Универсальный тесла - двигатель. Разгадка электромобиля николы тесла

В Tesla Model 3 будут использоваться аккумуляторы последней модификации с «Гигафабрики Tesla»

Компания Tesla собирается устанавливать в своих новых электромобилях Tesla Model 3 аккумуляторы, которые производятся сейчас на «Гигафабрике» из Невады. Новые силовые агрегаты, как обещает компания, будут более мощными и эффективными. Преобразователь был разработан с нуля, предыдущие модели, которые работали в той же Tesla Model S, не используются. Новое здесь все, включая полупроводниковые элементы системы. Инженерам компании удалось снизить количество уникальных элементов инвертора примерно на 25%, что позволяет удешевить конструкцию.

Кроме того, Model 3 получила 435-сильный электромотор. Об этом сообщил технический директор Tesla. Это даже больше, чем у BMW M3, где установлен трехлитровый шестицилиндровый твин-турбо двигатель (максимум - 431 л.с.). Благодаря мощному мотору самая медленная модификация модели сможет разгоняться до 96 километров в час всего за 6 секунд. У старшей модели с продвинутым режимом Ludicrous Mode на разгон до этой скорости уйдет всего 4 секунды.



Электронные компоненты инвертора (полевые транзисторы с изолированным затвором)

Инженеры компании уже несколько месяцев работают над созданием нового инвертора Model 3 мощностью 320 КВт. В конструкции инвертора используются биполярные транзисторы TO-247 с изолированным затвором. Эти электронные компоненты использовались в конструкции инвертора для Tesla Model X и Tesla Model S. Производство инверторов уже стартовало, запущены производственные линии и для других компонентов, поскольку компания собирается поставить около 500000 электромобилей к 2018 году.

Без подзарядки новая модель сможет проезжать от 340 до 400 километров, что очень неплохо. Изначально на рынок будет поставляться версия с запасом хода в 340 километров, после чего появится модель с аккумулятором емкостью в 80 КВт·ч. С этим аккумулятором электромобиль сможет пройти и 480 километров. Кроме того, новинка получает автопилот. И хотя он и не превратит электромобиль в робомобиль, помощь автомобилисту будет оказываться довольно серьезная.

Сейчас компания уже проводит тестирование своего нового электромобиля. К примеру, недавно именно такую модель сфотографировали в одном из сервисных центров компании. По внешнему виду она ничем не отличается от демонстрационного образца.

Отгружать Model 3 покупателям начнут не ранее конца 2017 года. Предзаказов на электромобиль поступило в несколько раз больше планируемого - на данный момент более 375 тысяч. Неясно, способна ли Tesla Motors справиться с такой нагрузкой без срыва сроков. Вполне возможно, что будут срывы сроков. По Model X проблемы были еще в первом квартале - вместо 4500 электромобилей компания смогла поставить 2400. Тем не менее Илон Маск обещает постепенно нарастить производственные мощности, чтобы заказчики любых моделей электромобиля получали свои транспортные средства точно в срок.

Аннотация. Статья посвящена рассмотрению и анализу существующих вариантов разработки электромобиля и описанию результатов проектирования авторской модели электродвигателя Тесла.
Ключевые слова: электрический двигатель, электродвигатель Тесла, электромобиль, качер.

Ускоренные темпы экономического, социального и общественного развития являются причиной появления многих проблем, связанных с экологической обстановкой в мире, экономией ресурсов, поиском альтернативных источников энергии. В системе транспорта и перевозок весомая доля принадлежит автомобильному транспорту (до 80 % объёма перевозок грузов и до 70% перевозок пассажиров осуществляются на нем). Это актуализирует необходимость совершенствования автомобильного транспорта, в частности в сферах снижения себестоимости перевозок, сбережения энергоресурсов и сохранения окружающей среды. Кроме того, в начале 90-х годов XX века в некоторых странах были приняты жесткие законы, ограничивающие выбросы в атмосферу. Это заставило ведущие автомобильные компании мира Toyota, Honda, Ford, General Motors заняться разработкой электромобилей. Еще одной причиной, способствовавшей развитию идеи создания электромобиля, стала необходимость решения проблемы рационального и бережного расходования энергетических ресурсов, и прежде всего невосполнимых, к числу которых относится жидкое топливо.

Электромобиль - это автомобиль, приводимый в движение не двигателем внутреннего сгорания, а одним или несколькими электродвигателями с питанием от автономного источника электроэнергии (аккумуляторов, топливных элементов и т. п.).

Главная заслуга в появлении электромобилей принадлежит сербскому ученому Николе Тесла. В настоящее время разработано достаточно большое количество вариантов электродвигателя, воссоздающих изобретение Тесла. Эти электродвигатели успешно конструируются и используются ведущими автомобильными производителями. Однако секрет того самого двигателя Тесла так и не разгадан полностью.

Общим принципом конструирования электромобилей является использование электрического двигателя (одного или нескольких) для преобразования электрической энергии в механическую. Существует два основных типа электродвигателей: первые работают на переменном токе, вторые - с использованием непосредственно получаемого от аккумуляторов постоянного тока. Двигатели переменного тока в сравнении с использующими постоянный, имеют более простую и надежную конструкцию, лучше подходят для использования в электромобилях, но требуют дополнительных преобразователей для получения переменного тока.

Оба типа двигателей в сравнении с ДВС имеют ряд преимуществ:

  • более простую, надежную, компактную и ремонтопригодную конструкцию;
  • более высокий коэффициент полезного действия;
  • минимальное влияние на окружающую среду.

В традиционных электромобилях для передачи на колеса крутящего момента используется обычная автомобильная конструкция. В перспективных проектах электромобилей применяют более специфические системы, например, мотор-колеса (колесо и электродвигатель составляют единую конструкцию, индивидуальное управление колесами улучшает управляемость).

Еще одним принципом работы электродвигателя является то, что основным источником энергии по-прежнему являются аккумуляторные батареи, претерпевшие значительные усовершенствования (в конструкции, в применении в них новых материалов и технологий). Однако следует констатировать, что требуется дальнейшая разработка новых накопителей электроэнергии и автономных преобразователей топлива в электрический ток. В качестве накопителей предполагается использование усовершенствованных ионисторов - конденсаторов очень большой емкости. В отличие от аккумуляторов, они могут заряжаться почти мгновенно и не боятся сверхтоков, возникающих при разгоне. Разработчики указывают, что пока ионисторы не имеют достаточно высокой емкости и могут использоваться лишь для подпитки аккумуляторов при разгоне. Топливные элементы позволяют вырабатывать необходимое количество электроэнергии непосредственно на борту автомобиля и в движении .

Принципом работы электродвигателя может также считаться использование в качестве источников топлива водорода и кислорода.

Крупные автомобилестроительные концерны разрабатывают электромобили, используя в качестве «донора» серийные модели, исключая из конструкции лишь двигатель внутреннего сгорания и топливную систему. Вместо бензинового или дизельного мотора устанавливается электродвигатель, который получает энергию для движения от аккумуляторных батарей большой емкости, расположенных под днищем автомобиля. Электромотор работает на переменном напряжении. Специальный инвертор преобразует высоковольтное электричество в переменный ток, подающийся на ротор, который в свою очередь приводит в действие оси автомобиля. Вместо коробки передач установлен 1-скоростной редуктор, позволяющий плавно ускорять и замедлять электромобиль. Трансмиссия не предполагает наличия задней передачи. Движение задним ходом осуществляется с помощью изменения вращения ротора электромотора. При замедлении электромотор, работающий как генератор, возвращает до 50% кинетической энергии, которая накапливается в аккумуляторных батареях .

В качестве частного принципа работы электродвигателя выдвигается принцип подзарядки батарей, которая может осуществляться: 1) с помощью 3-х фазного зарядного устройства мощностью 200 вольт; 2) с помощью бытовой электросети (позволяет полностью зарядить автомобиль за 6 часов); 3) от зарядной станции, расположенной на дороге.

«Это - автомобиль-загадка, однажды продемонстрированный Николой Тесла, который мог бы похоронить все бензиновые двигатели навсегда», - так отзывались современники великого ученого о его изобретении - электромобиле, так отзываются о нем и сейчас. При поддержке компаний Pierce-Arrow Co. and General Electric в 1931 году, Тесла снял бензиновый двигатель с нового автомобиля фирмы «Pierce-Arrow» и заменил его электромотором переменного тока мощностью в 80 лошадиных сил, без каких бы то ни было традиционно известных внешних источников питания. В местном радиомагазине он купил 12 электронных ламп, провода, несколько резисторов и собрал их в коробочку длиной 60 см., шириной 30 см. и высотой 15 см. с двумя стержнями длиной 7,5 см., торчащих снаружи. Укрепив коробочку сзади за сиденьем водителя, он выдвинул стержни и сообщил: «Теперь у нас есть энергия». После этого он ездил на машине неделю, гоняя ее на скоростях до 150 км/ч. На машине стоял двигатель переменного тока, и не имелось никаких батарей .

Популярные в то время комментарии привлекали обвинения «в черной магии». Чувствительному гению не понравились скептические комментарии прессы. Он снял с машины таинственную коробочку, и возвратился в свою лабораторию в Нью-Йорке. Тайна его источника энергии умерла вместе с ним.

В настоящее время существует 2 основных гипотезы электродвигателя Тесла.

Гипотеза 1. Некоторые исследователи привлекают к объяснению работы электромобиля Тесла магнитное поле Земли , которое Тесла мог использовать в своем генераторе. Считается возможным, что используя схему высокочастотного высоковольтного переменного тока, Тесла настраивал ее в резонанс с колебаниями «пульса» Земли (≈ 7,5 герц). Но при этом частота колебаний в его схеме должна была быть как можно более высокой, оставаясь при этом кратной 7,5 герцам (между 7,5 и 7,8 герц). В этой гипотезе установлено, что в схеме электромобиля Тесла то, что принимают за приемник (черный ящик и два стержня за спиной у водителя), является передатчиком. Также используется 2 излучателя. Кроме электродвигателя на автомобиле должны были присутствовать аккумулятор и стартер. При включении стартера вместе с электродвигателем последний превращается в генератор, который питает 2 пульсирующих излучателя. Высокочастотные колебания излучателей поддерживают движение электродвигателя. Электродвигатель, таким образом, может одновременно являться и источником вращения колес автомобиля и генератором, питающим ВЧ излучатели. Ученые предполагают, что движущей силой электродвигателя Тесла являлся не электрический ток, какого бы происхождения он ни был, а резонансные высокочастотные колебания в среде - эфире, вызывающие в электродвигателе движущую силу , не на атомарном уровне, а на уровне колебательного контура электродвигателя.

Таким образом, можно изобразить следующую концептуальную схему работы электродвигателя Тесла (см. рис. 1).

Рис. 1. Схема работы электродвигателя Тесла

Гипотеза 2.

Академик Валерий Дудышев предложил следующую разгадку тайны электромобиля Тесла. Она заключается в получении электроэнергии непосредственно из обычного лампового триода-пентода в необычных режимах их работы. Необходимо лишь обеспечить взрывную электронную эмиссию с его катода. В итоге из лампового триода можно получить в электрическую нагрузку, присоединенную к нему параллельно огромное количество электроэнергии (с выходной мощностью источника 5-10 кВт). Взрывная электронная эмиссия (открытие академика Г. Месяца) достигается в триоде подачей на управляющую сетку триода серии коротких по длительности, но высоковольтных импульсов высокого напряжения. Она с поверхности катода приводит к образованию лавины электронов, ускоряемых управляющей сеткой и попадающих на анод триода.
В итоге - эта лавина электронов с анода поступает в электрическую нагрузку и через нее снова на анод триода. Так возникает и поддерживается электрический ток в цепи «триод-нагрузка».

Расчеты показывают, что обычный ламповый вакуумированный триод в таком режиме работы позволяет получить мощную электронную эмиссию в ламповом триоде и после некоторой доработки триода получить из обычного лампового триода бесплатную электроэнергию, причем при охлаждении катода и анода - с одной радиолампы до 10 кВт.

Проектирование модели электродвигателя Тесла (авторская гипотеза)

1. Известно, что Тесла мечтал передавать энергию на расстоянии, для этого он использовал прибор, который в наше время называется Катушкой Тесла. Позже в СССР русским ученым Бровиным, который пытался создать звуковой компас, случайно был изобретен прибор, названный самим изобретателем качером (качателем реактивностей). Бровин имеет патент на это название. Именно этот прибор и послужил питающей частью нашего электродвигателя.

Качер представляет собой несложную схему, разница между ним и SGTC состоит в том, что в классической искровой катушке Тесла колебательный контур работал за счет искрового разрядника, в качере же Бровина вместо разрядника используется транзистор. При накоплении достаточного заряда в затворе транзистора (нами был использован полевой транзистор с изолированным затвором) он открывается и происходит пробой через транзистор и первичную обмотку; во вторичной обмотке возникает ток. Стоит заметить, что качер является автогенератором, то есть после первого импульса будет уже неважно, какой ток поступает на затвор, качер будет работать, даже если ток на затвор вообще не поступает.

  1. При создании авторской модели электродвигателя Тесла был использован традиционный электромотор, состоящий из статора и ротора. Электромотор питается за счет энергии вторичной катушки, которая передается, как и мечтал Тесла, по воздуху. Всем известен устоявшийся стереотип - лампочка, горящая без проводов в руке Тесла. В данном случае вместо лампочки был взят электромотор, подключенный к диодному мосту с выпрямительным конденсатором. Катушка Тесла (или качер) была использована как устройство, изобретенное великим ученым и не нашедшее в современном мире никакого применения.

Наименование компонентов

Количество

Проволока эмалированная для трансформаторов
Проволока для первичной обмотки
Макетная плата (9 см Х 5,5 см)
Выключатель (10 А)
Диод 1N4007
Конденсатор K73-17B 1мкф 250 В
Резистор переменный 0-100 КОм
Резистор переменный 0-2 КОм
Транзистор irf840
Штекер от блока питания
Припой, канифоль

по необходимости

Электромотор:

Диодный мост GBU605
Конденсатор 35 V 1000 мкф
Соединительный провод
Проволока медная для соединения деталей
Корпус машинки-донора «Ferrari»

В начале проектной и экспериментальной работы нами была разработана следующая схема электродвигателя Тесла (см. рис. 2)

Функциональность авторской модели электродвигателя оценивалась в соответствии со следующими критериями : напряжение, подаваемое на электросхему катушки Тесла; сопротивление резистора R1; количество витков первичной обмотки; количество витков вторичной обмотки; скорость автомобиля.

По результатам итогового среза опытный образец машинки развил скорость 8 см/с, что представляется нам достаточным.

  1. Исачкин А.Ф. «Электромобиль» Тесла // Энергетика и промышленность России. - № 1 (29). - 2003. - С. 18-24.
  2. Никола Тесла. Рассекреченная история. Серия в 14 книгах. -М., Изд-во «Эксмо»: Яуза, 2010. - 256 с.
  3. Ставров О.А. Перспективы создания эффективного электромобиля. - М.: Наука, 1984. - 88 с.
  4. Электротехнический справочник: В 4 т. / Под общ. ред. В. Г. Герасимова, А. Ф. Дьякова, А. И. Попова. - 9-е, стереотипное. - М.: Издательство МЭИ, 2004. - Т. 4. Использование электрической энергии. - С. 526. - 696 с.

Никола Тесла – легендарный создатель в области электро- и радиотехнике, создатель переменного тока. В его честь, в 2003 году, была открыта компания по производству автомобилей, которые ездят на электричестве.

Технические характеристики

Основателем автомобильной компании Tesla стали Илон Маск, Джей Би Штробель и Марк Тарпеннинг. Прежде всего, основателям компании необходимо было разработать мощный электродвигатель и батареи, чтобы привести в работу ведущие колёса. Для создания первого прототипа автомобиля потребовалось почти 3 года.

Первый электрокар Tesla Roadster был презентован 19 июля 2006 года. Презентация автомобиля прошла успешно, но спортивный электрический автомобиль имел ряд недостатков. 2009 года была презентована 5-дверная Model S, двигатели которой устанавливаются на транспортные средства по этот день с небольшими доработками.

Технические характеристики силового агрегата электромобиля Tesla:

Обслуживание и эксплуатация

Обслуживание силового агрегата начинается с диагностики работоспособности электромотора, который непосредственно подключён к электронному блоку управления автомобилем. Если обнаружены ошибки, то мастера находят непосредственную причину. Сервисное и техническое обслуживание двигателей Тесла стоит проводить на сертифицированной станции, поскольку только у них имеется необходимое оборудование для всех ремонтно-диагностических и восстановительных операций.

Неисправности и ремонт

Ремонт, как и обслуживание, стоит проводить на специальном оборудовании у специалистов. Основными и частыми неисправностями является быстрая потеря ресурса батареи. Первые модели Тесла имели слишком малый запас энергии, а поэтому была высока вероятность «застрять» на трассе.

Ещё один факт – неисправность в системе автопилота. Эта проблема стала причиной гибели американского гражданина Джошуа Браун в 2016 году. Расследование причин аварии показало, что автопилот не видит поперечно идущий транспорт. Данная неисправность на стадии усовершенствования.

Забавные факты

Чтобы не делал человек, другой человек способен это изменить и модернизировать. Так и с засекреченными автомобильными технологиями. Джейсон Хьюз (Jason Hughes) большой поклонник Tesla и электромобилей компании. Но ему нравится не только кататься на таких электромобилях, но и знать, как они работают. Джейсон - довольно известная личность в сообществе поклонников Tesla. К примеру, именно ему удалось извлечь из обновлённой прошивки автомобиля некоторые данные о новой модели электромобиля. Если точнее, речь идёт про обнаружение записи «P100D» в прошивке Tesla 7.1.

Но сейчас ему удалось гораздо большее. Он смог достать задний привод Tesla Model S, и научился им управлять. Откуда получен привод, Хьюз не говорит, но это не так уж и важно. Гораздо более важно то, что он смог получить полный контроль над всеми функциями этого узла.

Первым шагом, в этом непростом проекте, стала подача питания на привод с одновременным сниффингом CAN-шины на предмет обнаружения отдельных команд управления. На это ушло около 12 часов, но, в конце концов, мотор удалось заставить вращаться. Мастеру пришлось повозиться - мало того, что данные работы движка пришлось расшифровывать, но и для управления его работой Джейсон написал специальное ПО. На этом этапе речь шла только о том, чтобы заставить движок работать. На то, чтобы перехватить и расшифровать команды CAN, у него ушло ещё 3 часа.

После этого дело пошло уже легче - Хьюзу удалось найти полный пакет команд управления. К примеру, он смог подключить систему водяного охлаждения, и приводил её в действие во время работы привода (в определённом режиме работы система заявляла о скорости в 188 километров в час). Двигатель удалось ввести и в режим генерации энергии. Система рекуперации энергии, введённая инженерами Tesla, позволяет во время машины в качестве генератора. Сейчас Джеймс может по своему усмотрению устанавливать различные параметры питания движка и генерации им энергии.

В итоге ему удалось даже создать собственную плату управления задним приводом. Интересно, что мотор был извлечён из автомобиля с прошивкой 7.1, которая включала ряд схем безопасности, предотвращающих вмешательство в нормальную работу системы. Но Джейсону удалось обойти эти препятствия.

Наиболее сложной задачей было заставить движок слушаться команд самодельного контроллера, но и это, оказалось, по силам умельцу. По его словам, он собрал свою плату буквально из мусора. Для того чтобы обезопасить движок, мастер использовал относительно низкий ампераж. Это не первый случай «хака» движка Tesla Model S. 11 месяцами ранее другому умельцу, Джеку Рикарду, также удалось заставить электромотор слушаться команд контроллера собственного изобретения. Но здесь речь идёт об использовании лишь двигателя и контроллера.

Стоит помнить, что обновлённая модель электромобиля Tesla Model S поставляется с 70 кВт·ч аккумулятором, который на самом деле имеет ёмкость в 75 кВт·ч, но часть батареи, если так можно выразиться, залочена программно. Компания продавала эти авто в течение месяца, и только сейчас об этом стало известно. Как же владелец такой машины может получить 5 дополнительных кВт·ч? Очень просто - доплатить $3250 для «разлочки».

Процесс апгрейда полностью программный, и производится «по воздуху». Работникам компании физический доступ к авто нужен только для того, чтобы сменить бейдж Tesla Model S 70 на бейдж Tesla Model S 75 (делается в сервисном центре). Идея компании проста, хотя и немного странная - позволить покупателям Tesla Model S 70 платить меньше на $3000, чем покупателям Tesla Model S 75. Причём «железо» у обеих моделей абсолютно одинаковое. В компании рассудили, что не всем нужна увеличенная ёмкость батареи, и тем, кому она не нужна, разрешили платить меньше. Разница в расстоянии, которое могут проехать обе модели в автономном режиме - около 35 км.

Кстати, не так давно для той же Tesla Model S было выпущено специальное программное обеспечение, позволяющее водителю управлять машиной при помощи «силы мысли». Мысленными командами можно заставить автомобиль проехать немного вперёд или же включить заднюю передачу. При этом считывание сигналов электрической деятельности мозга производится при помощи специального шлема. Сигналы анализируются специальной программой, после чего они передаются в бортовой компьютер для управления транспортным средством.

Вывод

Двигатель Тесла – представитель электрических автомобильных двигателей, который является . Обслуживание и ремонт проводятся только в условиях автосервиса. Это поможет избежать неприятностей.

В схеме электромобиля Теслы то, что принимают за приемник (черный ящик и два стержня за спиной у водителя) очевидно, является передатчиком. Используется два излучателя. Для получения трех нот. Тесла любил число 3. Кроме самого главного электродвигателя на автомобиле должен был присутствовать аккумулятор и стартер. При включении стартера вместе с Эл. Двигателем последний превращается в генератор, который питает два пульсирующих излучателя. ВЧ колебания излучателей поддерживают движение электродвигателя. Электродвигатель, таким образом, может одновременно являться и источником вращения колес автомобиля и генератором, питающим ВЧ излучатели.


Традиционное толкование рассматривает два стержня в качестве приемников каких-то космических лучей. Потом к ним цепляют какие то усилители (без питания!) чтобы они снабжали электричеством ЭЛ. Двигатель.
На самом деле ЭЛ. Двигатель не потребляет никакого тока.
В 20-е годы Маркони демонстрировал Муссолини и его жене как он на расстоянии несколько сотен метров может остановить движение транспортной колонны с помощью ВЧ ЭМ излучения.
Тот же самый эффект может быть использован с обратным знаком по отношению к электродвигателям.

Остановка вызывается диссонирующим излучением. Движение вызывается через резонирующее изучение. Очевидно, что эффект показанный Маркони работает с бензиновыми двигателями, поскольку у них есть электрогенератор, питающий свечи зажигания. Дизельные двигатели к подобному воздействию гораздо менее восприимчивы.


Движущей силой электродвигателя Теслы являлся не электрический ток, какого бы происхождения он не был, космического или какого-то еще, а резонансные высокочастотные колебания в среде, в эфире, вызывающие в электродвигателе движущую силу. Не на атомарном уровне, как у Дж. Кили а на уровне колебательного контура Эл. Двигателя.


Таким образом, можно изобразить следующую концептуальную схему работы Эл. Двигателя на электромобиле Теслы.


Аккумулятор запускает стартер. Эл. Двигатель приходит в движение и начинает работать как Эл. Генератор. Питание поступает на два независимых генератора высокочастотных ЭМ импульсов, настроенных по рассчитываемой формуле в резонанс с колебательным контуром Эл. Двигателя. Независимые колебания ЭМ генераторов настроены в гармоничном аккорде. Через несколько секунд после запуска стартер отключается, аккумулятор отключается. Высокочастотные ЭМ импульсы 2х генераторов развивают мощность в ЭЛ двигателе, который поет в резонансе с ВЧ генераторами, движет автомобиль, сам работает как электрогенератор, питающий ВЧ излучатели и никакого тока не потребляет.


Принцип работы электроавтомобиля Теслы

Согласно закону причинно следственных связей, если второе вытекает из первого, то и первое может вытекать из второго. В физике это принцип обратимости всех процессов.
Например, известны явления возникновения поляризации диэлектрика под действием механических напряжений. Это называется "прямой пьезоэлектрический эффект". В тоже время характерно и обратное - возникновения механических деформаций под действием электрического поля - "обратный пьезоэлектрический эффект". Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах - пьезоэлектриках.
Другой пример с термоэлементами. Если места контактов термоэлемента поддерживать при различных температурах, то в цепи возникает эдс (термоэдс), а при замыкании цепи - электрический ток. Если же через термоэлемент пропускать ток от постороннего источника, то на одном из его контактов происходит поглощение, а на другом - выделение тепла.


При обычной организации процесса, всякий электродвигатель потребляет ток и производит колебательные возмущения в окружающей среде, в эфире. То что называется индуктивность. Эти неизбежные возмущения среды обычно никак не используются. На них принято не обращать внимания, пока они никому не мешают. Между тем, следует понимать, что затраты энергии, питание, которое необходимо электродвигателю, как раз и вызываются тем, что электродвигатель работает не в абсолютной пустоте, а в среде и что на создание колебательных возмущений в среде как раз и расходуется подавляющая часть энергии питающей электродвигатель. Тех самых колебательных возмущений, на которые принято закрывать глаза.


Здесь заключается самый важный момент. Его необходимо подчеркнуть. Потери энергии при работе всякого электродвигателя связаны не с трением ротора, не с сопротивлением воздуха, а с потерями индуктивности, т.е. с "вязкостью" эфира по отношению к вращающимся электромагнитным частям двигателя. Неподвижный (относительно) эфир раскручивается электродвигателем, в нем возникают концентрические волны расходящиеся во все стороны. При работе электродвигателя эти потери составляют более 90% от всех его потерь.

СХЕМА ПОТЕРЬ ЭНЕРГИИ В ОБЫЧНОМ ЭЛЕКТРОДВИГАТЕЛЕ

Что сделал Тесла. Тесла понял, что электродвигатель, который неизбежно "гонит волны" в эфире не самое оптимальное устройство для этой цели. Понятно, что колебания в 30 Гц (1800 об./мин.) не сильно гармонируют с частотами, которые легко поддерживаются средой. 30 Гц. слишком низкая частота, для получения резонанса в такой среде как эфир.


Ввиду понимания Теслой изложенного, решение не представляло технической сложности. Он буквально на коленях, в номере гостиницы, собрал ВЧ генератор, устройство, которое "поднимает волну" в пространстве где работает электродвигатель. (Генератор ВЧ, а не низкочастотный просто, потому что низкочастотный не позволил бы создать стоячую волну через резонанс. Так как рассеивание волн опережало бы импульсы генератора). Частота ВЧ генератора должна была быть в кратном резонансе с частотой электродвигателя. Например если частота двигателя 30 Гц, то частота генератора может быть 30 МГц. Таким образом ВЧ генератор является как бы посредником между средой и двигателем.


ВЧ генератору, который в резонансе с эфиром, для нормальной работы требуется минимум энергии. Той энергии, которой его снабжает электродвигатель ему хватает с избытком. Электродвигатель же использует не энергию ВЧ генератора, а энергию резонансно накачанной стоячей волны в Эфире.

Естественно, что такой электродвигатель будет еще и охлаждаться. Двигатель требующий питания нагревается от сопротивления среды, которую ему приходится раскручивать. Здесь же среду раскручивать не надо. Наоборот сама среда раскручивает двигаель, из которого, как следствие, истекает ток. Никакого колдовства и мистики в этом нет. Всего лишь разуманя организация процесса.


Фаза всасывания и рассеивания. На фазе всасывания конденсаторы заряжаются. На фазе рассевания отдают в цепь, компенсируя потери. Таким образом, КПД не 90% а возможно 99%. Возможно ли увеличив количество конденсаторов получить больше чем 99%? По видимому нет. Мы не можем собрать на фазе рассеивания больше, чем двигатель отдает. Поэтому дело не в количестве емкостей, а в расчете оптимальной емкости.

Пьезоэлектричество (от греч. piezo - давлю и электричество), явления возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект) и возникновения механических деформаций под действием электрического поля (обратный пьезоэлектрический эффект). Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах - пьезоэлектриках.


Кварцевый генератор, маломощный генератор электрических колебаний высокой частоты, в котором роль резонансного контура играет кварцевый резонатор - пластинка, кольцо или брусок, вырезанные определённым образом из кристалла кварца. При деформации кварцевой пластинки на её поверхностях появляются электрические заряды, величина и знак которых зависят от величины и направления деформации. В свою очередь, появление на поверхности пластины электрических зарядов вызывает её механическую деформацию (см. Пьезоэлектричество). В результате этого механические колебания кварцевой пластины сопровождаются синхронными с ними колебаниями электрического заряда на её поверхности и наоборот. К. г. характеризуются высокой стабильностью частоты генерируемых колебаний: Dn/n, где Dn - отклонение (уход) частоты от её номинального значения n составляет для небольших промежутков времени 10-3-10-5%, что обусловлено высокой добротностью (104-105) кварцевого резонатора (добротность обычного колебательного контура ~ 102).


Частота колебаний К. г. (от нескольких кГц до нескольких десятков МГц) зависит от размеров кварцевого резонатора, упругости и пьезоэлектрической постоянных кварца, а также от того, как вырезан резонатор из кристалла. Например, для Х - среза кристалла кварца частота (в МГц) n=2,86/d, где d - толщина пластинки в мм.


Мощность К. г. не превышает нескольких десятков Вт. При более высокой мощности кварцевый резонатор разрушается под влиянием возникающих в нём механических напряжений.


К. г. с последующим преобразованием частоты колебаний (делением или умножением частоты) используются для измерения времени (кварцевые часы, квантовые часы) и в качестве стандартов частоты.

Естественная Анизотропия . - наиболее характерная особенность кристаллов. Именно потому, что скорости роста кристаллов в разных направлениях различны, кристаллы вырастают в виде правильных многогранников: шестиугольные призмы кварца, кубики каменной соли, восьмиугольные кристаллы алмаза, разнообразные, но всегда шестиугольные звёздочки снежинок Резонанс (франц. resonance, от лат. resono - звучу в ответ, откликаюсь), явление резкого возрастания амплитуды вынужденных колебаний в какой-либо колебательной системе, наступающее при приближении частоты периодического внешнего воздействия к некоторым значениям, определяемым свойствами самой системы. В простейших случаях Р. наступает при приближении частоты внешнего воздействия к одной из тех частот, с которыми происходят собственные колебания в системе, возникающие в результате начального толчка. Характер явления Р. существенно зависит от свойств колебательной системы.


Наиболее просто Р. протекает в тех случаях, когда периодическому воздействию подвергается система с параметрами, не зависящими от состояния самой системы (т. н. линейные системы). Типичные черты Р. можно выяснить, рассматривая случай гармонического воздействия на систему с одной степенью свободы: например, на массу m, подвешенную на пружине, находящуюся под действием гармонической силы F = F0 coswt, или электрическую цепь, состоящую из последовательно соединённых индуктивности L, ёмкости С, сопротивления R и источника электродвижущей силы Е, меняющейся по гармоническому закону. Для определенности в дальнейшем рассматривается первая из этих моделей, но всё сказанное ниже можно распространить и на вторую модель. Примем, что пружина подчиняется закону Гука (это предположение необходимо, чтобы система была линейна), т. е., что сила, действующая со стороны пружины на массу m, равна kx, где х - смещение массы от положения равновесия, k - коэффициент упругости (сила тяжести для простоты не принимается во внимание). Далее, пусть при движении масса испытывает со стороны окружающей среды сопротивление, пропорциональное её скорости и коэффициенту трения b, т. е. равное k (это необходимо, чтобы система оставалась линейной). Тогда уравнение движения массы m при наличии гармонической внешней силы F имеет вид: Если на линейную систему действует периодическое, но не гармоническое внешнее воздействие, то Р. наступит только тогда, когда во внешнем воздействии содержатся гармонические составляющие с частотой, близкой к собственной частоте системы. При этом для каждой отдельной составляющей явление будет протекать так же, как рассмотрено выше. А если этих гармонических составляющих с частотами, близкими к собственной частоте системы, будет несколько, то каждая из них будет вызывать резонансные явления, и общий эффект, согласно суперпозиции принципу, будет равен сумме эффектов от отдельных гармонических воздействий.


Если же во внешнем воздействии не содержится гармонических составляющих с частотами, близкими к собственной частоте системы, то Р. вообще не наступает. Т. о., линейная система отзывается, «резонирует» только на гармонические внешние воздействия. В электрических колебательных системах, состоящих из последовательно соединённых ёмкости С и индуктивности L, Р. состоит в том, что при приближении частот внешней эдс к собственной частоте колебательной системы, амплитуды эдс на катушке и напряжения на конденсаторе порознь оказываются гораздо больше амплитуды эдс, создаваемой источником, однако они равны по величине и противоположны по фазе. В случае воздействия гармонической эдс на цепь, состоящую из параллельно включенных ёмкости и индуктивности, имеет место особый случай Р. (антирезонанс). При приближении частоты внешней эдс к собственной частоте контура LC происходит не возрастание амплитуды вынужденных колебаний в контуре, а наоборот, резкое уменьшение амплитуды силы тока во внешней цепи, питающей контур. В электротехнике это явление называется Р. токов или параллельным Р. Это явление объясняется тем, что при частоте внешнего воздействия, близкой к собственной частоте контура, реактивные сопротивления обеих параллельных ветвей (ёмкостной и индуктивной) оказываются одинаковыми по величине и поэтому в обеих ветвях контура текут токи примерно одинаковой амплитуды, но почти противоположные по фазе. Вследствие этого амплитуда тока во внешней цепи (равного алгебраической сумме токов в отдельных ветвях) оказывается гораздо меньшей, чем амплитуды тока в отдельных ветвях, которые при параллельном Р. достигают наибольшей величины. Параллельный Р., так же как и последовательный Р., выражается тем резче, чем меньше активное сопротивление ветвей контура Р. Последовательный и параллельный Р. называются соответственно Р. напряжений и Р. токов. В линейной системе с двумя степенями свободы, в частности в двух связанных системах (например, в двух связанных электрических контурах), явление Р. сохраняет указанные выше основные черты. Однако, т. к. в системе с двумя степенями свободы собственные колебания могут происходить с двумя различными частотами (т. н. нормальные частоты, см. Нормальные колебания), то Р. наступает при совпадении частоты гармонического внешнего воздействия как с одной, так и с другой нормальной частотой системы. Поэтому, если нормальные частоты системы не очень близки друг к другу, то при плавном изменении частоты внешнего воздействия наблюдаются два максимума амплитуды вынужденных колебаний. Но если нормальные частоты системы близки друг к другу и затухание в системе достаточно велико, так что Р. на каждой из нормальных частот «тупой», то может случиться, что оба максимума сольются. В этом случае кривая Р. для системы с двумя степенями свободы теряет свой «двугорбый» характер и по внешнему виду лишь незначительно отличается от кривой Р. для линейного контура с одной степенью свободы.


Т. о., в системе с двумя степенями свободы форма кривой Р. зависит не только от затухания контура (как в случае системы с одной степенью свободы), но и от степени связи между контурами. Р. весьма часто наблюдается в природе и играет огромную роль в технике. Большинство сооружений и машин способны совершать собственные колебания, поэтому периодические внешние воздействия могут вызвать их Р.; например Р. моста под действием периодических толчков при прохождении поезда по стыкам рельсов, Р. фундамента сооружения или самой машины под действием не вполне уравновешенных вращающихся частей машин и т. д. Известны случаи, когда целые корабли входили в Р. при определённых числах оборотов гребного вала.


Во всех случаях Р. приводит к резкому увеличению амплитуды вынужденных колебаний всей конструкции и может привести даже к разрушению сооружения. Это вредная роль Р., и для устранения его подбирают свойства системы так, чтобы её нормальные частоты были далеки от возможных частот внешнего воздействия, либо используют в том или ином виде явление антирезонанса (применяют т. н. поглотители колебаний, или успокоители).


В др. случаях Р. играет положительную роль, например: в радиотехнике Р. - почти единственный метод, позволяющий отделить сигналы одной (нужной) радиостанции от сигналов всех остальных (мешающих) станций. Нужно подобрать емкость так, чтобы пошло смещение по фазе. Противофаза это аспект оппозиции. Совпадение - это аспект соединения. Соединения дает бросок, но и равное падение. Возможно, что максимальное содействие получается, когда работает аспект тригона. Это смещение по фазе не на 180%, а на 120%. Емкость должна быть рассчитана так, чтобы она давала смещение по фазе в 120%, возможно, что это даже лучше, чем соединение. Может именно поэтому, Тесла любил число 3. Потому что использовал тригональный резонанс. Тригональный резонанс, в отличие от резонанса соединения должен быть более мягкий (не деструктивный) и более стабильный, более живучий. Тригональный резонанс должен держать мощность и не идти в разнос. ВЧ резонанс создает накачку стоячей волны вокруг передатчика. Поддержание резонанса в эфире не требует большой мощности. В тоже время образовавшаяся стоячая волна может обладать огромной мощностью для совершения полезной работы. Этой мощности хватит и на поддержание работы генератора и на поддержание гораздо более мощных устройств