двигателя может отлично быть реализован с использованием коллекторного двигателя постоянного тока. Если для проекта более важными являются производительность и рабочий цикл BLDC двигатель может быть лучшим решением. Оригинальный производитель оборудования и конечные пользователи должны учитывать не только возможности двигателя, но и возможности своего персонала по инсталляции и обслуживанию оборудование. Эффективное техническое решение может быть принято только при обоснованном выборе оборудования.