Усилие затяжки болтов шатунов.  Шатуны. Подшипники скольжения, их виды и роль в работе ДВС


Шатун служит связующим звеном между поршнем и кривошипом коленчатого вала. Так как поршень совершает прямолинейное возвратно-поступательное движение, а коленчатый вал — вращательное, то шатун совершает сложное движение и подвергается действию знакопеременных, носящих ударный характер нагрузок от газовых сил и сил инерции.

Неизбежно, что раны, водоросли, а также множество великих существ оседают на дне. Для предотвращения медленной работы и продолжительной коррозии рассмотрите следующие способы очистки нижней поверхности. Поскольку большинство гоночных двигателей теперь имеют четырехтактный многоцилиндровый сорт, подавляющее большинство шатунов, спроектированных и изготовленных для гонок, имеют раздельный тип. Это означает наличие надежного средства удерживания двух частей стержня вместе с достаточной предварительной нагрузкой, и об этом заботятся резьбовые крепежные детали.

Шатуны автомобильных массовых двигателей изготовляют мето-дом горячей штамповки из среднеуглеродистых сталей марок: 40, 45, марганцевистой 45Г2, а в особенно напряженных двигателях из хромо-никеле-вой 40ХН, хромо-молибдено-вой улучшенной ЗОХМА и дру-гих легированных качествен-ных сталей.

Общий вид шатуна в сборе с поршнем и элементы его конструкции показаны на рис. 1. Основными элемен-тами шатуна являются: стер-жень 4, верхняя 14 и ниж-няя 8 головки. В комплект шатуна входят также: под-шипниковая втулка 13 верх-ней головки, вкладыши 12 нижней головки, шатунные болты 7 с гайками 11 и шплин-тами 10.

Первый и наиболее распространенный метод - использовать болт. Второй - установить шпильку, как правило, в стержень, и обеспечить нагрузку, затянув гайку. Болт часто является предпочтительным из-за более низкого количества деталей и более низкой стоимости. Головка болта часто физически меньше по диаметру и глубине, хотя использование болта с очень малой высотой головки может привести к возникновению собственных проблем с точки зрения повышенной концентрации напряжений и отсутствия сопротивления округлению головы при затягивании или разборке.

Рис.1.Шатунно-поршневаягруппа в сборе с гильзой цилиндра; элементы конструкции шатуна:

1 — поршень; 2 — гильза цилиндра; 3 — уплотнительные резиновые кольца; 4 — стер-жень шатуна; 5 — запорное кольцо; б — порш-невой палец; 7 — шатунный болт; 8 — нижняя головка шатуна; 9— крышка нижней головки шатуна; 10 — шплинт; 11 — гайка шатунного болта; 12 — вкладыши нижней головки шату-на; 13 — втулка верхней головки шатуна; 14 — верхняяголовкашатуна

Если болт спроектирован с разумными пропорциями, можно спросить, почему кто-то может захотеть использовать сочетание шпилек и гайки. Однако есть веские причины, по которым некоторые инженеры могут использовать шпильки и гайку, а не болт. Если двигатель, как ожидается, будет перестроен, и вам необходимо повторно использовать шатуны, вы можете минимизировать повреждение внутренних резьб в стержне, оставив крепежную деталь мужского пола на постоянной основе. Это соображение для титановых стержней, чьи потоки легче повреждаются, чем их стальные коллеги.

Стержень шатуна, подвер-женный продольному изгибу, чаще всего имеет двутавровое сечение, но применяют иногда крестообразные, круглые, трубчатые и Другие профили (рис. 2). Наиболее рациональными являются двутавровые стержни, обладающие большой жесткостью при малом весе. Крестообразные профили нуждаются в более развитых головках шатуна, что приводит к переутяжелению его. Круглые профили отличаются простой геометрией, но требуют повышенного качества механической обработки, так как наличие у них следов обработки приводит к увеличению местной концентра-ции напряжений и возможной поломке шатуна.

Комбинация «шпилька и гайка» также позволяет полностью отказаться от внутренней резьбы в стержне, тем самым устраняя возможное повреждение нити, а также снимая концентрацию напряжения, связанную с ней. Еще одна причина использования шпильки и гайки заключается в том, что поле напряжений в крепеже отличается от поля в болте. Гайка и шпилька могут быть более гибкими, чем болт, особенно если выбран гайки с относительно низким модулем. Это может привести к уменьшению нагрузки на изгиб. Гибкость в отношении геометрии и модуля гайки означает, что концентрация напряжений в первой резьбе в гайке может быть минимизирована.

Для массового автомобильного производства удобными и наибо-лее приемлемыми являются стержни двутаврового сечения. Пло-щадь поперечного сечения стержня обычно имеет переменную величину, причем минимальное сечение находится у верхней голов-ки 14, а максимальное — у нижней головки 8 (см. рис. 1). Это обеспечивает необходимую плавность перехода от стержня к ниж-ней головке и способствует повышению общей жесткости шатуна. С этой же целью и для уменьшения габаритов и веса шатунов

В случае использования мужского крепежа с гайкой с более низким модулем концентрация напряжений уменьшается по мере того, как охватывающие нитки гибки больше, тем самым приводя больше к использованию внутренних резьб и улучшая распределение нагрузки по длине гайки.

Из чего делают шатун?

Шпильки также могут включать диаметры расположения, исключая необходимость обеспечения отдельных штифтов или зубчатых штифтов. В то время как те же самые функции могут быть добавлены к болту, это часто бывает не так, поскольку любая изменчивость помех может добавить дополнительное трение в процедуру затягивания болтов. В то время как крепежные болты чаще всего предварительно загружаются с помощью регулировки натяжения, повышенные требования к крутящему моменту для преодоления трения на границе между диаметром вращающегося положения и статическим стержнем увеличивают напряжение сдвига во время затягивания.


Рис. 2. Профили стержня шатуна: а) двутавровый; б) крестообразный; в) трубчатый;г) круглый

в быстроходных двигателях автомобильного типа обе головки, как правило, отковываются за одно целое со стержнем.

Верхняя головка обычно имеет форму, близкую к цилиндриче-ской, но особенности ее конструкции в каждом конкретном случае

Вы заметите, что наша конструкция шатунов сильно отличается от других изготовителей, отчасти благодаря нашей конструкции без напряжения. Необходимо принять определенные меры предосторожности при получении ваших стержней, чтобы обеспечить бесперебойную работу. В комплекте с каждой покупкой вы получите инструкцию, которая должна соблюдаться полностью.

Значение крутящего момента будет определяться размером головки крепления. В приведенном ниже списке приведены соответствующие характеристики крутящего момента. После получения ваших шатунов стержни должны быть полностью разобраны, вымыты и высушены перед сборкой в ​​двигателе. Крайне важно, чтобы зубцы на шатуне и стержневом стержне оставались свободными от масла, грязи и мусора. Соблюдайте особую осторожность при работе с крышкой штока и корпусом стержня отдельно, так как зубцы должны оставаться неповрежденными для правильной установки и сборки.


Рис. 3. Верхняя головка шатуна

выбираются в зависимости от методов фиксации поршневого пальца и его смазки. Если поршневой палец закрепляется в поршневой головке шатуна, то ее делают с разрезом, как показано на рис. 3, а. Под действием стяжного болта стенки головки несколько деформируются и обеспечивают глухую затяжку поршневого паль-ца. Головка при этом не работает на износ и выполняется с относи-тельно небольшой длиной, равной примерно ширине наружной полки стержня шатуна. С точки зрения выполнения монтажно-демонтажных работ предпочтительнее боковые разрезы, но использование их приводит к определенному увели-чению размеров и веса головкиу Верхние головки с креплением в них поршневых пальцев применялись на шатунах старых моделей рядных двигателей ЗИЛ, например, на 5 и 101 моделях.

Крышка стержня и корпус стержня являются сопряженными парами и не могут быть взаимозаменяемы друг с другом. После чистки и сушки и установки в двигатель смажьте резьбу каждого стержневого болта моторным маслом 50 Вт и затяните, пока головка каждой застежки не контактирует с шайбой шайбы в колпачке. Использование метода ступенчатого крутящего момента и использования смазочных материалов, отличных от моторного масла 50 Вт, приведет к неправильному растяжению крепежных элементов. Использование растягивающего датчика можно использовать для проверки правильного натяжения стержневого болта, но не обязательно для правильной установки.

При других методах фиксации поршневых пальцев в верхнюю головку шатуна в качестве подшипника запрессовывают втулки из оловянистой бронзы с толщиной стенок от 0,8 до 2,5 мм (см. рис. 3, б, в, г). Тонкостенные втулки изготовляют свертными из листовой бронзы и обрабатывают под заданный размер поршне-вого пальца после запрессовки в головку шатуна. Свертные втулки применяют на всех двигателях автомобилей ГАЗ, ЗИЛ-130, МЗМА и др.

Не оставляйте крепежные детали затянутыми в течение более 6 месяцев, если шатуны будут сидеть в коробке на полке или установлены в двигателе, если двигатель будет сидеть без использования. Хорошей практикой является устранение всего крутящего момента и, следовательно, натяжение и нагрузка от крепежных элементов во избежание искажения ствола скважины и избежания чрезмерного растяжения крепежных элементов выше предела текучести.

Мы не видим преимуществ для увеличения или уменьшения разрешений, выходящих за рамки рекомендаций. Если мы сможем ответить на любые вопросы, пожалуйста, не стесняйтесь. Соединительные болты нижнего конца ходовой части держат две половинки нижнего концевого подшипника вместе. Эти болты подвергаются сложному характеру напряжения следующим образом.

Втулки верхней головки шатунов смазывают разбрызгиванием или под давлением. В автомобильных двигателях широкое распро-странение получила смазка разбрызгиванием. Капельки масла при такой простейшей системе смазки попадают в головку через одно или несколько больших с широкими фасками на входе масло-улавливающих отверстий (см. рис. 3, б) или через глубокую прорезь, сделанную фрезой со стороны, противоположной стержню. Подачу масла под давлением применяют только в двигателях, рабо-тающих с повышенной нагрузкой на поршневые пальцы. Масло подводится из общей системы смазки через канал, просверленный в стержне шатуна (см. рис. 3, б), или по специальной трубке, уста-навливаемой на стержне шатуна. Смазка под давлением применяется в двух- и четырехтактных дизелях ЯМЗ.

Напряжение растяжения: затягивание гаек растягивает болты и подвергает их растягивающему напряжению, что помогает удерживать два компонента вместе при сжатии под давлением. Колебание растягивающего напряжения: напряжение растяжения, установленное в болте при затягивании, имеет более высокую степень, чтобы уменьшить колебания напряжения в современных высокомотивированных двигателях.

В 4-тактных двигателях в конце такта выхлопа инерционная нагрузка действует вверх. В результате поршень имеет тенденцию вылетать. Поэтому в подшипниках происходит мгновенное изменение нагрузки. В этот период нагрузка на верхнюю половину основного подшипника, нижнюю половину нижнего концевого подшипника и верхнюю половину верхнего торцевого подшипника, которая просто противоположна нормальному состоянию нагрузки. Это изменение нагрузки продолжается в каждом цикле.

Двухтактные дизели ЯМЗ, работающие со струйным охлажде-нием днища поршней, имеют на верхней головке шатуна специаль-ные форсунки для подачи и распыливания масла (см. рис. 3, г). Малая головка шатуна снабжается здесь двумя толстостенными литыми бронзовыми втулками, между которыми образуется коль-цевой канал для подвода масла к форсунке-распылителю из канала в стержне шатуна. Для более равномерного распределения смазоч-ного масла на поверхностях трения втулок нарезаются спираль-ные канавки, а дозирование масла осуществляют с помощью калиб-рованного отверстия в пробочке 5, которую запрессовывают в канал стержня шатуна, как показано на рис. 4, б.

Это существенное влияние на нижние концевые болты, поскольку весь шатун находится под напряжением на этапе разворота нагрузки. Поэтому нижний концевой болт подвергается дополнительному растягивающему напряжению в конце такта выпуска, что приводит к сильным колебаниям напряжения во время цикла.

Сдвиговое усилие: две половины нижнего конца шатуна имеют тенденцию к разрыву. Это приводит к напряжению сдвига в болте, удерживая две части вместе. Изгибное напряжение: изгибное напряжение флуктуирующего характера также имеет место, в то время как нижний конец искажается. Во время хода электропитания болт изгибается наружу, а во время хода выхлопа болт стремится согнуть внутрь.

Нижние головки шатунов двигателей автомобильного и трак-торного типов обычно делают разъемными, с упрочняющими прили-вами и ребрами жесткости. Типичная конструкция разъемной голов-ки показана на рис. 1. Основная ее половина откована совместно со стержнем 4, а отъемная половина 9, называемая крышкой ниж-ней головки, или просто крышкой шатуна, скрепляется с основной двумя шатунными болтами 7. Иногда крышка крепится четырьмя и даже шестью болтами или шпильками. Отверстие в большой головке шатуна обрабатывают в собранном состоянии с крышкой (см. рис. 4), поэтому ее нельзя переставлять на другой шатун или изменять принятое положение на 180° относительно шатуна, с которым она была спарена до расточки. Чтобы предотвратить возможную путаницу на основной половине головки и на крышке, у плоскости их разъема выбивают порядковые номера, соответ-ствующие номеру цилиндра. При сборке кривошипно-шатунного механизма надо следить за правильной постановкой шатунов на ме-сто, строго руководствуясь инструкцией завода-изготовителя.

Минимизация сбоя штанговых болтов путем правильного обслуживания

Поскольку эти флуктуирующие напряжения приводят к усталостному разрушению нижних концевых болтов, и поэтому нижние концевые болты подвержены разрушению при нормальном состоянии в двигателях средней скорости. Следующее надлежащее техническое обслуживание может свести к минимуму отказ болта.

Правильная обработка поверхности: болт придает хорошую поверхность, чтобы уменьшить стресс-рейзеры. Поверхность и резьба болта не должны быть повреждены при грубом обращении. При затягивании дается высокая степень проникновения, чтобы поддерживать слабое колебание напряжения. Во время затягивания измерение удлинения важно для правильного растяжения. Всегда меняйте болты попарно.

  • Болты следует затягивать в соответствии с инструкциями изготовителя.
  • Затяжка должна выполняться поэтапно.
  • Нельзя вытолкнуть болт молотком в направлении затягивания.
  • Поверхности посадки гайки болтовой головки следует очистить.
Нанесите надлежащую смазку на голову во время затягивания в соответствии с инструкциями производителя.


Рис. 4. Нижняя головка шатуна:

а) с прямым разъемом; б) с косым разъемом; 1 — половина головки, отковы-ваемая совместно со стержнем 7; 2 — крышка головки; 3 — болт шатуна; 4 — треугольные шлицы; 5 — втулочка с калиброванным отверстием; 6 — канал в стержне для подвода масла к поршневому пальцу

Если используемая смазка имеет более низкую вязкость, чем рекомендовано, а гайки затянуты до рекомендуемого момента, болты будут, по сути, немного ослаблены. С другой стороны, использование смазки с более высокой вязкостью вызывает дополнительные изгибные напряжения.

Проверьте болт на наличие трещин, повреждений и т.д. Звуковое тестирование молотком для выявления внутренних дефектов и трещин. Запирание гаек должно быть тщательно проверено. Во время осмотра установлено, что фиксация болта неповреждена, но болт на самом деле свободен.

Для двигателей автомобильного типа с характерной совместной отливкой цилиндра и картера в одном блоке и Ессбще при наличии блок-картерной отливки остова двигателя желательно, чтсбы боль-шая головка шатуна свободно проходила через цилиндры и не за-трудняла выполнение монтажно-демонтажных работ. Когда габа-риты этой головки развиты так, что она не проходит в отверстие цилиндровой гильзы 2 (см. рис. 1), то комплект шатуна в сборе с поршнем 1 (см. рис. 1) можно свободно установить на место только при снятом коленчатом вале, что создает крайние неудобства при ремонте ( Иногда поршень без уплотнительных колец, но собранный с шатуном удается просунуть за смонтированный коленчатый вал и вставить его в цилиндр со стороны картера (или, наоборот, вынуть из цилиндра через картер), а потом завершать сборку поршневой группы и шатуна, затрачивая на все это непроизводительно много времени) . Поэтому развитые нижние головки выполняют с косым разъемом, как сделано это в дизеле ЯМЗ-236 (см. рис. 4, б).

Блокировка затвора неповрежденна указывает на то, что гайка смещена из положения затяжки. Поскольку болт ослаблен, это указывает на то, что болт был постоянно деформирован. В 4-тактных двигателях изменение нагрузки в конце хода выхлопа оказывает значительное влияние на болты шатуна. На этом этапе болт подвергается дополнительному напряжению, потому что весь шатун находится под напряжением. Если для болта требуется более высокое натяжение, чем рекомендуется, то дополнительное растягивающее напряжение плюс предварительное напряжение может быть достаточно высоким, чтобы привести болт к пластической деформации. Болт растянулся так сильно, что он теряет свою эластичность до своей первоначальной формы. Это происходит в основном из-за чрезмерного затягивания болта. . Говорят, что двигатель настолько же надежный, как и его самое слабое звено.

Плоскость косого разъема головки обычно располагают под углом 45° к продольной оси стержня шатуна (в отдельных случаях возможен угол разъема 30 или 60°). Габариты таких головок после удаления крышки резко уменьшаются. При косом разъеме крышки чаще всего крепятся болтами, которые ввертываются в основную

половину головки. Реже для этой цели применяют шпильки. В отли-чие от нормальных разъемов, выполняемых под углом 90° к оси стержня шатуна (см. рис. 4, а), косые разъемы головок (см. рис. 4, б) позволяют несколько разгружать шатунные болты от разрывающих усилий, а возникающие при этом боковые усилия воспринимаются буртиками крышки или треугольными шлицами, сделанными на стыкующихся поверхностях головки. У разъемов (нормальных или косых), а также под опорными плоскостями шатунных болтов и гаек стенки нижней головки обычно снабжают упрочняющими приливами и утолщениями.

Материалы, из которых изготавливаются шатуны

Соединительные стержни, которые соединяют поршни с кривошипом, могут быть прочным звеном или слабым звеном в зависимости от используемых стержней. В большинстве поздних модельных двигателей используются порошковые металлические стержни. Они недороги в производстве, требуют минимальной обработки для завершения и достаточны для уровней мощности запаса и нормального вождения.

Одним из недостатков порошковых металлических стержней является то, что колпачки стержня крекированы для отделения крышки от остальной части стержня. Это быстрый и простой способ изготовления шатунов большого объема, но это также означает, что стержни нельзя перестроить, если большой конец выходит из круга. Растрескивание крышки оставляет слегка нерегулярную сопрягаемую поверхность между крышкой стержня и стержнем. Крышка подходит только в одном направлении, потому что линия прохода уникальна для каждого стержня.

В головках автомобильных шатунов с нормальной плоскостью разъема в подавляющем большинстве случаев шатунные болты одновременно являются установочными, точно фиксирующими поло-жение крышки относительно шатуна. Такие болты и отверстия под них в головке обрабатывают с высокой чистотой и точностью, как установочные штифты или втулки. Шатунные болты или шпиль-ки являются исключительно ответственными деталями. Обрыв их связан с аварийными последствиями, поэтому они изготовляются из высококачественных легированных сталей с плавными перехо-дами между элементами конструкции и подвергаются термообра-ботке. Стержни болтов выполняются иногда с проточками в местах перехода к резьбовой части и около головок. Проточки делают без подрезов с диаметром, равным примерно внутреннему диаметру резьбы болта (см. рис. 1 и 4).

Шатунные болты и гайки к ним у ЗИЛ-130 и некоторых других автомобильных двигателей изготовляются из хромо-никелевой ста-ли марки 40ХН. Применяются для этих целей также стали 40Х, 35ХМА и аналогичные им материалы.

Чтобы предотвратить возможное проворачивание шатунных болтов при затягивании гаек, их головки делают с вертикальным срезом, а в зоне сопряжения кривошипной головки шатуна со стерж-нем выфрезеровывают площадки или углубления с вертикальным уступом, удерживающим болты от проворачивания (см. рис. 1 и 4). В тракторных и других двигателях шатунные болты фикси-руются иногда специальными штифтами. С целью уменьшения габаритов и веса головки шатунов болты размещают по возмож-ности ближе к отверстиям под вкладыши. Допускаются даже небольшие выемки в стенках вкладышей, предназначенные для прохода шатунных болтов. Затяжка шатунных болтов строго нор-мируется и контролируется с помощью специальных динамометри-ческих ключей. Так, в двигателях ЗМЗ-66, ЗМЗ-21 момент затяжки составляет 6,8—7,5 кГ·м (≈68—75 н-м), в двигателе ЗИЛ-130 — 7—8кГ·м (≈70—80 н-м), а в двигателях ЯМЗ — 16—18 кГ·м (≈160—180 н-м). После затяжки корончатые гайки тщательно шплинтуются, а обычные (без прорезей под шплинты) фиксируются каким-либо другим способом (специальными контргайками, отштам-пованными из тонкой листовой стали, замковыми шайбами и т. д.).

Чрезмерная затяжка шатунных болтов или шпилек недопустима, гак как может привести к опасной вытяжке у них резьбы.

Нижние головки шатунов автомобильных двигателей обычно снабжаются подшипниками скольжения, для которых применяют сплавы, обладающие высокими антифрикционными свойствами и необходимой механической стойкостью. Только в редких случаях применяют подшипники качения, причем наружными и внутрен-ними обоймами (кольцами) для их роликов служат сама головка шатуна и шейка вала. Головка в этих случаях делается неразъем-ной, а коленчатый вал — составным или разборным. Так как вместе с изношенным роликовым подшипником приходится иногда заменять весь шатунно-кривошипный узел, то широкое применение подшипники качения находят лишь в сравнительно дешевых двига-телях мотоциклетного типа.

Из антифрикционных подшипниковых сплавов в двигателях внутреннего сгорания чаще всего применяют баббиты на оловянной или свинцовой основах, алюминиевые высокооловянистые сплавы и свинцовистую бронзу. На оловянной основе в автомобильных двигателях применяют сплав баббит Б-83, содержащий 83% олова. Это качественный, но довольно дорогой подшипниковый сплав. Более дешевым является сплав на свинцовой основе СОС-6-6, содержащий по 5—6% сурьмы и олова, остальное — свинец. Его называют также малосурьмянистым сплавом. Он обладает хоро-шими антифрикционными и механическими свойствами, стоек против коррозии, отлично прирабатывается и по сравнению со спла-вом Б-83 способствует меньшему износу шеек коленчатого вала. Сплав СОС-6-6 применяется для большинства отечественных карбю-раторных двигателей (ЗИЛ, МЗМА и др.). В двигателях с повы-шенными нагрузками па шатунные подшипники применяют высокооловянистый алюминиевый сплав, содержащий 20% олова, 1% меди, остальное — алюминий. Такой сплав используется, напри-мер, для подшипников V -образных двигателей ЗМЗ-53, ЗМЗ-66 и др.

Для шатунных подшипников дизелей, работающих с особенно высокими нагрузками, применяют свинцовистую бронзу Бр.С-30, содержащую 30% свинца. Как подшипниковый материал, свинцо-вистая бронза обладает повышенными механическими свойствами, но сравнительно плохо прирабатывается и подвержена коррозии под воздействием кислотных соединений, накапливающихся в мас-ле. При использовании свинцовистой бронзы картерное масло должно содержать поэтому специальные присадки, предохраняю-щие подшипники от разрушения.

В старых моделях двигателей антифрикционный сплав зали-вали непосредственно по основному металлу головки, как говори-лось «по телу». Заливка по телу не оказывала заметного влияния на габариты и вес головки. Хорошо обеспечивала отвод тепла от шатунной шейки вала, но так как толщина слоя заливки состав-ляла более 1 мм, то в процессе работы вместе с износом сказывалась заметная усадка антифрикционного сплава, вследствие чего отно-сительно быстро увеличивались зазоры в подшипниках и возни-кали стуки. Чтобы устранить или предупредить стуки подшипни-ков, их периодически приходилось подтягивать, т. е. устранять излишне большие зазоры за счет уменьшения числа тонких латун-ных прокладок, которые с этой целью (около 5 штук) ставились в разъем нижней головки шатуна.

Метод заливки по телу в современных быстроходных транспорт-ных двигателях не применяется. Нижние головки их снабжаются сменными взаимозаменяемыми вкладышами, форма которых точно соответствует цилиндру, состоящему из двух половин (полуколец). Общий вид вкладышей показан на рис. 1. Два вкладыша 12, поставленные в головку, образуют ее подшипник. Вкладыши имеют стальную, реже бронзовую, основу, с нанесенным на пей слоем антифрикционного сплава. Различают вкладыши толстостен-ные и тонкостенные. Вкладыши несколько увеличивают габариты и вес нижней головки шатуна, особенно толстостенные, имеющие толщину стенок более 3—4 мм. Поэтому последние применяются только для сравнительно тихоходных двигателей.

Шатуны быстроходных автомобильных двигателей, как правило, снабжаются тонкостенными вкладышами, выполненными из сталь-ной ленты толщиной 1,5—2,0 мм, покрытой антифрикционным сплавом, слой которого составляет всего 0,2—0,4 мм. Такие двух-слойные вкладыши называются биметаллическими. Они применяют-ся на большинстве отечественных карбюраторных двигателей. В настоящее время получили распространение трехслойные так называемые триметаллические тонкостенные вкладыши, у которых на стальную ленту сначала наносится подслой, а потом уже анти-фрикционный сплав. Триметаллические вкладыши толщиной 2 мм применяются, например, для шатунов двигателя ЗИЛ-130. На сталь-ную ленту таких вкладышей наносится медно-никелевый подслой, покрытый малосурьмянистым сплавом СОС-6-6. Трехслойные вкла-дыши применяются также для шатунных подшипников дизелей. Слой свинцовистой бронзы, толщина которого обычно составляет 0 t 3—0,7 мм, сверху покрывают еще тонким слоем свинцово-оловянистого сплава, что улучшает прирабатываемость вкладышей и пре-дохраняет их от коррозии. Трехслойные вкладыши допускают большие удельные давления на подшипники, чем биметаллические.

Гнездам под вкладыши и самим вкладышам придают строго цилиндрическую форму, а поверхности их обрабатывают с высокой точностью и чистотой, обеспечивая полную взаимозаменяемость для данного двигателя, что значительно упрощает ремонт. Под-шипники с тонкостенными вкладышами не нуждаются в периоди-ческой подтяжке, так как имеют малую толщину антифрикционного слоя, не дающего усадки. Они ставятся без регулировочных про-кладок, а изношенные заменяются новым комплектом.

С целью получения надежного прилегания вкладышей и улучшения их контакта со стенками головки шатуна они изготовляются так, чтобы при затягивании шатунных болтов обеспечивался неболь-шой гарантированный натяг. От проворачивания тонкостенные вкладыши удерживаются фиксирующим усом, который отгибается у одной из кромок вкладыша. Фиксирующий ус входит в специаль-ную пазовую канавку, выфрезерованную в стенке головки у разъема (см. рис. 4). Вкладыши с толщиной стенок 3 мм и более толстые, фиксируются штифтами (дизели В-2, ЯМЗ-204 и др.).

Шатунные подшипниковые вкладыши современных автомобиль-ных двигателей смазываются маслом, поступающим под давлением через сверление в кривошипе из общей системы смазки двигателя. Для поддержания давления в смазочном слое и увеличения его несущей способности рабочую поверхность шатунных вкладышей рекомендуется выполнять без маслораспределительных дуговых или продольных сквозных канавок. Диаметральный зазор между вкладышами и шатунной шейкой вала обычно составляет 0 025— 0,08 мм.

В тронковых двигателях внутреннего сгорания применяют шатуны двух типов: одинарные и сочлененные.

Одинарные шатуны, конструкция которых подробно рассмат-ривалась выше, получили большое распространение. Они приме-няются во всех однорядных двигателях и широко используются в двухрядных автомобильных двигателях. В последнем случае на каждую кривошипную шейку вала рядом друг с другом устанав-ливают два обычных одинарных шатуна. Вследствие этого один ряд цилиндров смещается относительно другого вдоль оси вала на величину, равную ширине нижней головки шатуна. Чтобы уменьшить такое смещение цилиндров, нижнюю головку изготов-ляют с возможно меньшей шириной, а иногда шатуны выполняют с асимметричным стержнем. Так, в V -образных двигателях автомо-билей ГАЗ-53, ГАЗ-66 стержни шатунов смещены относитель-но оси симметрии нижних головок на 1 мм. Смещение осей цилин-дров левого блока относительно правого составляет в них 24 мм.

Использование обычных одинарных шатунов в двухрядных дви-гателях приводит к увеличению длины шатунной шейки вала и общей длины двигателя, но в целом такая конструкция является самой простой и экономически целесообразной. Шатуны имеют одинаковую конструкцию, создаются и одинаковые условия работы для всех цилиндров двигателя. Шатуны можно полностью унифи-цировать также с шатунами однорядных двигателей.

Сочлененные шатунные узлы представляют единую конструк-цию, состоящую из двух спаренных между собой шатунов. Их обыч-но используют в многорядных двигателях. По характерным призна-кам конструкции различают вильчатые, или центральные, и кон-струкции с прицепным шатуном (рис. 5).


Рис. 5. Сочлененные шатуны: а) вильчатой конструкции, б) с прицепным шатуном

У вильчатых шатунов (см. рис. 5, а), используемых иногда в двухрядных двигателях, оси больших головок совпадают с осью шейки вала, в связи с чем их называют также центральными. Большая головка главного шатуна 1 имеет вильчатую конструкцию; а головка вспомогательного шатуна 2 устанавливается в развилку главного шатуна. Его называют поэтому внутренним, или средним, шатуном. Оба шатуна имеют разъемные нижние головки и снаб-жаются общими для них вкладышами 3, которые от проворачивания чаще всего фиксируются штифтами, расположенными в крышках 4 вильчатой головки. У зафиксированных таким образом вкладышей внутренняя поверхность, соприкасающаяся с шейкой вала, пол-ностью покрывается антифрикционным сплавом, а наружная — только в средней части, т. е. в зоне размещения вспомогательного шатуна. Если вкладыши не фиксируются от проворачивания, то поверхности их с обеих сторон полностью покрываются анти-фрикционным сплавом. В этом случае вкладыши изнашиваются более равномерно.

Центральные шатуны обеспечивают одинаковую величину хода поршней во всех цилиндрах V -образного двигателя, как и обычные одинарные шатуны. Однако комплект их довольно сложен в про-изводстве, а вилке не всегда удается придать нужную жест-кость.

Конструкции с прицепным шатуном проще в производстве и обладают надежной жесткостью. Примером такой конструкции может служить шатунный узел дизеля В-2, показанный на рис. 5, б. Он состоит из главного 1 и вспомогательного прицепного 3 шатунов. Главный шатун имеет верхнюю головку и двутавровый стержень обычной конструкции. Нижняя его головка снабжена тонкостен-ными вкладышами, залитыми свинцовистой бронзой, и выполнена с косым разъемом относительно стержня главного шатуна; иначе ее нельзя скомпоновать, так как под углом 67° к оси стержня на ней размещают две проушины 4, предназначенные для крепления при-цепного шатуна 3. Крышка главного шатуна крепится шестью шпильками 6, завернутыми в тело шатуна, причем от возможного проворачивания они фиксируются штифтами 5.

Прицепной шатун 3 имеет двутавровое сечение стержня; обе головки его неразъемны и поскольку условия их работы аналогич-ны, то они снабжены бронзовыми подшипниковыми втулками. Сочленение прицепного шатуна с главным осуществляется при помощи полого пальца 2, закрепленного в проушинах 4.

В конструкциях V -образных двигателей с прицепным шатуном последний располагают относительно стержня главного шатуна справа по вращению вала, чтобы уменьшить боковое давление на стенки цилиндра. Если при этом угол между осями отверстий в проушинах крепления прицепного шатуна и стержня главного шатуна больше угла развала между осями цилиндров, то ход порш-ня прицепного шатуна будет больше хода поршня главного шатуна.

Объясняется это тем, что нижняя головка прицепного шатуна опи-сывает не окружность, как головка главного шатуна, а эллипс, большая ось которого совпадает с направлением оси цилиндра, поэтому у поршня прицепного шатуна 5 > 2г, где 5 — величина хода поршня, а г — радиус кривошипа. Например, у дизеля В-2 оси цилиндров расположены под углом 60°, а оси отверстий в про-ушинах 4 пальца нижней (большой) головки прицепного шатуна и стержня главного шатуна — под углом 67°, вследствие чего раз-ница в величине хода поршней составляет в нем 6,7 мм.

Сочлененные шатуны с прицепивши и особенно с вильчатыми конструкциями кривошипных готовок вследствие относительной их сложности в двухрядных автомобильных двигателях применяют-ся очень редко. Наоборот, использование прицепных шатунов в звездообразных двигателях является необходимостью. Большая (нижняя) головка главного шатуна в звездообразных двигателях выполняется неразъемной.

При сборке автомобильных и других быстроходных двигателей шатуны подбирают из условий, чтобы комплект их имел минималь-ную разницу в весе. Так, в двигателях автомобилей «Волга», ГАЗ-66 и ряде других верхняя и нижняя головки шатунов подгоняются по весу с отклонением ±2 г, т. е. в пределах 4 г (≈0,04 н ). Следо-вательно, общая разница в весе шатунов не превышает у них 8 г (≈0,08 н). Лишний металл обычно снимают с бобышэк-приливов, крышки шатуна и верхней головки. При отсутствии у верхней головки специального прилива вес подгоняют обтачиванием ее с обе-их сторон, как, например, в двигателе ЗМЗ-21.

Отклонения от весовых показателей, принятых для шатунно-поршневой группы, не допускаются, так как это нарушает уравно-вешенность двигателя.


Установка поршневых пальцев

Поршневые пальцы плотно запрессовываются в верхние головки шатунов и имеют плавающую посадку в поршнях. Для запрессовки поршневых пальцев используйте комплект приспособлений Mot. 574-22, содержащий:

Подставку для поршня (S);

Оправки для извлечения пальцев.(1);

Установочные стерхни (А) с центрирующими приспособлениями (С);

Подготовка шатунов

Визуально проверьте:

Состояние шатунов (они могут быть скручены и погнуты);

Поверхности контакта между вкладышами и шатунами (при наличии заусенцев удалите их хонинговальным бруском, чтобы обеспечить правильную посадку вкладыша).

Для нагрева шатунов используйте нагревательную плиту мощностью 1500 Вт.

Уложите верхние головки шатунов на нагревательную плиту.

Обеспечьте плотное прилегание поверхности верхней головки шатуна к плите.

Для контроля за температурой нагрева шатунов положите на верхнюю головку каждого шатуна на участке (а) небольшой кусочек оловянного припоя с температурой плавления приблизительно 250°С.

Подготовка поршневых пальцев

Убедитесь, что поршневые пальцы свободно входят в соответствующие новые поршни. Используйте центрирующее приспособление С13 и установочный стержень А13.

Установите поршневой палец (Е) на установочный стержень (А), вверните центрирующее приспособление (С) до упора и затем отверните его обратно на 1/4 оборота.



Сборка шатуна с поршнем

На днищах поршней нанесены метки "Vt" (тип 1) или "Л" (тип 2), указывающие направление в сторону маховика.

При сборке поршня с шатуном следуйте приведенным ниже инструкциям:

Установите на подставку кольцо В18 и призму V18, наложите на них поршень и закрепите его имеющимся зажимом;

Удостоверьтесь, что отверстия для пальца в поршне точно совпадают с отверстием в кольце В18.

Нагревайте верхние головки шатунов, пока не расплавится припой.


Смажьте моторным маслом центрирующее приспособление и поршневой палец. Вставьте поршневой палец в поршень на подставке и убедитесь, что он свободно перемещается в осевом направлении и при необходимости восстановите соосность отверстий.

Ориентация поршня относительно шатуна

1. Цилиндры 1 и 2:

Поршень должен быть установлен на подставке так, чтобы стрелка, выгравированная на его днище (тип 1) или метка "А" (тип 2), была направлена вверх и находилась справа от вертикальной средней плоскости поршня, а выступ (2) на днище поршня располагался внизу и слева от этой плоскости.

2. Цилиндры 3 и 4:

Поршень должен быть установлен на подставке так, чтобы стрелка, выгравированная на его днище (тип 1) или метка "Л" (тип 2), была направлена вверх и находилась справа от вертикальной средней плоскости поршня, а выступ (2) на днище поршня располагался сверху и слева от этой плоскости.

Установите шатун так, чтобы стопорной выступ (3) вкладыша шатунного подшипника находился внизу и справа от вертикальной средней плоскости поршня.

Последующие операции следует выполнять как можно быстрее, чтобы избежать охлаждения шатуна. 3. Когда температура припоя достигнет точки плавления (припой превратится в каплю):

Сотрите каплю припоя;

Вставьте в поршень центрирующее приспособление;

Вставьте шатун в поршень;

Как можно быстрее вставьте поршневой палец до упора центрирующего приспособления в подставку.

4. Убедитесь, что поршневой палец остается внутри поршня во всех положениях шатуна в поршне.

Коленчатый вал

1. Установите:

Вкладыши без канавок в гнезда коренных 1, 3 и 5 и вкладыши с канавками в гнезда подшипников 2 и 4;

Боковые регулировочные полукольца коленчатого вала в гнездо коренного подшипника 3 (канавками в сторону коленчатого вала);

Коленчатый вал.

2. Смажьте коренные и шатунные шейки вала моторным маслом.

3. Поставьте на место крышки коренных подшипников (они помечены цифрами с 1 до 5 и эти цифры должны находиться на стороне впуска).



Ключом с головкой Тогх 14 мм предварительно затяните болты крышек подшипников с моментом 25 Нм и затем доверните на угол 47 ± 5°.



Примечание : Не забудьте нанести на участки (А) крышки коренного подшипника № 1 тонкий слой герметика RHODORSEAL 5661.

4. Проверьте осевой зазор коленчатого вала. Он должен быть в пределах 0,045 - 0,252 мм при отсутствии износа и в пределах 0,045 - 0,852 при наличии износа.



Установка поршневых колец

Поршневые кольца, установленные на заводе, должны свободно перемещаться в своих поршневых канавках.

Они должны быть установлены правильно по их

1. Ориентируйте кольца на поршне, как показано на рисунке:



2. Вставьте подобранные поршни с шатунами в блок цилиндров, следя за тем, чтобы расположение и направление поршней были правильными. - Цилиндры 1 и 2:

Поршни должны быть установлены так, чтобы метка "VT" (тип 1) или метка "А" (тип 2) указывала в сторону маховика, а выступ (8) на днище поршня находился справа от оси (9).



Цилиндры 3 и 4:

Поршни должны быть установлены так, чтобы метка "VT" (тип 1) или метка "Л" (тип 2) указывала в сторону маховика, а выступ (8) на днище поршня находился слева от оси (10).



3. Затяните гайки болтов крышек шатунов с моментом 10 Нм и затем подтяните с моментом 43 Нм.

4. Установите:

Масляный насос (момент затяжки болтов крепления масляного насоса 22 - 27 Нм);

Крышку сальника коленчатого вала. Для уплотнения используйте герметик LOCTITE 518. Герметик должен быть нанесен, как показано на рисунке ниже, слоем (В) толщиной 0,6 -1,0 мм;



Сальники коленчатого вала, смазав маслом их рабочие кромки и наружную поверхность. Для установки сальника со стороны маховика используйте приспособление Mot. 1129-01.



Для установки сальника со стороны привода распределительного вала используйте приспособление Mot. 1385.

5. Установите промежуточное кольцо, которое следует перевернуть на другую сторону, если на нем остались следы от старого сальника.

6. Установите на место маховик.

Болты крепления маховика необходимо заменить новыми и затянуть их с моментом 50 - 55 Нм. Затяжку производите, чередуя болты по диагонали.


8. Установите:

Зубчатый шкив коленчатого вала;

Поддон картера. Для уплотнения его посадочной поверхности используйте герметик RHODORSEAL 5661. Ширина полосы герметика (D) должна быть 3 мм.



Примечание : Не забудьте установить новые сальники вместо двух старых сальников на обоих концах поддона картера.

Установка головки блока цилиндров

Способ затяжки болтов крепления головки блока цилиндров.

После снятия головки блока цилиндров старые болты крепления головки во всех случаях должны заменяться новыми.

Смажьте резьбу болтов и поверхность под их головками моторным маслом.

Предварительная осадка прокладки

Затяните болты головки с моментом 20 Нм, после чего доверните на угол 100 ± 6° в указанной ниже последовательности:

Затяните болты 1 и 2;

Затяните болты 3,4, 5 и 6;

Затяните болты 7, 8 , 9 и 10.

Для осадки прокладки необходимо выждать 3 минуты.

Окончательная затяжка болтов головки

1. Отпустите болты 1 и 2, после чего снова затяните их с моментом 20 Нм и доверните на угол 110 ± 6°.

2. Отпустите болты 3, 4, 5 и 6, после чего снова затяните их с моментом 20 Нм и доверните на угол 110 ±6°.

3. Отпустите болты 7, 8, 9 и 10, после чего снова затяните их с моментом 20 Нм и доверните на угол 110 ±6°.

Подтяжка болтов крепления головки блока цилиндров в процессе эксплуатации не требуется.

4. Установите: - ось коромысел так, чтобы она была обращена меткой (1) в сторону привода механизма газораспределения. При этом болты (А) размером М8х100 и М8х28,7 мм должны входить в отверстия (В);



Болты (2) крепления оси коромысел и затяните их с моментом 23 Нм. Не забывайте смазывать резьбу и поверхность под головкой болтов моторным маслом;

Крышку головки блока цилиндров, не производя затяжку ее крепежных болтов, так как это облегчит установку фаз газораспределения.

Установка ремня привода механизма газораспределения



А - Датчик, В - Индикатор, С - Соединительный провод, D - Калибровочная пружина.

1. Принцип действия прибора для измерения натяжения ремня.

Датчик позволяет обеспечить постоянную величину прогиба ремня, что достигается регулировочной ручкой (1), нажимным устройством (2) и наружными кронштейнами (3).

Сила реакции ремня измеряется устройством (4), оснащенным тензодатчиками. Деформация датчиков приводит к изменению их электрического сопротивления, которое затем преобразуется и индицируется в единицах SEEM (US).

2. Калибровка прибора для измерения натяжения ремня.

Прибор отрегулирован на заводе изготовителя, однако его калибровочные величины необходимо проверять каждые шесть месяцев.

3. Процедура установки нуля:

Включите прибор (выключателем Е) с полностью ввернутой регулировочной ручкой (1).

Если индикатор показывает О, следовательно прибор откалиброван правильно.

При полном отсутствии индикации, проверьте степень заряженности аккумулятора (9 В).

В случае индикации какой-либо другой величины, кроме нуля, вращением регулировочного винта (F) настройте индикатор на 0.

4. Проверка калибровки прибора.

Включите прибор (выключателем Е).

Установите упругую калибровочную пружину (Z) на датчик прибора, как показано на рисунке. Контрольные величины отштампованы на пружине сверху: (А) - минимальная величина, (В) - максимальная величина.

Затяните регулировочную ручку (1) до положения после третьего щелчка.

При этом индикатор должен показывать величину X, находящуюся в пределах А и В (А ^ X < В). Примечание : Возможно потребуется провести несколько предварительных проверок, прежде чем будет достигнута правильная величина. В случае постоянного получения неправильных величин за дополнительной информацией обратитесь в местный Главный офис послепродажного обслуживания фирмы.

Примечание : Комплект каждого прибора содержит собственную калибровочную пружину. Не заменяйте ее на калибровочную пружину от другого прибора.

1 - Ручка с накаткой (нажимное устройство), А - Контрольная величина на калибровочной пружине, В - Контрольная величина на калибровочной пружине, Z - Калибровочная пружина.



5. Установка фаз газораспределения. На гладкой стороне ремня изображена стрелка, показывающая направление его движения. Там же имеются две метки для установки фаз газораспределения.

Совместите метки (N) на ремне с метками на зубчатых шкивах (L) и крышках (М).

Пропустите ремень в правильном направлении и наденьте его на зубчатый шкив коленчатого вала.

Установите на ремень датчик прибора Mot. 1273.

Поверните ручку прибора на три ее щелчка.

Натягивайте ремень приспособлением Mot. 1135-01 пока прибор Mot. 1273 не покажет требуемую величину.

Нормальное натяжение ремня по этому прибору должно быть 30 единиц SEEM.

Затяните натяжитель, проверьте и окончательно отрегулируйте величину натяжения.

Для этого проверните коленчатый вал не менее чем на три оборота.


Удостоверьтесь, что величина натяжения ремня остается в допустимых пределах отклонения (± 10%).

В противном случае повторите процедуру регулировки натяжения.

Примечание

Затяните гайку натяжителя (О) с моментом 50 Нм. Затяжка гайки натяжителя с моментом 50 Нм необходима во избежание ее возможного последующего отворачивания, что может привести к повреждению двигателя.

Регулировка зазора в механизме привода клапанов

Нормальная величина зазора на холодном двигателе:

Впускные клапаны..............................0,10 - 0,15 мм

Выпускные клапаны:

Без замены клапанов...................... 0,25 - 0,30 мм

При установке новых клапанов.....0,20 - 0,25 мм

Регулировка зазора по методу "полного открытия выпускного клапана"

1. Установите выпускной клапан цилиндра № 1 в положение полного открытия и отрегулируйте зазор впускного клапана цилиндра № 3 и выпускного клапана цилиндра № 4.

2. Проделайте ту же операцию на других цилиндрах, руководствуясь приведенной ниже таблицей.

Выпускной клапан в положении полного открытия

Регулируемый впускной клапан

Регулируемый выпускной клапан

3. Установите на место:

Крышку головки блока цилиндров с новой прокладкой;

Кронштейн катушек зажигания;

Провода свечей зажигания и их держатель;

Крышку привода распределительного вала;

Шкив коленчатого вала (затяните болт крепления шкива с моментом 20 Нм, после чего доверните на угол 68 ± 6°);

Датчик давления масла;

Генератор;

Маслоизмерительный щуп;

Кронштейн подвески двигателя;

Впускной трубопровод (затяните с моментом 25 Нм);

Ремень привода генератора.

Процедура натяжения ремня привода навесных агрегатов

Примечание : Натяжение производят на холодном двигателе (при температуре окружающей среды). 1. Ремень привода навесных агрегатов (модели с кондиционером).

Схема привода генератора, кондиционера и насоса усилителя рулевого управления. А - Шкив коленчатого вала, В - Шкив компрессора кондиоционера, С - Шкив генератора переменного тока, D - Шкив насоса усилителя рулевого управления, Е - Обводной ролик, Т - Натяжной ролик.



Детали привода генератора, кондиционера и насоса усилителя рулевого управления. 1 - Обводной ролик, 2 - Ремень привода навесных агрегатов, 3 - Шкив насоса усилителя рулевого управления, 4 - Насос усилителя рулевого управления, 5 - Шкив коленчатого вала, 6 - Натяжной ролик, 7 - Компрессор кондиционера, 8 - Генератор.

Чтобы надеть ремень, поверни т е гаечный ключ влево.

Заблокируйте натяжной ролик, используя для этого 6-мм шестигранный торцевой ключ (1).



Примечание : Проверьте, что внутренний ручей (1) шкивов остается свободным при установке ремня.

2. Ремень привода навесных агрегатов (модели без кондиционера).



Схема привода генератора и насоса усилителя рулевого управления. А - Шкив коленчатого вала, В - Шкив насоса усилителя рулевого управления, С - Шкив генератора переменного тока, Т - Натяжной ролик, -> - Точка проверки натяжения ремня.



Детали привода генератора и насоса усилителя рулевого управления (модели без кондиционера). 1 - Ремень привода навесных агрегатов, 2 - Шкив коленчатого вала, 3 - Насос усилителя рулевого управления, 4 - Шкив насоса усилителя рулевого управления, 5 - Промежуточный шкив (модели без усилителя рулевого управления) 6 - Генератор, 7 - Натяжной ролик, 8 - Стопорная гайка, 9 - Регулировочный болт.

Приводной ремень натягивается с помощью регулировочного болта (1) (при этом нужно ослабить затяжку двух болтов крепления натяжного ролика) с последующей затяжкой стопорной гайки (2).



Затяните болты крепления автоматического натяжного ролика. Примечание : Ремень привода навесных агрегатов имеет пять клиньев, а шкив генератора и шкив насоса усилителя механизма рулевого управления выполнены 6-ручьевыми; поэтому при установке приводного ремня обязательно нужно оставлять свободным внешний ручей шкивов (Е).

3. Для правильной установки ремня навесных агрегатов на шкивах, проверните коленчатый вал двигателя на два оборота.

4. Убедитесь, что натяжение ремня остается при этом в допустимых пределах. В противном случае, повторите процедуру регулировки.

Примечание : Снятый ремень повторному использованию не подлежит. 5. Установите:

Трубопровод системы охлаждения с новым уплотнительным кольцом;

Выпускной коллектор (момент затяжки крепления 25 Нм);

Тепловой экран (момент затяжки крепежной гайки 20 Нм).