Тепловые двигатели устанавливают на. Тепловые двигатели - наука и образование. К истории авиационных двигателей

«Использование тепловых двигателей» - Проследим историю развития тепловых двигателей. Французский инженер Кюньо. На водном транспорте. Загрязнение окружающей среды. Что вы наблюдали. В автомобильном транспорте. Применение тепловых двигателей. Тепловые двигатели. Начало истории создания реактивных двигателей. Проект бензинового двигателя.

«Паровой двигатель» - Длина первой железной дороги составляла 850 м. Паровая машина на старой сахарной фабрике, Куба. Первые промышленные двигатели. Паровой молот. Повышение эффективности двигателя Уатта привело к использованию энергии пара в промышленности. Силовые машины, которые редко останавливаются и не должны менять направление вращения.

«Применение тепловых двигателей» - Проблемы охраны окружающей среды. Первый космонавт планеты. Основные части двигателя внутреннего сгорания. Шар Герона. К.Э. Циолковский. Виды тепловых двигателей. Исторический курьез. Двигатель внутреннего сгорания. Нагреватель. Двигатели. Формулы для расчета КПД. Проект аппарата. Принцип реактивного движения.

«Тепловые двигатели и машины» - Виды тепловых двигателей. Разнообразие видов тепловых машин. Двигатель внутреннего сгорания. Греческий математик. Тепловые машины. Схема работы. Реактивный двигатель. Геронов шар. Газовая турбина. Преимущества электромобиля. Экологические проблемы использования тепловых машин. Такты работы двухтактного двигателя.

««Тепловые двигатели» 8 класс» - Двигатель внутреннего сгорания. Коэффициент полезного действия. Тепловые двигатели. Тепловая машина. Принцип действия ракетного двигателя. Диски ротора. Инженер Сади Карно. Газовая турбина. Паровая машина. Реактивный двигатель. Поршень.

«Тепловые двигатели, виды тепловых двигателей» - Диаграмма теплового баланса современных ДВС. Достижение максимального КПД. Современные двигатели неполного объёмного расширения. Что возможно и невозможно в тепловых двигателях. Газотурбинные двигатели полного необъёмного расширения. Поршневые двигатели Отто и Дизеля. Роторно-лопастной двигатель внутреннего сгорания.

Реактивные авиадвигатели во второй половине XX века открыли новые возможности в авиации: полеты на скоростях, превышающих скорость звука, создание самолетов с высокой грузоподъемностью, сделали возможным массовые путешествия на большие расстояния. Турбореактивный двигатель по праву считается одним из самых важных механизмов ушедшего века, несмотря на простой принцип работы.

История

Первый самолет братьев Райт, самостоятельно оторвавшийся от Земли в 1903 году, был оснащен поршневым двигателем внутреннего сгорания. И на протяжении сорока лет этот тип двигателя оставался основным в самолетостроении. Но во время Второй мировой войны стало ясно, что традиционная поршнево-винтовая авиация подошла к своему технологическому пределу – как по мощности, так и по скорости. Одной из альтернатив был воздушно-реактивный двигатель.

Идею применения реактивной тяги для преодоления земного притяжения впервые довел до практической осуществимости Константин Циолковский. Еще в 1903 году, когда братья Райт запускали свой первый самолет «Флайер-1», российский ученый опубликовал свой труд «Исследование мировых пространств реактивными приборами», в котором он разработал основы теории реактивного движения. Опубликованная в «Научном обозрении» статья утвердила за ним репутацию мечтателя и не была воспринята всерьез. Циолковскому потребовались годы трудов и смена политического строя, чтоб доказать свою правоту.

Реактивный самолет Су-11 с двигателями ТР-1, разработки КБ Люльки

Тем не менее, родиной серийного турбореактивного двигателя суждено было стать совсем другой стране – Германии. Создание турбореактивного двигателя в конце 1930-х было своеобразным хобби немецких компаний. В этой области отметились практически все известные ныне бренды: Heinkel, BMW, Daimler-Benz и даже Porsche. Основные лавры достались компании Junkers и ее первому в мире серийному турбореактивному двигателю 109-004, устанавливаемому на первый же в мире турбореактивный самолет Me 262.

Несмотря на невероятно удачный старт в реактивной авиации первого поколения, немецкие решения дальнейшего развития нигде в мире не получили, в том числе и в Советском Союзе.

В СССР разработкой турбореактивных двигателей наиболее удачно занимался легендарный авиаконструктор Архип Люлька. Еще в апреле 1940 года он запатентовал собственную схему двухконтурного турбореактивного двигателя, позже получившую мировое признание. Архип Люлька не нашел поддержки у руководства страны. С началом войны ему вообще предложили переключиться на танковые двигатели. И только когда у немцев появились самолеты с турбореактивными двигателями, Люльке было приказано в срочном порядке возобновить работы по отечественному турбореактивному двигателю ТР-1.

Уже в феврале 1947 года двигатель прошел первые испытания, а 28 мая свой первый полет совершил реактивный самолет Су-11 с первыми отечественными двигателями ТР-1, разработки КБ А.М. Люльки, ныне филиала Уфимского моторостроительного ПО, входящего в Объединенную двигателестроительную корпорацию (ОДК).

Принцип работы

Турбореактивный двигатель (ТРД) работает на принципе обычной тепловой машины. Не углубляясь в законы термодинамики, тепловой двигатель можно определить как машину для преобразования энергии в механическую работу. Этой энергией обладает так называемое рабочее тело – используемый внутри машины газ или пар. При сжатии в машине рабочее тело получает энергию, а при последующем его расширении мы имеем полезную механическую работу.

При этом понятно, что работа, затрачиваемая на сжатие газа должна быть всегда меньше работы, которую газ может совершить при расширении. Иначе никакой полезной «продукции» не будет. Поэтому газ перед расширением или во время него нужно еще и нагревать, а перед сжатием – охладить. В итоге за счет предварительного нагрева энергия расширения значительно повысится и появится ее излишек, который можно использовать для получения необходимой нам механической работы. Вот собственно и весь принцип работы турбореактивного двигателя.

Таким образом, любой тепловой двигатель должен иметь устройство для сжатия, нагреватель, устройство для расширения и охлаждения. Все это есть у ТРД, соответственно: компрессор, камера сгорания, турбина, а в роли холодильника выступает атмосфера.



Рабочее тело – воздух, попадает в компрессор и сжимается там. В компрессоре на одной вращающейся оси укреплены металлические диски, по венцам которых размещены так называемые «рабочие лопатки». Они «захватывают» наружный воздух, отбрасывая его внутрь двигателя.

Далее воздух поступает в камеру сгорания, где нагревается и смешивается с продуктами сгорания (керосина). Камера сгорания опоясывает ротор двигателя после компрессора сплошным кольцом, либо в виде отдельных труб, которые называются жаровыми трубами. В жаровые трубы через специальные форсунки и подается авиационный керосин.

Из камеры сгорания нагретое рабочее тело поступает на турбину. Она похожа на компрессор, но работает, так сказать, в противоположном направлении. Ее раскручивает горячий газ по тому же принципу, как воздух детскую игрушку-пропеллер. Ступеней у турбины немного, обычно от одной до трех-четырех. Это самый нагруженный узел в двигателе. Турбореактивный двигатель имеет очень большую частоту вращения – до 30 тысяч оборотов в минуту. Факел из камеры сгорания достигает температуры от 1100 до 1500 градусов Цельсия. Воздух здесь расширяется, приводя турбину в движение и отдавая ей часть своей энергии.

После турбины – реактивное сопло, где рабочее тело ускоряется и истекает со скоростью большей, чем скорость встречного потока, что и создает реактивную тягу.

Поколения турбореактивных двигателей

Несмотря на то, что точной классификации поколений турбореактивных двигателей в принципе не существует, можно в общих чертах описать основные типы на различных этапах развития двигателестроения.

К двигателям первого поколения относят немецкие и английские двигатели времен Второй мировой войны, а также советский ВК-1, который устанавливался на знаменитый истребитель МИГ-15, а также на самолеты ИЛ-28 и ТУ-14.

Истребитель МИГ-15

ТРД второго поколения отличаются уже возможным наличием осевого компрессора, форсажной камеры и регулируемого воздухозаборника. Среди советских примеров двигатель Р-11Ф2С-300 для самолета МиГ-21.

Двигатели третьего поколения характеризуются увеличенной степенью сжатия, что достигалось увеличением ступеней компрессора и турбин, и появлением двухконтурности. Технически это самые сложные двигатели.

Появление новых материалов, которые позволяют значимо поднять рабочие температуры, привело к созданию двигателей четвертого поколения. Среди таких двигателей – отечественный АЛ-31 разработки ОДК для истребителя Су-27.

Сегодня на уфимском предприятии ОДК начинается выпуск авиационных двигателей пятого поколения. Новые агрегаты установят на истребитель Т-50 (ПАК ФА), который приходит на смену Су-27. Новая силовая установка на Т-50 с увеличенной мощностью сделает самолет еще более маневренным, а главное – откроет новую эпоху в отечественном авиастроении.

Содержание статьи

АВИАЦИОННАЯ СИЛОВАЯ УСТАНОВКА , двигатель и движитель летательного аппарата, единый комплекс устройств и агрегатов, обеспечивающих силу тяги и подъемную силу для полета и ускорения летательного аппарата. Автомобиль движется благодаря трению покоя между колесом и дорогой. Воздушная Среда не обладает трением покоя, поэтому и сила тяги, и подъемная сила летательного аппарата определяются изменением количества движения среды, в которой он движется. Любой авиационный движитель (например, винт) захватывает поток воздуха, натекающий на летательный аппарат, и отбрасывает его с увеличенной скоростью назад, что приводит к возникновению реактивной силы, направленной вперед и равной изменению количества движения в единицу времени. Кроме того, должна существовать поддерживающая сила, благодаря которой летательный аппарат не падает. Самолет поддерживают крылья, которые тоже изменяют количество движения воздуха, отбрасывая его вниз и создавая подъемную силу. При движении самолета в воздушной среде возникает сила сопротивления движению, для преодоления которой нужна сила тяги, создаваемая двигателем. Подъемная сила и сила тяги вертолета создаются вращающимися лопастями. На рис. 1 приведена схема создания этих сил летательными аппаратами.

Физические принципы создания сил летательным аппаратом.

Для создания силы тяги и подъемной силы необходимо выполнение трех условий. Во-первых, необходим источник энергии, поскольку нужно увеличить скорость, а значит, и кинетическую энергию потока воздуха. Почти во всех случаях энергию на борту самолета или вертолета получают при сжигании углеводородного топлива (или водорода) с кислородом воздуха. В качестве вспомогательной используется электрическая энергия, запасенная в аккумуляторах. Первоначальный энтузиазм, вызванный овладением атомной энергией, не привел к созданию практичного ядерного двигателя для летательного аппарата.

Во-вторых, поскольку при горении выделяется тепловая энергия, на борту должно иметься средство преобразования тепловой энергии в механическую, которая может быть использована для увеличения кинетической энергии потока. Преобразование энергии происходит в тепловом двигателе (см. ниже ). На небольших винтовых самолетах до сих пор устанавливаются поршневые двигатели. На крупных современных самолетах обычно используются газотурбинные двигатели, основные агрегаты которых – компрессор, камера сгорания и турбина, вращающая компрессор. По второму закону термодинамики доля тепловой энергии, превращаемая в механическую, определяется температурой источника тепла (в данном случае температурой горения топлива) и температурой окружающей среды. Для углеводородных топлив температура горения составляет около 2500 К. Температура в стратосфере, где летают современные самолеты, около 200 К; поэтому теоретический (термический) КПД равен 1 - 200/2500 = 0,92 или 92%, что, конечно, является высоким значением; однако реальный КПД значительно ниже, поскольку эффективная температура рабочего тела в камере сгорания существенно ниже температуры горения топлива, а кроме того, возникают потери на сжатие и расширение в воздухозаборнике и турбокомпрессоре. Реальный КПД современных двигателей летающих в стратосфере самолетов около 40%.

В-третьих, должно быть средство, которое обеспечивало бы передачу механической энергии потоку для увеличения его скорости (или количества движения). Для этого существует несколько возможностей. Энергия двигателя может передаваться воздушному винту, который ометает большую площадь потока, т.е. захватывает большой расход, и несколько увеличивает его скорость. Для привода винта используют поршневые и турбовинтовые (рис. 2) двигатели. Существуют двигатели, которые механическую энергию затрачивают на увеличение кинетической энергии горячих выхлопных газов, расширяющихся в сопле; это – турбореактивные двигатели (рис. 3).


Полезная работа двигателя – работа, затрачиваемая на движение летательного аппарата. Полезная мощность – работа, совершаемая в единицу времени, – равна произведению силы тяги на скорость летательного аппарата. Следовательно, тяговый КПД (КПД движителя) равен отношению полезной мощности к мощности двигателя. Можно показать, что этот КПД равен удвоенной скорости летательного аппарата, деленной на сумму скорости полета и скорости реактивной струи (относительно летательного аппарата). С другой стороны, тяга равна массовому расходу реактивной струи, умноженному на разность скоростей струи и аппарата. Таким образом, высокая скорость реактивной струи приводит к большой тяге на единицу расхода и к малому тяговому КПД. Это соотношение показано на рис. 4.

Воздушный винт, захватывая большой расход и сравнительно ненамного увеличивая скорость струи, обладает высоким КПД. Турбореактивный двигатель представляет другую крайность: расход в нем сравнительно невелик (поперечное сечение двигателя невелико), а скорость струи высока, поэтому он имеет невысокий КПД. Турбовентиляторные двигатели (рис. 5) похожи на турбовинтовые тем, что вентилятор ускоряет дополнительный расход рабочего тела, не проходящий через турбокомпрессор, который затем истекает через сопло. Скорость реактивной струи в турбовентиляторном двигателе ниже, чем в турбореактивном, но выше, чем в турбовинтовом; соответственно, он имеет промежуточное значение КПД. Самое широкое применение турбовентиляторные двигатели нашли в современных дозвуковых транспортных самолетах.

Типы авиационных двигателей.

Любая авиационная силовая установка должна иметь в своем составе указанные выше агрегаты, но они могут быть самыми разными в зависимости от условий эксплуатации двигателя. К ним относятся: скорость и высота полета, маневренность, дальность, взлетно-посадочные требования. Кроме этих условий, на характеристики двигателя влияют отношение тяги к расходу топлива (чаще используют величину, обратную этому отношению, – удельный расход топлива), отношение тяги к весу силовой установки, уровень шума при взлете и посадке, капитальные затраты и стоимость обслуживания, надежность. Все эти критерии необходимо рассмотреть при выборе силовой установки для конкретного применения.

Главным критерием, определяющим выбор силовой установки, является скорость полета. Скорость полета лучше всего определять числом Маха – отношением скорости полета летательного аппарата к скорости звука на заданной высоте. При M

Дожигание увеличивает тягу по сравнению с двигателем, в котором топливо сгорает только в камере, однако при этом существенно возрастает расход топлива, которое всегда хранится на борту самолета. На самолетах, которые длительное время должны лететь со скоростью 2 6 называются гиперзвуковыми; при таких скоростях, вплоть до орбитальных (число Маха около 25), предполагается использовать прямоточные двигатели, в том числе со сверхзвуковым горением. В прямоточных двигателях повышение давления и температуры, необходимое для эффективной работы, достигается за счет кинетической энергии набегающего потока. Если перед зоной подачи топлива в поток он тормозится до скорости, меньшей скорости звука, то двигатель называется просто прямоточным; если же топливо впрыскивается в сверхзвуковой поток, то – прямоточным со сверхзвуковым горением. Прямоточный двигатель со сверхзвуковым горением подходит для воздушно-космических самолетов, которые должны летать при гиперзвуковых скоростях.

Тепловой двигатель.

Главным элементом всех рассмотренных выше силовых установок является тепловой двигатель, преобразующий тепловую энергию в механическую. В тепловом двигателе происходит изменение состояния рабочего тела, как правило, в результате химической реакции горения. В процессе горения повышается температура рабочего тела. В поршневых двигателях температура повышается при почти постоянном объеме и соответствующем увеличении давления; в газотурбинных двигателях температура повышается при почти постоянном давлении. В поршневом двигателе продукты сгорания расширяются в рабочем цилиндре, а в газотурбинном – в лопаточных аппаратах турбины; при этом часть выработанной турбиной энергии тратится на сжатие воздуха компрессором, а часть – на вращение винта, вентилятора или ротора вертолета. В турбореактивном двигателе турбина выполняет только ту работу, которая необходима для вращения компрессора, а основная часть энергии рабочего тела преобразуется в силу тяги в процессе расширения потока в сопле.

Поскольку термический КПД теплового двигателя увеличивается с повышением температуры и давления рабочего тела, в авиационных двигателях используют высокие степени повышения давления. В современных авиационных газотурбинных двигателях степень повышения давления достигает 25 и даже больше; в поршневых двигателях обычное значение степени сжатия 8. Если число Маха полета заметно больше единицы, во входном диффузоре происходит существенное повышение давления (примерно в 2 раза при M = 1 и почти в 20 раз при M = 3). Эффективная степень сжатия в газотурбинном двигателе равна произведению степени сжатия во входном диффузоре на степень сжатия в компрессоре, поэтому при высоких числах Маха двигатели даже с небольшой степенью сжатия компрессора имеют хороший термический КПД. Турбореактивные двигатели, рассчитанные на сверхзвуковые скорости полета, должны иметь компрессор со степенью сжатия не больше 12.

С ростом температуры сгорания повышается не только термический КПД, но и мощность, поскольку тепловая (внутренняя) энергия рабочего тела пропорциональна его температуре. Следовательно, очень желательно повышать температуру в камере сгорания, а значит, и на входе в турбину; однако эта температура ограничивается материалом турбинных лопаток, обтекаемых высокотемпературным потоком. Совершенствование авиационных материалов позволяет повысить рабочую температуру лопаток. Однако перспективнее охлаждение лопаток, что позволяет поддерживать их температуру ниже температуры горячих газов. Это достигается за счет отбора некоторого количества воздуха на выходе из компрессора и подачи его для охлаждения турбинных лопаток. Повышение рабочей температуры турбины, достигнутое за период 1950–1990 годов, приведено на рис. 7. На рис. 8 показано достигнутое улучшение экономичности двигателя.

Компрессор и турбина.

В газотурбинных двигателях процессы сжатия и расширения осуществляются лопаточными машинами. В лопаточных машинах изменение энергии потока, приводящее к его сжатию или расширению, вызвано движением лопаток, которые поворачивают поток и изменяют его скорость, в отличие от поршневых двигателей, в том числе роторного, в которых степень сжатия зависит главным образом от положения поршня.

Компрессоры авиационных двигателей довольно разнообразны. Наиболее широко применяется осевой компрессор (рис. 3), состоящий из перемежающихся рядов вращающихся (рабочих) и неподвижных (направляющих) лопаток; ряд рабочих и ряд направляющих лопаток составляют ступень компрессора. Рабочие лопатки совершают работу за счет внешней энергии и увеличивают энергию потока. В направляющем аппарате происходит торможение потока, ускоренного в рабочем колесе, и растет давление, а с ним вместе и температура. Каждая ступень компрессора последовательно увеличивает давление рабочего тела, в результате чего в многоступенчатом компрессоре достигается высокая степень повышения давления.

Турбина работает в принципе так же, как компрессор, за исключением того, что на рабочих лопатках поток совершает работу; при этом его энергия уменьшается. Мощность, вырабатываемая турбиной, частично идет на вращение компрессора, а частично – на вращение винта, вентилятора или ротора вертолета.

И в компрессоре, и в турбине действующие на лопатку силы пропорциональны плотности набегающего потока и квадрату его скорости в относительном движении. «Мощность лопатки» равна действующей на лопатку силе, умноженной на ее скорость. Итак, если скорость потока в относительном движении примерно равна окружной скорости лопатки, то мощность, передаваемая потоку или отбираемая от него, пропорциональна кубу скорости лопатки. Расход через рабочее колесо пропорционален окружной скорости лопатки, поэтому мощность на единицу массы расхода пропорциональна квадрату скорости лопатки. Относительное повышение температуры в компрессоре пропорционально квадрату числа Маха лопатки. Поэтому желательно, чтобы окружные скорости лопаток в авиационном компрессоре были околозвуковыми или сверхзвуковыми (при нормальных условиях 300 м/с или более). Такие скорости значительно выше скоростей поршня (примерно 10 м/с) в поршневом двигателе.

Высокие окружные скорости лопаточных машин приводят к большим центробежным нагрузкам во вращающихся лопатках и в диске, на котором они смонтированы; это выдвигает жесткие требования к проектированию и изготовлению лопаточных машин. Материал для турбин должен выдерживать высокие нагрузки при высоких температурах. Эти требования вместе с необходимостью малого веса и хорошей надежностью приводят к высокой стоимости газотурбинных двигателей. Появление новых прочных и легких материалов позволяет увеличить обороты компрессора и турбины и получить более высокие степени повышения давления или при данной степени повышения давления уменьшить число ступеней.

Винты, вентиляторы и воздухозаборники.

Винт воздействует на поток так же, как рабочее колесо компрессора, у него только меньше лопастей и ниже степень повышения давления; он наиболее эффективен, как указывалось выше, для небольших скоростей полета. Однако с ростом скорости полета относительная скорость концов лопастей (векторная сумма скорости полета и окружной скорости лопасти) приближается к скорости звука, что происходит задолго до достижения звуковой скорости полета. Достижение на концах лопастей скорости звука приводит к резкому увеличению местного сопротивления и уровня шума, что ограничивает скорость полета винтовых самолетов.

Турбовентиляторные и турбореактивные двигатели для приема набегающего потока оборудованы воздухозаборниками (рис. 5). Воздухозаборник позволяет уменьшить скорость набегающего потока до приемлемой для вентилятора. При взлете в воздухозаборнике происходит плавное ускорение потока, а при полете на крейсерском околозвуковом режиме – торможение до требуемого значения скорости. В итоге вентилятор вне зависимости от скорости полета работает при оптимальных условиях. По сути дела, вентилятор – просто низконапорный компрессор; такой движитель очень удобен для дозвуковых транспортных самолетов.

Стремление повысить экономичность заставляет разрабатывать новые, более совершенные типы двигателей: высокоскоростные турбовинтовые или турбовентиляторные без внешнего кольца. Двигатель второго типа имеет два противоположно вращающихся винта с очень тонкими лопастями, загнутыми назад по вращению для уменьшения эффективного числа Маха на концах лопастей и, следовательно, для снижения уровня потерь и шума, связанных с образованием местных скачков уплотнения.

При полете со сверхзвуковыми скоростями воздухозаборник должен перестроить набегающий сверхзвуковой поток в дозвуковой, поэтому конструкция воздухозаборника в этом случае становится сложнее. От сверхзвуковой до звуковой скорости поток тормозится в системе скачков уплотнения, образующихся на носовом конусе или клине, а затем в расширяющемся диффузоре происходит дальнейшее торможение потока до значения скорости на входе в компрессор.

К истории авиационных двигателей.

Уже на заре авиации было ясно, что характеристики двигателя определяют возможности полета самолета. Огромные усилия были затрачены на разработку и совершенствование силовых установок с высоким отношением мощности к весу. Первоначально пробовали применить на самолете паровые машины, но паровая машина слишком тяжела и малоэффективна для применения на летательном аппарате. Братья Райт для своего первого удачного самолета использовали поршневой двигатель с искровым зажиганием. Такие непрерывно совершенствовавшиеся двигатели применялись до конца Второй мировой войны, когда впервые в немецкой авиации появился истребитель с двумя турбореактивными двигателями. Турбореактивный двигатель был разработан независимо фон Охайном в Германии в 1939 и Ф.Уиттлом в Англии в 1941. В последующие годы газотурбинные двигатели быстро вытеснили поршневые в военной авиации: турбореактивные – на истребителях и бомбардировщиках и турбовинтовые – в транспортной авиации.

Первые пассажирские самолеты с турбореактивными двигателями появились в конце 1940-х годов (британская «Комета»); в целом самолеты оказались удачными, однако уровень шума при взлете был неприемлем. Этот фактор, а также стремление к экономии топлива привели в начале 1960-х годов к внедрению турбовентиляторных двигателей. Меньшая скорость реактивной струи позволила существенно снизить шум. Позже усовершенствованные турбовентиляторные двигатели с высокой степенью двухконтурности (рис. 5) были установлены на широкофюзеляжных самолетах, таких, как «Боинг-747», DC-10, «Локхид-1011». Турбовентиляторные двигатели тягой до 400 кН сейчас повсеместно применяются на пассажирских самолетах.

На современных высококлассных боевых самолетах стоят турбореактивные или турбовентиляторные двигатели с форсажом; впервые турбовентиляторный двигатель с форсажом был установлен на многоцелевой истребитель F-111, который должен был летать как на дозвуковых, так и на сверхзвуковых скоростях. По существу, все современные истребители и многоцелевые самолеты используют такие двигатели с разной степенью двухконтурности для разных применений. С каждым новым поколением двигателей повышаются их удельная мощность и удельный импульс.

К авиационным двигателям относятся все типы тепловых машин, используемых как движители для летательных аппаратов авиационного типа, т. е. аппаратов, использующих аэродинамическое качество для перемещения, маневра и т. п. в пределах атмосферы (самолеты, вертолеты, крылатые ракеты классов "В-В", "В-3", "3-В", "3-3", авиакосмические системы и др.). Отсюда вытекает большое разнообразие применяемых двигателей - от поршневых до ракетных.

Авиационные двигатели (рис.1) делятся на три обширных класса:

  • поршневые (ПД );
  • воздушно-реактивные (ВРД включая ГТД );
  • ракетные (РД или РкД ).

Более детальной классификации подлежат два последних класса, в особенности класс ВРД .

По принципу сжатия воздуха ВРД делятся на:

  • компрессорные , т. е. включающие компрессор для механического сжатия воздуха;
  • бескомпрессорные :
    • прямоточные ВРД (СПВРД ) со сжатием воздуха только от скоростного напора;
    • пульсирующие ВРД (ПуВРД ) с дополнительным сжатием воздуха в специальных газодинамических устройствах периодического действия.

Класс ракетных двигателей ЖРД также относится к компрессорному типу тепловых машин, так как в этих двигателях сжатие рабочего тела (топлива) осуществляется в жидком состоянии в турбонасосных агрегатах.

Ракетный двигатель твердого топлива (РДТТ ) не имеет специального устройства для сжатия рабочего тела. Оно осуществляется при начале горения топлива в полузамкнутом пространстве камеры сгорания, где располагается заряд топлива.

По принципу действия существует такое деление: ПД и ПуВРД работают по циклу периодического действия, тогда как в ВРД , ГТД и РкД осуществляется цикл непрерывного действия. Это дает им преимущества по относительным показателям мощности, тяги, массе и др., что и определило, в частности, целесообразность их использования в авиации.

По принципу создания реактивной тяги ВРД делятся на:

  • двигатели прямой реакции ;
  • двигатели непрямой реакции .

Двигатели первого типа создают тяговое усилие (тягу Р) непосредственно - это все ракетные двигатели (РкД ), турбореактивные без форсажа и с форсажными камерами (ТРД и ТРДФ ), турбореактивные двухконтурные (ТРДД и ТРДДФ ), прямоточные сверхзвуковые и гиперзвуковые (СПВРД и ГПВРД ), пульсирующие (ПуВРД ) и многочисленные комбинированные двигатели .

Газотурбинные двигатели непрямой реакции (ГТД ) передают вырабатываемую ими мощность специальному движителю (винту, винтовентилятору, несущему винту вертолета и т. п.), который и создает тяговое усилие, используя тот же воздушно-реактивный принцип (турбовинтовые , турбовинтовентиляторные , турбовальные двигатели - ТВД , ТВВД , ТВГТД ). В этом смысле класс ВРД объединяет все двигатели, создающие тягу по воздушно-реактивному принципу.

На основе рассмотренных типов двигателей простых схем рассматривается ряд комбинированных двигателей , соединяющих особенности и преимущества двигателей различных типов, например, классы:

  • турбопрямоточных двигателей - ТРДП (ТРД или ТРДД + СПВРД );
  • ракетно-прямоточных - РПД (ЖРД или РДТТ + СПВРД или ГПВРД );
  • ракетно-турбинных - РТД (ТРД + ЖРД );

и многие другие комбинации двигателей более сложных схем.

Поршневые двигатели (ПД)

Двухрядный звездообразный 14-ти цилиндровый поршневой двигатель с воздушным охлаждением. Общий вид.

Поршневой двигатель (англ. Piston engine ) -

Классификация поршневых двигателей. Авиационные поршневые двигатели могут быть классифицированы по различным признакам:

  • В зависимости от рода применяемого топлива - на двигатели легкого или тяжелого топлива.
  • По способу смесеобразования - на двигатели с внешним смесеобразованием (карбюраторные) и двигатели с внутренним смесеобразованием (непосредственный впрыск топлива в цилиндры).
  • В зависимости от способа воспламенения смеси - на двигатели с принудительным зажиганием и двигатели с воспламенением от сжатия.
  • В зависимости от числа тактов - на двигатели двухтактные и четырехтактные.
  • В зависимости от способа охлаждения - на двигатели жидкостного и воздушного охлаждения.
  • По числу цилиндров - на двигатели четырехцилиндровые, пятицилиндровые, двенадцатицилиндровые и т.д.
  • В зависимости от расположения цилиндров - на рядные (с расположением цилиндров в ряд) и звездообразные (с расположением цилиндров по окружности).

Рядные двигатели в свою очередь подразделяются на однорядные, двухрядные V-образные, трехрядные W-образные, четырехрядные Н-образные или Х-образные двигатели. Звездообразные двигатели также подразделяются на однорядные, двухрядные и многорядные.

  • По характеру изменения мощности в зависимости от изменения высоты - на высотные, т.е. двигатели, сохраняющие мощность с подъемом самолета на высоту, и невысотные двигатели, мощность которых падает с увеличением высоты полета.
  • По способу привода воздушного винта - на двигатели с прямой передачей на винт и редукторные двигатели.

Современные авиационные поршневые двигатели представляют собой звездообразные четырехтактные двигатели, работающие на бензине. Охлаждение цилиндров поршневых двигателей выполняется, как правило, воздушным. Ранее в авиации находили применение поршневые двигатели и с водяным охлаждением цилиндров.

Сгорание топлива в поршневом двигателе осуществляется в цилиндрах, при этом тепловая энергия преобразуется в механическую, так как под действием давления образующихся газов происходит поступательное движение поршня. Поступательное движение поршня в свою очередь преобразуется во вращательное движение коленчатого вала двигателя через шатун, являющийся связующим звеном между цилиндром с поршнем и коленчатым валом.

Газотурбинные двигатели (ГТД)

Газотурбинный двигатель - тепловая машина, предназначенная для преобразования энергии сгорания топлива в кинетическую энергию реактивной струи и (или) в механическую работу на валу двигателя, основными элементами которой являются компрессор, камера сгорания и газовая турбина.

Одновальные и многовальные двигатели

Простейший газотурбинный двигатель имеет только одну турбину, которая приводит компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя.

Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта или корабля, мощные электрогенераторы и т.д.), так и дополнительные компрессоры самого двигателя, расположенные перед основным.

Преимущество многовального двигателя в том, что каждая турбина работает при оптимальном числе оборотов и нагрузке. При нагрузке, приводимой от вала одновального двигателя, была бы очень плоха приемистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме легкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления большим количеством газов для разгона. Также есть возможность использовать менее мощный стартер для разгона при пуске только ротора высокого давления.

Турбореактивный двигатель (ТРД)

Турбореактивный двигатель (англ. Turbojet engine ) - тепловой двигатель, в котором используется газовая турбина, а реактивная тяга образуется при истечении продуктов сгорания из реактивного сопла. Часть работы турбины расходуется на сжатие и нагревание воздуха (в компрессоре).

Схема турбореактивного двигателя:
1. входное устройство;
2. осевой компрессор;
3. камера сгорания;
4. рабочие лопатки турбины;
5. сопло.

В турбореактивном двигателе сжатие рабочего тела на входе в камеру сгорания и высокое значение расхода воздуха через двигатель достигается за счёт совместного действия встречного потока воздуха и компрессора, размещённого в тракте ТРД сразу после входного устройства, перед камерой сгорания. Компрессор приводится в движение турбиной, смонтированной на одном валу с ним, и работающей на том же рабочем теле, нагретом в камере сгорания, из которого образуется реактивная струя. Во входном устройстве осуществляется рост статического давления воздуха за счёт торможения воздушного потока. В компрессоре осуществляется рост полного давления воздуха за счёт совершаемой компрессором механической работы.

Степень повышения давления в компрессоре является одним из важнейших параметров ТРД, поскольку от него зависит эффективный КПД двигателя. Если у первых образцов ТРД этот показатель составлял 3, то у современных он достигает 40. Для повышения газодинамической устойчивости компрессоров они выполняются двухкаскадными. Каждый из каскадов работает со своей скоростью вращения и приводится в движение своей турбиной. При этом вал 1-го каскада компрессора (низкого давления), вращаемого последней (самой низкооборотной) турбиной, проходит внутри полого вала компрессора второго каскада (высокого давления). Каскады двигателя так же именуют роторами низкого и высокого давления.

Камера сгорания большинства ТРД имеет кольцевую форму и вал турбина-компрессор проходит внутри кольца камеры. При поступлении в камеру сгорания воздух разделяется на 3 потока:

  • Первичный воздух - поступает через фронтальные отверстия в камере сгорания, тормозится перед форсунками и принимает непосредственное участие в формировании топливно-воздушной смеси. Непосредственно участвует в сгорании топлива. Топливо-воздушная смесь в зоне сгорания топлива в ВРД по своему составу близка к стехиометрической .
  • Вторичный воздух - поступает через боковые отверстия в средней части стенок камеры сгорания и служит для их охлаждения путём создания потока воздуха с гораздо более низкой температурой, чем в зоне горения.
  • Третичный воздух - поступает через специальные воздушные каналы в выходной части стенок камеры сгорания и служит для выравнивания поля температур рабочего тела перед турбиной.

Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы.

Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле, который истекает из него, создавая реактивную тягу.

Чем выше температура сгорания, тем выше КПД двигателя. Для предупреждения разрушения деталей двигателя используют жаропрочные сплавы, оснащенные системами охлаждения, и термобарьерные покрытия.

Турбореактивный двигатель с форсажной камерой (ТРДФ)

Турбореактивный двигатель с форсажной камерой - модификация ТРД, применяемая в основном на сверхзвуковых самолётах. Отличается от ТРД наличием форсажной камеры между турбиной и реактивным соплом. В эту камеру подается дополнительное количество топлива через специальные форсунки, которое сжигается. Процесс горения организуется и стабилизируется с помощью фронтового устройства, обеспечивающего перемешивание испаренного топлива и основного потока. Повышение температуры, связанное с подводом тепла в форсажной камере, увеличивает располагаемую энергию продуктов сгорания и, следовательно, скорость истечения из реактивного сопла. Соответственно, возрастает и реактивная тяга (форсаж) до 50 %, но расход топлива резко возрастает. Двигатели с форсажной камерой, как правило, не используются в коммерческой авиации по причине их низкой экономичности.

Двухконтурный турбореактивный двигатель (ТРДД)

Первым, предложившим концепцию ТРДД в отечественном авиадвигателестроении был Люлька А. М. (На основе исследований, проводившихся с 1937, А. М. Люлька представил заявку на изобретение двухконтурного турбореактивного двигателя. Авторское свидетельство вручили 22 апреля 1941 года.)

Можно сказать, что с 1960-х и по сей день, в самолетном авиадвигателестроении - эра ТРДД. ТРДД различных типов являются наиболее распространенным классом ВРД, используемых на самолетах, от высокоскоростных истребителей-перехватчиков с ТРДДФсм с малой степенью двухконтурности, до гигантских коммерческих и военно-транспортных самолетов с ТРДД с высокой степенью двухконтурности.

Схема турбореактивного двухконтурного двигателя:
1. компрессор низкого давления;
2. внутренний контур;
3. выходной поток внутреннего контура;
4. выходной поток внешнего контура.

В основу двухконтурных турбореактивных двигателей положен принцип присоединения к ТРД дополнительной массы воздуха, проходящей через внешний контур двигателя, позволяющий получать двигатели с более высоким полетным КПД, по сравнению с обычными ТРД.

Пройдя через входное устройство, воздух попадает в компрессор низкого давления, именуемый вентилятором. После вентилятора воздух разделяется на 2 потока. Часть воздуха попадает во внешний контур и, минуя камеру сгорания, формирует реактивную струю в сопле. Другая часть воздуха проходит сквозь внутренний контур, полностью идентичный с ТРД, о котором говорилось выше, с той разницей, что последние ступени турбины в ТРДД являются приводом вентилятора.

Одним из важнейших параметров ТРДД, является степень двухконтурности (m), то есть отношение расхода воздуха через внешний контур к расходу воздуха через внутренний контур. (m = G 2 / G 1 , где G 1 и G 2 расход воздуха через внутренний и внешний контуры соответственно.)

При степени двухконтурности меньше 4 (m<4) потоки контуров на выходе, как правило, смешиваются и выбрасываются через общее сопло, если m>4 - потоки выбрасываются раздельно, так как из-за значительной разности давлений и скоростей смешение затруднительно.

В ТРДД заложен принцип повышения полетного КПД двигателя, за счёт уменьшения разницы между скоростью истечения рабочего тела из сопла и скоростью полета. Уменьшение тяги, которое вызовет уменьшение этой разницы между скоростями, компенсируется за счёт увеличения расхода воздуха через двигатель. Следствием увеличения расхода воздуха через двигатель является увеличение площади фронтального сечения входного устройства двигателя, следствием чего является увеличение диаметра входа в двигатель, что ведет к увеличению его лобового сопротивления и массы. Иными словами, чем выше степень двухконтурности - тем большего диаметра будет двигатель при прочих равных условиях.

Все ТРДД можно разбить на 2 группы:

  • со смешением потоков за турбиной;
  • без смешения.

В ТРДД со смешением потоков (ТРДДсм ) потоки воздуха из внешнего и внутреннего контура попадают в единую камеру смешения. В камере смешения эти потоки смешиваются и покидают двигатель через единое сопло с единой температурой. ТРДДсм более эффективны, однако наличие камеры смешения приводит к увеличению габаритов и массы двигателя

ТРДД как и ТРД могут быть снабжены регулируемыми соплами и форсажными камерами. Как правило это ТРДДсм с малыми степенями двухконтурности для сверхзвуковых военных самолетов.

Военный ТРДДФ EJ200 (m=0,4)

Двухконтурный турбореактивный двигатель с форсажной камерой (ТРДДФ)

Двухконтурный турбореактивный двигатель с форсажной камерой - модификация ТРДД. Отличается наличием форсажной камеры. Нашел широкое применение.

Продукты сгорания, выходящие из турбины, смешиваются с воздухом, поступающим из внешнего контура, а затем к общему потоку подводится тепло в форсажной камере, работающей по такому же принципу, как и в ТРДФ . Продукты сгорания в этом двигателе истекают из одного общего реактивного сопла. Такой двигатель называется двухконтурным двигателем с общей форсажной камерой .

ТРДДФ с отклоняемым вектором тяги (ОВТ).

Управление вектором тяги (УВТ) / Отклонение вектора тяги (ОВТ)

Специальные поворотные сопла, на некоторох ТРДД(Ф), позволяют отклонять истекающий из сопла поток рабочего тела относительно оси двигателя. ОВТ приводит к дополнительным потерям тяги двигателя за счёт выполнения дополнительной работы по повороту потока и усложняют управление самолетом. Но эти недостатки полностью компенсируются значительным повышением маневренности и сокращением разбега самолета при взлете и пробега при посадке, до вертикальных взлета и посадки включительно. ОВТ используется исключительно в военной авиации.

ТРДД с высокой степенью двухконтурности / Турбовентиляторный двигатель

Схема турбовентиляторного двигателя:
1. вентилятор;
2. защитный обтекатель;
3. турбокомпрессор;
4. выходной поток внутреннего контура;
5. выходной поток внешнего контура.

Турбовентиляторный двигатель (англ. Turbofan engine ) - это ТРДД с высокой степенью двухконтурности (m>2). Здесь компрессор низкого давления преобразуется в вентилятор, отличающийся от компрессора меньшим числом ступеней и большим диаметром, и горячая струя практически не смешивается с холодной.

В данном типе двигателей используется одноступенчатый вентилятор большого диаметра, обеспечивающий высокий расход воздуха через двигатель на всех скоростях полета, включая низкие скорости при взлёте и посадке. По причине большого диаметра вентилятора сопло внешнего контура таких ТРДД становится достаточно тяжёлым и его часто выполняют укороченным, со спрямляющими аппаратами (неподвижными лопатками, поворачивающими воздушный поток в осевое направление). Соответственно, большинство ТРДД с высокой степенью двухконтурности - без смешения потоков .

Устройство внутреннего контура таких двигателей подобно устройству ТРД, последние ступени турбины которого являются приводом вентилятора.

Внешний контур таких ТРДД, как правило, представляет собой одноступенчатый вентилятор большого диаметра, за которым располагается спрямляющий аппарат из неподвижных лопаток, которые разгоняют поток воздуха за вентилятором и поворачивают его, приводя к осевому направлению, заканчивается внешний контур соплом.

По причине того, что вентилятор таких двигателей, как правило, имеет большой диаметр, и степень повышения давления воздуха в вентиляторе не высока - сопло внешнего контура таких двигателей достаточно короткое. Расстояние от входа в двигатель до среза сопла внешнего контура может быть значительно меньше расстояния от входа в двигатель до среза сопла внутреннего контура. По этой причине достаточно часто сопло внешнего контура ошибочно принимают за обтекатель вентилятора.

ТРДД с высокой степенью двухконтурности имеют двух- или трёхвальную конструкцию.

Достоинства и недостатки .

Главным достоинством таких двигателей является их высокая экономичность.

Недостатки - большие масса и габариты. Особенно - большой диаметр вентилятора, который приводит к значительному лобовому сопротивлению воздуха в полете.

Область применения таких двигателей - дальне- и среднемагистральные коммерческие авиалайнеры, военно-транспортная авиация.


Турбовинтовентиляторный двигатель (ТВВД)

Турбовинтовентиляторный двигатель (англ. Turbopropfan engine ) -

Реферат : Изобретение относится к теплоэнергетике и машиностроению и может быть использовано в качестве насосов, компрессоров, силовых установок с внешним и внутренним подводом теплоты для стационарных и мобильных объектов. Турбина содержит два аксиальных цилиндра, между которыми установлена планшайба ротора и относительно каждого из которых выполнено, по меньшей мере, по одному коаксиальному цилиндру, лопасти. Цилиндры, лежащие в одной диаметральной плоскости, последовательно соединены друг с другом перепускными каналами, сообщающими полости цилиндров в зоне уменьшения межлопастных объемов от максимальных до минимальных в одной и одновременного увеличения от минимальных до максимальных в другой, образуя, по меньшей мере, одну спиралеобразную проточную часть сжатия или расширения. Перепускные каналы проточной части в окружном направлении отделены друг от друга зонами, исключающими их сообщение друг с другом, длиной не менее шага лопастей. Впускные и выпускные окна выполнены в первой и последней полостях проточной части. Турбина позволяет при использовании ее в различных тепловых двигателях внешнего и внутреннего сгорания обеспечить преобразование всей потенциальной энергии рабочего тепла непосредственно в механическую и соответственно обеспечить высокие показатели эффективности, экономичности, экологической чистоты, а также габаритно-весовые характеристики и минимальный удельный вес. 10 з.п. ф-лы, 8 ил.
Заключение Коллегии Двенадцати Доклад В.А. Романова привлекателен, прежде всего, попыткой поставить анализ принципиальной стороны дела на более реалистическую основу, нежели это делает классическая термодинамика (под классической я имею в виду "историческую", а не противопоставление термодинамике квантовой). Работы ХIХ века, конечно, были и остаются важными для создания физических концепций, но они – недостаточная основа инженерной деятельности. Предлагаемые в докладе "дополнения" ко второму закону термодинамики, похоже, являются хорошими интуитивно-эвристическими подпорками для изобретателя. Они помогли Романову найти хорошие технические решения. Однако, эти дополнения содержат концептуальную путаницу, хотя они должны быть выводимы из уже существующих законов. Интуиция подсказывает, что если по существу разобраться в теме "Оптимизация устройств преобразования энергии в осуществимом диапазоне термодинамических параметров" (то есть разобраться с молекулярной точки зрения, где нет искусственного водораздела между упоминаемыми докладчиком видами энергии), то можно было бы понять, каков действительный потенциал дальнейших улучшений в современных технологических условиях.