Высокооборотистый асинхронный двигатель. Серийные автомобили с самыми высокооборотистыми двигателями. Разные виды высоковольтных электродвигателей

Когда речь заходит об электродвигателях , не существует линейной зависимости между мощностью, числом оборотов и потребляемого напряжения. Рассмотрим, в каких отраслях применяют и чем различаются высоковольтные электродвигатели, двигатели с высокими оборотами, а также двигатели с большой мощностью.

Разные виды высоковольтных электродвигателей

Высоковольтные электродвигатели – это синхронные и асинхронные двигатели с напряжением 3000, 6000, 6300, 6600 и 10000 В. В основном данные электродвигатели применяются в промышленности: металлургическая, горнодобывающая, станкостроительная, химическая отрасли. Такие электродвигатели применяются в установках, дымососах, мельницах, станах, грохотах, вентиляторах и т.д.

Трехфазные двигатели предназначены для работы от переменного тока с частотой 50 (60) Гц. Для обеспечения надежной работы используют обмотку статора типа "Монолит" или "Монолит-2" с классом нагревостойкости не ниже "В". Корпус электродвигателей усиленный, что, в свою очередь, понижает уровни звука и вибрации. Удельная материалоемкость и энергетические показатели находятся в оптимальном соотношении. Высоковольтные электродвигатели характеризуются также повышенной износостойкостью.

Предназначаются такие электродвигатели для привода:

  • механизмов, не требующих регулирования частоты вращения – серии А4, А4 12 и 13, ДАЗО4, ДАЗО4-12, ДАЗО4-13, АОД, АОВМ, АОМ, ДАВ;
  • механизмов с тяжелыми условиями пуска - серия 2АОД;
  • вертикальных гидравлических насосов – серия ДВАН.

Высокооборотистые электродвигатели и их особенности

В отличие от высоковольтных электродвигателей, высокооборотные – это двигатели, количество оборотов которых равно 50 об/с или 3000 об/мин. Они имеют меньшую массу, габариты и даже стоимость, чем более тихоходные собратья одинаковой мощности.

Для применения двигателей с частой до 9000 об/мин необходимо использовать механизм с большим передаточным числом, в частности, волновой передаточный механизм. Он отличается простотой, высокой надежностью, точностью и компактностью.

Область применения высокооборотных двигателей очень широка. Сюда входят и электродвигатели для ручного гравера, и для сверла бормашины, и двигатели для автомобильной и авиационной промышленности.

Мощные электродвигатели

У обычных трехфазных электродвигателей номинальная мощность колеблется в диапазоне 120 Вт-315 кВт. Однако, как показывает практика, чем мощней электродвигатель, тем больше высота оси вала. Поэтому мощными принято считать электродвигатели больше 11 кВт. Области применения тоже довольно широкие. В частности, краново-металлургическая. Электродвигатели большой мощности также применяются в насосных агрегатах.

Автомобили с самыми высокооборотистыми моторами в мире. Эти 25 моделей машин ничем не уступают мотоциклам по одному очень своеобразному параметру - скорости вращения коленчатого вала двигателя на максимальных оборотах. Что это за автомобили, которые гарантируют высокие обороты и прекрасное звучание? Да вот же они:

Mazda MX-5


Двигатель MX-5 крутится до головокружительно высоких оборотов. Правда стоит учитывать, что среди конкурентов он наименее шустрый.

131 л. с. при 7.000 об/мин. Двигатель Mazda MX-5 - (4-цилиндровый ряд, 1496 куб. см, 131 л. с.).

Lotus Evora


V6, 3.456 куб. см, 436 л. с.- 7.000 об/мин. Lotus известен высокоскоростными двигателями, не в последнюю очередь из-за истории компании принимавшей участие в гонках Формулы-1.

Renault Clio


Renault Clio 16V Gordini R. S. (четырехцилиндровый рядный, объемом 1998 куб. см и мощностью 201 л. с.). Маленький француз делает 7.100 об/мин.

Porsche 911


Carrera S (991.1, шестицилиндровый «боксер», 3.800 куб. см, 400 л. с.). Благородный спортсмен может вращать коленчатый вал максимум 7.400 раз в минуту.

Даже 3,4-литровый мотор в Cayman R (шестицилиндровый «оппозитник», 3.436 куб. см, 330 л. с.) дошел до планки 7400 об/мин.

McLaren

Битурбированный V8 под капотом 570 S Spider (V8-Biturbo, 3.700 куб. см, 570 л. с.) вращается вплоть до 7500 об/мин.

Ferrari 488

8.000 об/мин на спорткаре Ferrari 488 GTB (V8, 3.902 куб. см, 670 л. с.).

BMW M5

(кузов E60, V10, 4.999 куб. см, 507 л. с.). При 8.250 оборотах в минуту он создает невероятно приятный звук, притягательный и насыщенный.

Audi RS5

RS5 S-Tronic (V8, 4.163 куб. см, 450 л. с.). Высокоскоростные двигатели серии «RS5» обеспечивают колоссальные 8.250 оборотов.

Ford Mustang

В техническом паспорте Shelby GT 350 (V8, 5.163 куб. см, 533 л. с.) стоят головокружительные 8.250 об/мин!

Lamborghini

Сердцебиение у быка частое! (V10, 5.204 куб. см, 610 л. с.) крутится до 8.250 оборотов в минуту.

BMW M3

Drivelogic (V8, 3.999 куб. см, 420 л. с.). Двигатель построенный более пяти лет назад создает значительные 8.300 оборотов.

Honda Civic

Type R (FK 2, рядный четырехцилиндровый, 1.996 куб. см, 310 л. с.). Вращается до 8600 оборотов. Один из самых высоких показателей в своем классе

Audi R8

Audi R8 V10 первого поколения (V10, 5.204 куб. см, 550 л. с.). 5,2-литровый двигатель вращался до 8.700 об/мин. Преемник смог осилить «лишь» 8.500 оборотов.

Porsche 911

Porsche 911 GT3 RS (991-я модель, 6-цилиндровый оппозитный мотор, 3.996 куб. см, 500 л. с.): 8.800 об/мин делают его настоящим королем скорости.

Ferrari

Ferrari F12TDF (V12, 6.262 куб. см, 780 л. с.). Его 6,3-литровый V12 вращается на невероятных 8.900 оборотах. Техника вышла из гонок и перешла в серийное производство.

Honda S2000

(4-цилиндровый рядный, 1.997 куб. см, 241 л. с.). Первое поколение крутилось словно Ferrari - 8.900 об/мин. С 2004 года Honda снизила скорости до 8.200 оборотов.

Ferrari 458

(V8, 4.497 куб. см, 605 л. с.). Итальянец мощностью в 605 лошадиных сил и его 4,5-литровая «восьмерка» способна разогнаться до 9.000 оборотов в минуту!

Lexus

Lexus LFA (V10, 4.805 куб. см, 560 л. с.). Опять же, техника пришли из гонок, а значит японец сможет удивить 9 тыс. обо/мин.

Mazda RX-8

Еще один в лиге «девяти тысяч». Mazda RX-8 (роторно-поршневой мотор, 2 x 654 куб. см, 231 л. с.) - настоящая экзотика в мире гонок. Эластичный и достаточно мощный. А какой звук!

Porsche 911

Porsche 911 GT3 (991.1, шестицилиндровый «боксер», 3.799 куб. см, 475 л. с.): 3,8-литровый «боксер» производит 9.050 оборотов в минуту ровно. Так что он открывает Топ-5.

Porsche 918 Spyder

Еще раз Porsche, на этот раз 918 Spyder (V8 + электродвигатель, 4.593 куб. см, 887 л. с. - общая мощность). Бензиновый двигатель разгоняется до 9.150 оборотов. Электромотор крутиться еще быстрее…

Ferrari LaFerrari

Та же концепция, что у Porsche 918 Spyder, но Ferrari ставит в LaFerrari (V12 + «E»- мотор. 6.262 куб. см, общая мощность 963 л. с.). Его 6,3-литровый V12 вращается до 9.250 Раз в минуту.

Классика от Honda

Если мотоциклист строит родстер, то двигатели с верхней планкой до 9.500 об / мин от мотоцикла он поставить под капот такого автомобиля. Модель S 800 (рядный четырехцилиндровый, 791 куб. см, 67,2 л. с.) стала билетом в Европу для Honda/

Ariel Atom

Atom 500 (V8, 3.000 куб. см, 476 л. с.). Здесь также установлен двигатель, который на самом деле имеет мотоциклетные корни. Агрегат делает до 10.500 оборотов в минуту!

Использование: электропривод различного назначения. Сущность изобретения: ротор выполнен в виде предварительно смонтированного и сбалансированного узла, содержит постоянные магниты, центральные части торцов которых соединены с помощью пластин с втулкой. Технический результат: упрощение конструкции и уменьшение массы. 2 ил.

Изобретение относится к электротехнике, в частности к приводам с электродвигателем. Широко известны и наиболее распространены бесколлекторные асинхронные трехфазные электродвигатели с короткозамкнутым ротором. Асинхронный электродвигатель возбуждается переменным током, который, как правило, подводится к электродвигателю от сети переменного тока, имеющей промышленную частоту 50 Гц . Известен электродвигатель переменного тока, содержащий статор с обмоткой, ротор с короткозамкнутой обмоткой, выполненной в виде беличьей клетки, и вала с подшипниковыми опорами (см. авт. св. СССР N 1053229, кл. H 02 K 17/00, 1983). Для управления частотой вращения асинхронного электродвигателя с фазным ротором могут быть использованы устройства, содержащие в цепи ротора преобразователь частоты с непосредственной связью . Эти устройства имеют значительные габариты и вес. Наиболее близким аналогом изобретения является электродвигатель, содержащий вращающийся вокруг оси ротор и статор, установленный соосно с ротором. По окружности ротора и статора размещены несколько биполярных полюсов. Полюса ротора расположены внутри, а статора - снаружи окружности, концентричной оси ротора и лежащей в плоскости, перпендикулярной этой оси. Блок, соединенный с одной из групп полюсов, управляет подачей к ней питания для выборочного намагничивания полюсов и создания вращающего магнитного поля. Каждый из полюсов ротора имеет магнитный сердечник E-образного поперечного сечения, причем плоскость поперечного сечения перпендикулярна плоскости окружности, на которой размещены полюса. Открытая часть сердечников обращена к этой окружности и имеет один центральный и два наружных выступа. На каждом полюсе ротора вокруг центрального выступа намотана по меньшей мере одна катушка, соединенная с блоком управления для создания вращающегося магнитного поля . Данный электродвигатель не позволяет получить высокие обороты и сложен в изготовлении, так как трудно осуществить его балансировку и выполнить электронное устройство блока управления для создания вращающегося магнитного поля. Целью изобретения является создание высокооборотистого двигателя с оборотами до 50000 в минуту, имеющего простую конструкцию и малый вес. Указанный технический результат достигается тем, что ротор выполнен в виде предварительно смонтированного и отбалансированного узла, включающего втулку и равномерно расположенные по поперечному сечению по меньшей мере два постоянных магнита, центральные части торцов которых соединены посредством пластин со втулкой, последняя напрессована на вал отбора мощности, при этом смежные магниты противоположно намагничены и их продольный размер больше внутреннего радиуса статора, а электронное устройство выполнено в виде последовательно соединенных между собой диодного моста, фильтра и тиристорного преобразователя. На фиг.1 схематически изображен продольный разрез высокооборотистого электродвигателя; на фиг.2 - поперечное сечение А-А на фиг.1. Высокооборотистый электродвигатель содержит: статор 1, имеющий обмотки 2, ротор 3, установленный в подшипниковых опорах 4, вал 5 отбора мощности с напрессованной на нем втулкой 6, соединенной посредством пластин 7 с центральными частями торцов постоянных магнитов 8, расположенными с зазором относительно статора 1, причем смежные магниты противоположно намагничены и их продольный размер больше внутреннего радиуса статора, а электронное устройство для создания вращающегося магнитного поля (не показано) выполнено в виде последовательно соединенных между собой диодного моста (типа Д-245 или Д-246), фильтра (типа РЦ) и тиристорного преобразователя. Величина зазора между статором 1 и ротором 3 выполняется порядка 2 мм, увеличение зазора ведет к потере мощности. Желательно использование магнитов 8 на керамической основе, что позволяет избежать появления пыли и повысит и ресурс работы. Магниты 8 могут быть выполнены в виде полос, изогнутых по цилиндрическим образующим (как представлено на фиг. 2), причем поперечное сечение может быть и круглым или прямоугольным. Для обеспечения работоспособности электродвигателя при оборотах 50000 в минуту ротор 3 предварительно монтируют и осуществляют его балансировку посредством сверловки его элементов или установки балансировочных грузиков (не показано), что позволяет избежать вибраций при работе и разрушений подшипниковых опор 4, а также обеспечит постоянство зазора между статором 1 и ротором 3. Предложенный высокооборотистый электродвигатель работает следующим образом. Ток в обмотках 2 статора 1 подается от сети переменного тока через последовательно соединенные между собой диодный мост, фильтр и тиристорный преобразователь, что позволяет создать вращающееся магнитное поле и регулировать угловую скорость (обороты) ротора 3 электродвигателя за счет взаимодействия магнитных полей статора 1 и магнитов 8 ротора 3, при этом смежные магниты 8 противоположно намагничены в роторе 3.

Формула изобретения

Высокооборотистый электродвигатель, содержащий вращающийся вокруг оси ротор и статор, установленный соосно с ротором, электронное устройство для создания вращающегося магнитного поля, подключенное к источнику тока, и вал отбора мощности, установленный в подшипниковых опорах корпуса статора, отличающийся тем, что ротор выполнен в виде предварительно смонтированного и сбалансированного узла, включающего втулку и равномерно расположенные по поперечному сечению по меньшей мере два постоянных магнита, центральные части торцов которых соединены посредством пластин с втулкой, последняя напрессована на вал отбора мощности, при этом смежные магниты противоположно намагничены и их продольный размер больше внутреннего радиуса статора, а электронное устройство выполнено в виде последовательно соединенных между собой диодного моста, фильтра и тиристорного преобразователя.

высокоскоростные

двигатели LSMV

энергосберегающие

двигатели LSRPM

для высоких температур LS, FLS

коррозийно-стойкие двигатели FLS

Высокоскоростные асинхронные электродвигатели серии CPLS


Электродвигатели CPLS производства компании специально разработаны для приложений, требующих широкого диапазонарегулирования скорости вращения и жесткими требованиями к массагабаритным параметрам.

Данные асинхронные двигатели с короткозамкнутым ротором хорошо приспособлены для работы в режиме ослабленного поля, обеспечивая максимально широкий диапазон скоростей, который только может позволить их механическая конструкция.

Технические характеристики:

ü Диапазон мощностей: 8,5 - 400 кВт;

ü Скорость вращения: 112 - 132 габарит до 8000 об/мин; 160 -200 габарит до 6000 об/мин;

ü Степень защиты: IP23, IP54;

ü Класс изоляции: F, H;

ü Тип охлаждения: IC06, IC17, IC37;

ü Дополнительные опции: датчики обратной связи, датчики температуры PTC, PTO, подшипники с пополняемой смазкой, тормоз, аксиальный принудительный вентилятор. По требованию могут быть изготовлены специальные валы и фланцы электродвигателей.


По функциональным возможностям эти машины можно сравнить как с электродвигателями постоянного тока, так и с бесколлекторными электродвигателями. Уменьшенный момент инерции ротора обеспечивает двигателям отличные динамические показатели.

Питаемые от частотных преобразователей приложения номинальный момент (Mn) в расчетной точке (n1) и сопоставить их с графиками.

рис.1 График зависимости номинального момента (Mn ) от скорости вращения (n1 )

для электродвигателей CPLS 112M, CPLS 112L, CPLS 132S, CPLS 132M, CPLS132L,

CPLS 160S, CPLS 160M, CPLS 160L, CPLS 200S, CPLS 200M, CPLS200L

Область применения: управление намоточным и размоточным оборудованием, металлургическая промышленность, упаковочная, полиграфическая промышленность, производство кабеля, экструзионное оборудование и т.п

При шлифовании отверстий малого диаметра для обеспечения надлежащих скоростей резания требуются весьма высокие скорости вращения шлифовальных шпинделей. Так, при шлифовании отверстий диаметром 5 мм кругом диаметром 3 мм со скоростью всего лишь 30 м/сек шпиндель должен иметь скорость вращения 200 000 об/мин.

Применение в целях повышения скорости ременных передач ограничено предельно допустимыми скоростями ремня. Скорость вращения шпинделей с ременным приводом обычно не превышает 10 000 об/мин, причем ремни проскальзывают, быстро выходят из строя (через 150-300 час.) и создают вибрации во время работы.

Высокоскоростные пневматические турбинки тоже не всегда пригодны вследствие весьма значительной мягкости их механической характеристики.

Проблема создания высокоскоростных шпинделей имеет особое значение для производства шариковых подшипников, где требуется высококачественное внутреннее и желобное шлифование. В связи с этим в станкостроительной и шарикоподшипниковой промышленности применяются многочисленные модели так называемых электрошпинделей со скоростями вращения 12 000-50 000 об/мин и более.

Электрошпиндель (рис. 1) представляет собой шлифовальный шпиндель с тремя опорами и встроенным короткозамкнутым высокочастотным двигателем. Ротор двигателя помещается между двумя спорами на конце шпинделя, противоположном шлифовальному кругу.

Реже применяют конструкции с двумя или четырьмя опорами. В последнем случае вал электродвигателя соединяется со шпинделем посредством сцепной муфты.

Статор двигателя электрошпинделя собирается из электротехнической листовой стали. На нем располагается двухполюсная обмотка. Ротор двигателя при скоростях вращения до 30-50 тыс. об/мин набирается также из листовой стали и снабжается обычной коротко-замкнутой обмоткой. Диаметр ротора стремятся по возможности уменьшить.

При скоростях, больших 50 000 об/мин, вследствие значительных потерь встали, статор снабжают рубашкой с охлаждением проточной водой. Роторы двигателей, предназначенных для работы с такими скоростями, выполняют в виде сплошного стального цилиндра.

Особое значение для работы электрошпинделей имеет выбор типа подшипников. При скоростях вращения до -50 000 об/мин применяются шариковые подшипники повышенной точности. Такие подшипники должны иметь максимальный зазор, не превышающий 30 мк, что достигается надлежащей комплектовкой. Подшипники работают с предварительным натягом, создаваемым посредством тарированных пружин. Тарировке пружин предварительного натяга шариковых подшипников и выбору их посадочного натяга должно быть уделено большое внимание.

При скоростях вращения, больших 50 000 об/мин, удовлетворительно работают подшипники скольжения при интенсивном охлаждении их проточным маслом, подаваемым специальным насосом. Иногда смазку подают в распыленном состоянии.

Строились также высокочастотные электрошпиндели на 100 000 об/мин на аэродинамических опорах (подшипники с воздушной смазкой).

При производстве высокочастотных электродвигателей требуется весьма точное изготовление отдельных деталей, динамическая балансировка ротора, точная сборка и обеспечение строгой равномерности зазора между статором и ротором.

В связи с изложенным, изготовление электрошпинделей производится по специальным техническим условиям.


Рис.1. Высокочастотный шлифовальный электрошпиндель.

Коэффициент полезного действия высокочастотных двигателей относительно мал. Это объясняется наличием повышенных потерь в стали и потерь на трение в подшипниках.

Размеры и вес высокочастотных электродвигателей относительно невелики.


Рис. 2. Современный высокочастотный электрошпиндель

Применение электрошпинделей взамен приводов с ременным приводом в условиях производства шариковых подшипников увеличивает производительность труда при работе на внутришлифовальных станках не менее чем па 15-20%, резко уменьшает брак по конусности, овальности и по чистоте поверхности. Долговечность шлифовальных шпинделей увеличивается в 5-10 раз и более.

Большой интерес представляет также применение высокоскоростных шпинделей при сверлении отверстий диаметром менее 1 мм.

Частота тока, питающего высокочастотный электродвигатель, выбирается в зависимости от требуемой скорости вращения n электродвигателя по формуле

так как р = 1.

Так, при скоростях вращения электрошпинделей 12 000 и 120 000 об/мин требуются соответственно частоты 200 и 2000 Гц.

Для питания высокочастотных двигателей раньше применяли специальные генераторы повышенной частоты. Сейчас для этих целей используют статические преобразователи частоты на быстродействующих полевых транзисторах.

На рис. 3 представлен синхронный индукционный генератор трехфазного тока отечественного производства (тип ГИС-1). Как видно из чертежа, на статоре такого генератора имеются широкие и узкие пазы. Обмотка возбуждения, катушки которой размещены в широких пазах статора, питается постоянным током. Магнитное поле этих катушек замыкается через зубцы статора и выступы ротора так, как это показано на рис. 3 пунктиром.

Рис. 3. Индукционный генератор тока повышенной частоты.

При вращении ротора магнитное поле, перемещаясь вместе с выступами ротора, пересекает витки обмотки переменного тока, размещенной в узких пазах статора, и наводит в них переменную э. д. с. Частота этой э. д. с. зависит от скорости вращения и числа выступов ротора. Электродвижущие силы, наведенные тем же потоком в катушках обмотки возбуждения, взаимно компенсируются вследствие встречного включения катушек.

Питание обмотки возбуждения производится через селеновый выпрямитель, присоединенный к сети переменного тока. Как статор, так и ротор имеют магнитопроводы, изготовленные из листовой стали.

Генераторы описанной конструкции изготовляются на номинальные мощности 1,5; 3 и 6 кВт и на частоты 400, 600, 800 и 1200 Гц. Номинальная скорость вращения синхронных генераторов равна 3000 об/мин.