Свечи зажигания. Назначение и устройство. Виды автомобильных свечей зажигания – их устройство и неисправности Свеча зажигания описание из чего состоит

Свеча зажигания – устройство, предназначенное для воспламенения топливной смеси, поступающей в камеры сгорания двигателя, в конце такта сжатия.

Принцип действия

Электрический ток высокого напряжения (до 40.000 В) подаётся по высоковольтным проводам от катушки зажигания, через распределитель зажигания, к свече зажигания. Между центральным электродом свечи (плюс) и её боковым электродом (минус) возникает искровой разряд. От этой воспламеняется топливная смесь, находящаяся в камере сгорания двигателя в конце такта сжатия.


Виды свечей зажигания

Свечи зажигания бывают искровые, дуговые, накаливания. Нас будут интересовать искровые, применяющиеся в бензиновых двигателях внутреннего сгорания.

Расшифровка маркировки свечей зажигания отечественного производства

В качестве примера возьмём широко распространённую свечу А17ДВРМ.

А – резьба М 14 1,25

17 – калильное число

Д – длина резьбовой части 19 мм (с плоской посадочной поверхностью)

В – выступание теплового конуса изолятора свечи за торец резьбовой части корпуса

Р – встроенный помехоподавительный резистор

М – биметаллический центральный электрод

Также могут быть указаны – дата изготовления, производитель, страна изготовления.

Маркировка свечей зажигания импортного производства не имеет единой системы расшифровки. Что она означает для тех или иных свечей можно посмотреть на сайтах их производителей.

Устройство свечи зажигания

Контактный наконечник. Служит для крепления высоковольтного провода на свече.

Изолятор. Выполнен из высокопрочной алюминиево-оксидной керамики, выдерживающей температуру до 1000 0 и электрический ток напряжением до 60.000 В. Необходим для электрической изоляции внутренних деталей свечи (центрального электрода и т. д.) от ее корпуса. То есть разделения «плюса» и «минуса». Имеет несколько кольцевых канавок в верхней части и покрытие из специальной глазури, служащих для предотвращения утечки тока. Часть изолятора со стороны камеры сгорания, выполненная в виде конуса называется тепловым конусом и может как выступать за пределы резьбовой части корпуса (горячая свеча), так и быть утопленным в него (холодная свеча).

Корпус свечи. Изготовлен из стали. Служит для вворачивания свечи в головку блока двигателя и отведения тепла от изолятора и электрода. Помимо этого он является проводником «массы» автомобиля к боковому электроду свечи.

Центральный электрод. Наконечник центрального электрода изготавливают из жаростойкого железо-никелевого сплава с сердечником из меди и других редкоземельных металлов (т. н. биметаллический электрод). Он проводит электрический ток для создания искры и является наиболее горячей частью свечи.

Боковой электрод. Изготавливается из жаропрочной стали с примесью марганца и никеля. На некоторых свечах может быть несколько боковых электродов для улучшения искрообразования. Так же существуют биметаллические боковые электроды (например, железо с медью) имеющие лучшую теплопроводность и увеличенный ресурс. Боковой электрод предназначен для обеспечения образования искры на свече зажигания между ним и центральным электродом. Выполняет роль «массы» (минуса).

Помехоподавительный резистор. Изготовлен из керамики. Служит для подавления радиопомех. Соединение резистора с центральным электродом герметизировано специальным герметиком. Имеется не на всех свечах зажигания. Например А17ДВ его нет, А17ДВР есть.

Уплотнительное кольцо. Выполнено из металла. Служит для уплотнения соединения свечи с посадочным гнездом в головке блока. Присутствует на свечах с плоской контактной поверхностью. На свечах с конусной контактной поверхностью его нет. На модели показана свеча с плоской посадочной поверхностью и уплотнительным кольцом.

Зазор между электродами свечи зажигания

Двигатель легкового автомобиля эффективно работает только при определенном зазоре между электродами свечей зажигания. Зазор в свечах зажигания должен соответствовать требованиям заводской инструкции по эксплуатации автомобиля. При меньшем зазоре искра между электродами получается короткой и слабой, сгорание топливной смеси ухудшается. При большем зазоре увеличивается напряжение, необходимое для пробивания воздушного промежутка между электродами свечи, и искры вообще может не быть или она будет, но очень слабая.

Измеряется зазор при помощи круглого щупа необходимого диаметра. Не рекомендуется применение плоского щупа, так как измерение зазора будет неточным. Объясняется это тем, что при работе свечи происходит перенос металла с одного электрода на другой. На одном электроде, со временем, образуется ямка, на другом бугорок. Поэтому для измерения зазоров подходят только круглые щупы.

Зазор между электродами свечи зажигания регулируют только подгибанием бокового электрода.

С наступлением зимы, для снижения пробивного напряжения нормальный зазор можно уменьшить на 0,1 – 0,2 мм. При прокрутке двигателя стартером в мороз, двигатель быстрее будет схватывать.

Калильное число

Тепловая характеристика свечи зажигания (способность противостоять нагреву) называется калильным числом. Для каждого типа двигателя требуется свеча зажигания с определенным калильным числом. Свечи делятся на холодные (с высоким калильным числом) и горячие (с низким калильным числом).

Калильное число определяется материалом изолятора и длиной его нижней части (у горячих свечей он более длинный). Отечественные свечи имеют показатели калильного числа от 11 до 23, зарубежные индивидуально у каждого производителя.

При неправильно подобранных свечах зажигания возможно калильное зажигание, когда топливная смесь в цилиндрах поджигается преждевременно не электрической искрой, возникающей между ее электродами, а от раскаленного корпуса свечи. Двигатель в этом случае звенит под нагрузкой (детонация, «пальцы стучат») как при неверно выставленном угле опережения зажигания, а также продолжает некоторое время работать при выключении зажигания. Необходимо заменить свечи на более холодные.

И, наоборот, наличие постоянно возникающих черных отложений () на электродах свечей, при заведомо исправном двигателе, говорит о том, что свечи зажигания холодные и их следует заменить на более горячие.

Правильно подобранные свечи должны иметь светло-коричневый цвет в нижней части, так как температурный режим такой свечи 600-800 0 . В этом случае свеча самоочищается, масло, попавшее на нее, выгорает, нагар не образуется. Если температура ниже 600 0 (например, при постоянном движении в городе), то свеча очень быстро покрывается нагаром, если выше 800 0 (при движении на мощностных режимах) возникает калильное зажигание. Поэтому стоит подбирать свечи для своего двигателя согласно рекомендациям его завода-производителя.

Проверка свечей зажигания

Выкрутите свечи и осмотрите их центральные электроды. Если они черные — топливная смесь переобогащается, если они светлые (светло-серые) — топливная смесь обеднена.

Дефектные свечи меняем. Подробнее об этом на странице «Неисправности свечей зажигания» .Применяемость свечей зажигания для разных двигателей можно посмотреть на странице «Применяемость свечей зажигания для двигателей автомобилей ВАЗ»

Искровые свечи зажигания работают по принципу поджига топливо-воздушной смеси электрическим разрядом напряжением в несколько тысяч или десятков тысяч вольт, возникающим между электродами свечи. Свеча срабатывает в определенный момент на каждом цикле работы двигателя.

В четырехтактных бензиновых двигателях типа DOHC искровые свечи зажигания расположены обычно следующим образом:

[свернуть]

Конструкция и параметры искровых свечей зажигания

Раскрыть...

Искровые свечи зажигания не претерпели принципиальных изменений с момента их появления в начале XX века и развиваются по пути усовершенствования элементов конструкции, материалов и технологии производства.

Детали свечи, находящиеся в камере сгорания, подвергаются высоким термическим, механическим, электрическим и химическим нагрузкам. Температура изменяется от отрицательной (при стоянке машины на морозе) до 2500 градусов Цельсия, давление газов достигает 50-60 бар, а напряжение на электродах доходит до 20кВ и выше. Такие жесткие условия работы определяют особенности конструкции свечей и применяемых материалов, т.к. от бесперебойности искрообразования драматически зависит работа двигателя в целом.

Устройство искровых свечей

Раскрыть...

Устройство свечи зажигания с плоской опорной поверхностью: 1 — контактная (штекерная) гайка; 2 — изолятор; 3 — оребрение изолятора (барьеры тока); 4 — контактный стержень; 5 — корпус свечи; 6 — токопроводящий стеклогерметик; 7 — уплотнительное кольцо; 8 — центральный электрод с медным сердечником (биметаллический); 9 — теплоотводящая шайба; 10 — тепловой конус изолятора; 11 — боковой электрод («массы»); h — искровой зазор.

Основными элементами любой свечи зажигания являются металлический корпус, керамический изолятор, электроды и контактный стержень. Корпус служит для заворачивания свечи и удержания её в резьбе головки блока цилиндров, для отвода тепла от изолятора и электродов, а также служит проводником электричества от «массы» автомобиля к боковому электроду. Помимо резьбы, на нем есть шестигранник «под ключ» и специальное покрытие для защиты от коррозии. Опорная поверхность (ею свеча «упирается» в головку) может быть плоской или конической. В первом случае для надежной герметизации свечного отверстия используется уплотнительное кольцо. Коническая поверхность сама хорошо герметизирует соединение свечи с головкой блока.

Контактный вывод, расположенный в верхней части свечи, предназначен для подключения свечи к высоковольтным проводам системы зажигания или непосредственно к индивидуальной высоковольтной катушке зажигания. Наиболее часто провод к свече зажигания имеет защёлкивающийся контакт, который надевается на вывод свечи. В других типах конструкции провод может крепиться к свече гайкой или быть универсальным: в виде оси с резьбой и навинчивающегося защёлкивающегося контакта.

Изолятор, как правило, делается из алюминиево-оксидной керамики, которая должна выдерживать температуры от 450 до 1000 градусов и напряжение до 60000 вольт. Точный состав изолятора и его длина частично определяют тепловую маркировку свечи. Часть изолятора, непосредственно прилегающая к центральному электроду, наиболее сильно влияет на качество работы свечи зажигания.

Для предотвращения утечки электричества на поверхности изолятора в его «верхней» части делают кольцевые канавки (барьеры тока) и наносят специальную глазурь, а часть изолятора со стороны камеры сгорания выполняют в форме конуса (называемого тепловым).

Боковой электрод, как правило, изготавливается из легированной никелем и марганцем стали и приваривается контактной сваркой к корпусу. Для улучшения отвода тепла от теплового конуса центральный электрод могут делать из двух металлов (биметаллический электрод) — центральную часть из меди заключают в жаростойкую оболочку. Биметаллический боковой электрод обладает повышенным ресурсом благодаря тому, что хорошая теплопроводность меди препятствует чрезмерному его нагреву. По внешнему виду такие свечи ничем не отличаются от обычных, но диапазон рабочих температур у них значительно расширен, поэтому они получили название «термоэластик». Такие свечи способны достигать нижнего температурного предела тепловой характеристики при наименьшей эффективной мощности, развиваемой двигателем.

Для увеличения долговечности электроды дорогих свечей снабжают напайками из платины и других благородных металлов. Форма бокового электрода в зоне пробоя напоминает сопло Лаваля, за счёт чего создаётся поток раскалённых газов, истекающих из внутренней полости свечи и эффективно поджигающий рабочую смесь в камере сгорания.

Центральный электрод, как правило, соединяется с контактным выводом свечи через керамический резистор для снижения радиопомех от системы зажигания. Герметизация соединения этих деталей осуществляется токопроводящей стекломассой (стеклогерметиком). Центральный электрод также может быть биметаллическим. Наконечник центрального электрода изготавливают из железо-никелевых сплавов с добавлением меди, хрома и благородных и редкоземельных металлов. Обычно центральный электрод - наиболее горячая деталь свечи. Кроме того, центральный электрод (катод) должен для облегчения искрообразования обладать хорошей способностью к эмиссии электронов.

Т.к. напряжённость электрического поля максимальна по краям электрода, искра проскакивает между острым краем центрального электрода и краем бокового электрода. В результате этого края электродов подвергаются наибольшей электрической эрозии. Раньше свечи нуждались в периодическом ручном удалении следов эрозии (наждаком). Сейчас, благодаря применению сплавов с редкоземельными и благородными металлами (иттрий, иридий, платина, вольфрам, палладий), нужда в зачистке электродов практически отпала, а срок службы существенно вырос (с поправкой на «паленый» бензин, содержащий железосодержащие присадки и очень быстро убивающий любые свечи).

Классическая конструкция свечи предполагает один центральный электрод и один боковой. Однако есть и двух-, трех- и даже четырехэлектродные модели. Вопреки распространенному мнению, на многоэлектродной свече образуется всего одна искра: высокое напряжение «пробьет» тот промежуток, который будет иметь наименьшее сопротивление. Тем временем другие электроды фактически препятствуют нормальному распространению пламени и ухудшают охлаждение теплового конуса. Они лучше раскаляются в момент появления искры и медленнее «остывают» в ожидании следующего электрического импульса. Плюсом является бОльшая стабильность (хоть один из электродов да обеспечит наилучшие условия для пробоя) и бОльший ресурс (с поправкой на паленое топливо).

С 1999 года на рынке появились так называемые плазменно-форкамерные свечи, где роль бокового электрода играет сам корпус свечи. При этом образуется кольцевой (коаксиальный) искровой зазор, где искровой заряд перемещается по кругу. Эффективность таких свечей поставлена под сомнение многочисленными экспериментами (что логично, т.к. конструкция такой свечи не позволяет эффективно распространяться фронту пламени).

[свернуть]

Искровой зазор

Раскрыть...

Зазор - минимальное расстояние между центральным и боковым электродом. Величина зазора - это компромисс между «мощностью» искры, т.е. размерами плазмы, возникающей при пробое воздушного зазора, и возможностью пробить этот зазор в условиях сжатой воздушно-бензиновой смеси. Факторы, определяемые зазором:

  • Чем больше зазор - тем больше размеры искры, тем больше вероятность воспламенения смеси и больше зона воспламенения. Это положительно влияет на потребление топлива, равномерность работы, понижает требования к качеству топлива, повышает мощность. Слишком увеличивать зазор тоже нельзя, иначе высокое напряжение будет искать более лёгкие пути - пробивать высоковольтные провода на корпус, пробивать изолятор свечи и т.д.
  • Напряжённость поля в зазоре определяется формой электродов. Чем они острее - тем больше напряжённость поля в зазоре и легче пробой (как у иридиевых и платиновых свечей с тонким центральным электродом).
  • Пробиваемость зазора зависит от плотности газа в зазоре, т.е. от плотности воздушно-бензиновой смеси. Чем она больше - тем сложнее ее пробить.

Величина искрового зазора указывается в инструкции по эксплуатации автомобиля (но может быть указана также на упаковке или в маркировке свечи) и находится в пределах от 0,5 до 2 мм. В зависимости от конструкции электродов зазор бывает регулируемым (за счет подгибания бокового электрода) и нерегулируемым (в свечах с несколькими «объединенными» боковыми электродами или не имеющих боковых электродов).

[свернуть]

Калильное число

Раскрыть...

Калильное число - величина, характеризующая свечу зажигания, пропорциональная среднему давлению, при котором в процессе испытаний свечи на моторной тарировочной установке начинает появляться калильное зажигание (неуправляемый процесс воспламенения рабочей смеси от раскаленных элементов свечи). Калильное число свечи должно строго соответствовать рекомендованному для конкретного двигателя. Допускается непродолжительное использование свечей с несколько большим значением калильного числа, но категорически запрещается использовать свечи с меньшим значением, т.к. это может привести к пробою прокладки головки блока цилиндров, прогоранию поршней, клапанов и т.д.

Российская промышленность выпускает свечи зажигания с калильными числами 8, 11, 14, 17, 20, 23 и 26. За рубежом не существует единой шкалы калильных чисел. Калильное число обладает следующей тепловой характеристикой:

  • Горячие свечи 11-14;
  • Средние свечи 17-19;
  • Холодные свечи 20 и более;
  • Унифицированные свечи 11-20.

У российских свечей калильное число определяется на специальной одноцилиндровой установке с наддувом. Давление наддува повышается до тех пор, пока не начнется калильное зажигание. При этом фиксируется среднее индикаторное давление цикла, которое и является калильным числом. Чем выше литровая мощность двигателя, чем выше степень сжатия, номинальная частота вращения, тем больше должно быть калильное число (например, как в двигателях с воздушным охлаждением и в двухтактных двигателях).

Старая маркировка калильного числа свечей ряда зарубежных фирм производилась по времени (в секундах), после которого на специальной установке начиналось калильное зажигание. Эта величина примерно в 10 раз превышает показатель калильного числа российских свечей. В настоящее время большинство фирм обозначают калильное число чисто условно.

[свернуть]

Таблица взаимозаменяемости свечей

Раскрыть...

Таблица взаимозаменяемости свечей от разных производителей. Первоисточники: по калильному числу / просто так (если различаются). Прочерк — аналог отсутствует.

Россия Beru Bosch Brisk Champion NGK Nippon Denso Autolite Eyquem Magnetti Marelli
А11,А11-1,А11-3 14-9A W9A N19 L86 B4H W14F 425 406 FL4N
А11Р 14R-9A WR9A NR19 RL86 BR4H W14FR 414 FL4NR
А14В, А14В-2 14-8B W8B N17Y L92Y BP5H W16FP 275 550S FL5NR
А14ВМ 14-8BU W8BC N17YC L92YC BP5HS W16FP-U 275 C32S F5NC
А14ВР 14R-7B WR8B/ WF8B NR17Y BPR5H W14FPR FL5NPR
А14Д 14-8C W8C L17 N5 B5EB W17E 405 FL5L
А14ДВ 14-8D W8D L17Y N11Y BP5E W16EX 55 600LS FL5LP
А14ДВР 14R-8D WR8D LR17Y NR11Y BPR5E W16EXR 4265 FL5LPR
А14ДВРМ 14R-8DU WR8DC LR17YC RN11YC BPR5E/ BPR5ES W16EXR-U 65 RC52LS F5LCR
А17В 14-7B W7B N15Y L87Y BPR5ES/ BP6H W20FP 273 600S FL6NP
А17Д 14-7C W7C L15 N4 BP6H/ B6EM W20EA 404 FL6L
А17ДВ, А17ДВ-1, А17ДВ-10 14-7D W7D L15Y N9Y B6EM/ BP6E W20EP 64 707LS FL7LP
А17ДВМ 14-7DU W7DC L15YC N9YC BP6E/ BP6ES W20EP-U 64 C52LS F7LC
А17ДВР 14R-7D WR7D LR15Y RN9Y BP6ES/ BPR6E W20EXR 64 FL7LPR
А17ДВРМ 14R-7DU WR7DC LR15YC ТRN9YC/ RN9YC BPR6ES W20EPR-U 64 RC52LS F7LPR
АУ17ДВРМ 14FR-7DU FR7DCU DR15YC RC9YC BCPR6ES Q20PR-U 3924 RFC52LS 7LPR
А20Д, А20Д-1 14-6C W6C L14 N3 B7E W22ES 4054 FL7L
А23-2 14-5A W5A N12 L82 B8H W24FS 4092 FL8N
А23В 14-5B W5B N12Y L82Y BP8H W24FP 273 755 FL8NP
А23ДМ 14-5CU W5CC L82C N3C B8ES W24ES-U 403 75LB CW8L
А23ДВМ 14-5DU W5DC L12YC N6YC BP8ES W24EP-U 52 C82LS F8LC

[свернуть]

Тепловая характеристика

Раскрыть...

Верхний температурный предел тепловой характеристики - рабочая температура свечи, при которой возникает калильное зажигание. Составляет около 900 градусов. Слишком высокая температура свечи вредна ее повышенным износом или разрушением. Нижний температурный предел тепловой характеристики - минимальная температура, при которой свеча начнет самоочищаться от нагара. Находится в пределах 350-400 градусов. В нормальных условиях правильно подобранная свеча самоочищается достаточно эффективно, кроме случаев двигателей непосредственного впрыска (GDI), длительное время работавших в режиме малой нагрузки. Различают следующие виды свечей по этой относительной характеристике:

  • «Горячие» свечи - предназначены для применения на малофорсированных двигателях и двигателях для низкооктанового топлива, где необходимо достижение температуры самоочищения от нагара при относительно небольших тепловых нагрузках. Свечи «горячее» положенных для данного двигателя будут вызывать калильное зажигание. Имеют меньшее, чем «холодные», калильное число.
  • «Холодные» свечи - предназначены для использования на высокофорсированных двигателях и высокооктанового топлива для нагрева меньше температуры калильного зажигания при максимальной мощности двигателя. Свечи «холоднее» для данного двигателя не будут достигать температуры самоочищения от нагара и перестанут работать через короткий промежуток времени.
  • «Средние» свечи - занимают промежуточное положение между горячими и холодными (самые распространенные).
  • «Оптимальные» свечи - конструкция свечей разработана таким образом, что теплопередача от центрального электрода и изолятора оптимальна для данного конкретного двигателя.
  • «Унифицированные» свечи - калильное число захватывает диапазон холодных и горячих свечей. Именно благодаря «полуоткрытости» свечи ей не страшны проблемы вентиляции и засорения продуктами неполного сгорания.

Чем длиннее тепловой конус, тем больше его площадь (нагревается до температуры самоочищения при меньшей тепловой нагрузке) и тем лучше он обдувается газами (дополнительно ускоряет прогрев и улучшает очищение от нагара), т.е. увеличение длины теплового конуса приводит к уменьшению калильного числа (свеча становится «горячее»). Чтобы оставить его неизменным, в конструкции применяют биметаллические центральные электроды, лучше отводящие тепло. Такие свечи (их называют термоэластичными) быстрее прогреваются до температуры самоочищения (как горячие), но вызывают калильное зажигание при высоких тепловых нагрузках (как холодные).

[свернуть]

Нагар и самоочищение

Раскрыть...

Пока тепловой конус не нагреется до 400 градусов, на нем образуется нагар, приводящий к утечкам тока и нарушению искрообразования. По достижении этой температуры нагар начинает сгорать, происходит самоочищение свечи. Особенность в этом процессе представляют двигатели непосредственного впрыска (например, GDI), в которых эффективность впрыска (малое количество топлива при впрыске и, следовательно, малое количество тепла) приводит к «плановой» невозможности самоочищения свечей на малых нагрузках.

При неисправности системы питания и/или неверно выставленном угле опережения зажигания нагар может полностью заполнить пространство между электродами, образуя электропроводный мостик, что полностью выведет свечу из строя. Серьезно «закоченые» свечи нельзя очищать металлической щеткой, т.к. на поверхности электродов большинства современных свечей производится напыление благородных металлов, и абразивная обработка резко ухудшит ее характеристики. Кроме того, есть риск изменения искрового промежутка и еще большего ухудшения работы. В исправном двигателе свечи всегда самоочищаются на режимах средней или высокой стабильной нагрузки. Если нагар не исчез после примерно 100 километров движения в таком режиме, значит, причина его возникновения кроется в неисправности какой-либо из систем двигателя. В этом смысле свечи зажигания являются идеальным «бесплатным» детектором проблем двигателя.

Осмотр свечи нужно проводить после продолжительной работы двигателя, в идеале — после длительной поездки по загородному шоссе (ровные средние нагрузки на протяжении не менее ста километров). Ошибкой является осмотр свечей после холодного старта двигателя при минусовой температуре — разумеется, они будут черные от нагара, это ни о чем не говорит. В режиме холодного старта смесь принудительно обогащается, а тепла для самоочистки еще не хватает. Неустойчивая работа в таком режиме может быть следствием другой неисправности, скажем, плохого состояния высоковольтных проводов.

Рассмотрим основные варианты состояния свечей.


Вид загрязнений свечи Возможная причина Сопутствующий признак Способ устранения
Тонкий слой светло-серого или светло-коричневого налета
Двигатель находится в исправном состоянии. Свеча соответствует двигателю по калильному числу Расход топлива, моторного масла и токсичность ОГ соответствуют норме Очистить свечи от налета и при необходимости отрегулировать искровой зазор
Матовая черная копоть
Неправильная регулировка карбюратора или угла опережения зажигания Повышенный расход топлива, снижение мощности двигателя, неустойчивая работа на холостом ходу, затруднен пуск. Обычно — переобогащенная смесь Отрегулировать карбюратор или зажигание
Низкая компрессия из-за негерметичности клапанов или износа цилиндро-поршневой группы Отремонтировать двигатель
Загрязнение воздушного фильтра Заменить фильтр
Неправильная установка искрового зазора Отрегулировать искровой зазор
Трещина в изоляторе Заменить свечу
Калильное число свечи больше необходимого для данного двигателя Заменить свечу
Блестящий черный маслянистый нагар
Попадание масла в камеру сгорания Повышенный расход масла, неустойчивая работа двигателя на холостом ходу, затруднен пуск Заменить маслосъемные колпачки клапанов или кольца поршней
Толстый слой рыхлых отложений (возможно, с запахом сероводорода)
Низкое качество бензина или масла, использование этилированного бензина Заменить топливо или моторное масло. Промыть систему смазки
Превышение допустимых норм концентрации металлосодержащих присадок в бензине Перебои в работе двигателя, затруднен пуск Заменить топливо
Оплавление, выгорание электродов

Трещины на тепловом конусе изолятора или его разрушение

Калильное число свечи меньше необходимого для данного двигателя Перебои в работе двигателя, затруднен пуск Заменить свечу
Неисправность системы охлаждения Перегрев двигателя Устранить неисправность системы охлаждения
Слишком большой угол опережения зажигания Детонация в цилиндрах (характерный металлический стук) Отрегулировать угол опережения зажигания
Применение низкооктанового топлива Прекратить издеваться над двигателем
Чистый изолятор белого цвета
Переобедненная смесь, перегрев свечи Может проявляться калильное зажигание Помним, что перегрев камеры сгорания ведет к прогару выпускных клапанов

При остекленении свечи поверхность изолятора приобретает желтоватый цвет с глянцевым блеском. Образование глазури происходит из-за быстрого повышения температуры в камере сгорания в момент резкого нажатия на педаль газа. При разогреве находящиеся на поверхности изолятора отложения плавятся, образуя электропроводное стекловидное покрытие. В результате возникают сбои искрообразования, особенно на высоких оборотах двигателя. В большинстве случаев восстановлению такие свечи не подлежат.

[свернуть]

[свернуть]

Снятие и установка

Раскрыть...

Демонтаж свечи зажигания с двигателя производят в следующей последовательности:

  • снимают наконечник провода высокого напряжения (недопустимо тянуть за провод);
  • отворачивают свечу на один оборот специальным ключом, затем поверхность в углублении головки цилиндра вокруг нее очищают сжатым воздухом или кисточкой, чтобы частицы грязи не попали в резьбу или камеру сгорания;
  • выворачивают свечу;
  • проверяют наличие уплотнительного кольца (для свечей с плоской опорной поверхностью);
  • тщательно осматривают свечу на наличие механических повреждений изолятора, корпуса и электродов.

Установка производится в следующей последовательности:

  • новые свечи, покрытые консервационной смазкой, необходимо протереть и промыть в растворителе (бензине). Допустимо прокипятить свечи в воде и просушить;
  • внимательно осматривают свечу на наличие механических повреждений, уплотнительного кольца, контактной гайки;
  • проверяют и при необходимости регулируют искровой зазор (подгибая электрод «массы») до величины, указанной в инструкции по эксплуатации автомобиля;
  • свечу заворачивают рукой в свечное отверстие и затягивают специальным ключом с усилием 2 кгм.

[свернуть]

Проверка работоспособности свечей

Раскрыть...

Для проверки бесперебойности искрообразования свечу устанавливают в барокамеру (при атмосферном давлении свеча ведет себя иначе, чем в камере сгорания), которая обеспечивает давление газа до 10 кг/см2 и позволяет наблюдать искрообразование между электродами. Оно должно быть бесперебойным после подведения к свече напряжения не менее 22 кВ.

Для проверки герметичности соединения свечу устанавливают в барокамеру, создающую давление до 20 кг/см2, и измеряют утечку газа не менее 30 секунд. Ее величина не должна превышать 5 см3/мин. При этом не учитывают утечку через соединения свечи с барокамерой. Допускается проводить контроль герметичности на свечах зажигания, не укомплектованных уплотнительными кольцами. При техническом обслуживании автомобиля разрешается проверять утечку газа через соединения деталей свечей зажигания под давлением 10 кг/см2.

[свернуть]

Ресурс свечей зажигания

Раскрыть...

Современные свечи зажигания при эксплуатации на полностью исправных и отрегулированных двигателях должны в соответствии с ОСТ 37. 003 081 бесперебойно работать в течение 30 тыс.км пробега для классической и 20 тыс.км для электронной системы зажигания. Фактический ресурс может быть выше примерно вдвое, но труднодостижим на практике, как любой сферический конь в вакууме. При условии исправности всех систем двигателя и нормальном качестве топлива ресурс современных свечей составляет в среднем 50 тыс.км.

Особенностью России является широкое применение запрещенных ферроценовых присадок, повышающих октановое число «паленого» бензина. Такие присадки содержат железо, при сгорании оседающее на свече и приводящее к нарушении изоляции между электродами и к невозможности получить нормальную искру. Как показывает практика, нарваться на такой бензин можно на любой, сколь угодно «именитой» заправке, и доказать что-либо потом невозможно. Пораженные такими присадками свечи восстановлению не подлежат. Поэтому на Руси нет смысла использовать дорогие и «долгоиграющие» свечи.

В процессе эксплуатации зазор между электродами в среднем увеличивается на 0.015 мм за каждые 1000км пробега. Поэтому рекомендуется периодически (через 5 или 10 тыс.км) проводить осмотр и ТО свечей (фактически — регулировку зазора до требуемой величины). Очистить свечи зажигания можно с помощью растворителей и щетки (не металлической). На станциях технического обслуживания свечи очищают на специальных пескоструйных аппаратах. Также рекомендуется менять свечи местами, это связано с тем, что средние цилиндры работают с более высокими температурами, чем крайние. Замена, согласно рекомендациям большинства изготовителей, рекомендуется после 30000км пробега автомобиля.

[свернуть]

Маркировка свечей зажигания

Раскрыть...

На свече зажигания российского производства должны быть указаны:

  • Расширение выпуска свечей с выступанием теплового конуса изолятора из металлического корпуса, что обеспечивает улучшенное самоочищение от нагара.
  • С целью увеличения срока эксплуатации, не требующего регулировки искрового зазора, выпускают свечи зажигания с несколькими электродами «массы».
  • Для улучшения процесса искрообразования (воспламеняющей способности искры) разрабатывают свечи с увеличенным искровым зазором, изменяют форму и профиль электродов, а на их поверхности наносят платину.
  • Расширение выпуска свечей с использованием поверхностного разряда (в которых нет электрода «массы», а искра идет от центрального электрода к корпусу по поверхности изолятора).
  • Для снижения уровня радиопомех все больше свечей зажигания снабжаются встроенным резистором.
  • Каждый водитель знает, что состояние свечей зажигания влияет на работу двигатель автомобиля. О свечах необходимо знать все (цвет налета, зазоры, когда нужно их менять и многой другой информации).

    Во время работы свечей на них воздействует несколько типов нагрузок:

    • Электрические.
    • Тепловые.
    • Механические.
    • Химические.

    Тепловые нагрузки. Свечи устанавливаются таким образом, чтоб ее рабочая часть находилась в камере сгорания, а контактная – в подкапотном пространстве. Температура газов в камере сгорания может достигать 900°С, а в подкапотной части – до 150°С.

    Тепловому напряжению и деформации способствует разная температура свечей из-за неравномерного нагрева в различных сечениях, которая отличается на сотни градусов.

    Механические нагрузки. К тепловым нагрузкам на свечи еще добавляется вибрационная нагрузка из-за разного давления в цилиндре двигателя, которое на впуске ниже 50кгс/см², а при сгорании намного выше.

    Химические нагрузки. Во время сгорания образовывается очень много химически активных веществ, которые вызывают окисление всех материалов, потому что рабочая температура электродов достигает 900°С.

    Электрические нагрузки. Во время искрообразования изолятор свечи находится под воздействием импульса высокого напряжения, которое иногда достигает 20-25 кВ. в некоторых системах зажигания напряжение может создаваться намного больше, но пробивное напряжение искрового зазора его ограничивает.

    Определение состояние двигателя по нагару на свечах зажигания

    Диагностика двигателя по свечам зажигания должна выполнятся на разогретом двигателе. Но для того, чтоб сделать это правильно необходимо пройти несколько этапов:

    1. Установить новые свечи зажигания.
    2. Проехать на них 150-200 км.
    3. Выкручивать свечи и обратать внимание на цвет нагара, который расскажет, что работает неправильно.

    На каждую поломку двигателя на свечах зажигания образовывается налет определенного цвета, по которому есть возможность определить недостаток в работе двигателя.

    Маслянистый черный нагар

    Маслянистый черный нагар образовывается в резьбовом соединении, при избыточном попадании масла в камеру сгорания, также он проявляется, при выходе дыма синего цвета из трубы в начале работы двигателя. Это происходит по нескольким причинам:

    • Маслосъемные колпачки на поршне уже изношены.
    • Износились поршневые кольца на клапане.
    • Износились направляющие втулки клапана.

    Благодаря этому нагару видно, что детали цилиндро-поршневой группы уже изношены, и для качественной работы двигателя их необходимо заменить.

    Сухой черный нагар в виде сажи

    Этот нагар называется «бархатистым». У него нет масляных подтеков. Он появляется из-за того, что в камеру сгорания попадает топливо-воздушная смесь, которая чрезмерно обогащена бензином. Этот нагар появляется при следующих неисправностях:

    • Свечи зажигания работают не правильно. Это говорит о том, что не хватает энергии для получения искры необходимой мощности.
    • При появлении такого нагара необходимо проверить компрессию в цилиндрах , потому что она очень низкая.
    • При неправильной работе карбюратора на свечах всегда будет такой нагар, тогда рекомендовано произвести настройку либо замену карбюратора.
    • В инжекторном двигателе это обозначает, что проблемы с регулятором давления топлива, он очень сильно обогащает воздушную смесь. Это также приводит к увеличению расход топлива.
    • Также рекомендовано проверить воздушный фильтр двигателя , если он засорен, его пропускная способность существенно снижается, кислорода в камере сгорания не хватает, что не дает топливу сгорать полностью и этот нагар оседает на электроде свечи зажигания.

    Такой нагар оседает на электроде свечи зажигания и не доходит до резьбового соединения.

    Красный нагар на свечах зажигания

    Таким цвета свечи зажигания становятся после использования различных присадок для топлива или масла. Сгорают химические добавки, которые залиты в большом количестве. При их постоянном использовании необходимо уменьшить их концентрацию и постоянно очищать электрод от нагара, потому что со временем слой нагара будет расти, а прохождение искры ухудшаться — работа двигателя будет нестабильной.

    Как только начинает появляться красный нагар на свечах зажигания, его необходимо удалять, и рекомендовано произвести замену горючего, куда добавлялась присадка.

    Белый нагар на свечах зажигания

    Белый нагар появляется в разных проявлениях. Иногда у него глянцевая поверхность, потому что в ней присутствуют крупинки металла или оседают на электроде крупными белыми отложениями.

    Глянцевый белый нагар

    Этот цвет нагара очень опасный для двигателя. Это означает, что свечи зажигания не охлаждаются и при этом нагреваются поршни, из-за чего образовываются трещины в клапане. Причина проста – перегрев двигателя . Могут быть другие причины появления этого нагара:

    • Бедная топливная смесь, которая поступает в камеру сгорания.
    • Впускным коллектором подсасывается лишний воздух.
    • Плохо настроенное зажигание — очень рано дает искру или идут пропуски.
    • Неправильный выбор свечей зажигания.

    При появлении белого нагара с крупинками металла, машину эксплуатировать не рекомендуется. Ее необходимо отвезти в сервисный центр или решить проблему самостоятельно.

    Слабовыраженный белый нагар

    При появлении белого нагара, который равномерно оседает на свечи зажигания, необходимо произвести замену топлива.

    Состояние свечей зажигания по внешнему виду

    Каждые 30-90 тыс. км пробега должна производиться замена свечей зажигания в зависимости от интенсивности и условий эксплуатация двигателя и типа установленных свечей.

    Замена свечей зажигания раньше срока

    Если при работе двигателя начали появляться сбои, тогда необходимо произвести замену свечей зажигания. По регламенту они должны служить до 30-90 тыс. км пробега, но практика показала, что после 15 тыс. км свечи могут потребовать замены.

    На сокращение работы свечей, влияет качество топлива, ямы на дорогах, от продолжительности работы двигателя на холостом ходу и многие другие фактороы.

    Неисправности свечей зажигания и их признаки

    Работа двигателя должна бы равномерной, как на холостых оборотах, так и под нагрузкой, а звук при работе должен быть «как часы». Если двигатель запускается с трудом, начинает увеличиваться расход топлива, теряются обороты при нагрузке, появляется шум или вибрация – это все симптомы неисправности свечей зажигания. Чтоб не произошла полная остановка двигателя необходимо постоянно контролировать состояние свечей зажигания.

    Как проверяются свечи зажигания

    Как только свечи загрязняются или выходят из строя, двигатель начинает троить, работать с перебоями и давать усиленную вибрацию. Свечи загрязняются или выходят из строя по одной, потому заменой необходимо найти загрязненную свечу. Для этого существует несколько способов:

    1. Самостоятельно проверить свечи зажигания.
    2. Использовать стенд для проверки свечей зажигания.

    Разновидности свечей зажигания, их выбор и производители

    Существует множество компаний, которые выпускают автомобильные свечи зажигания. Самые популярные и качественные свечи – это Denso, Bosh, NGK и Champion (самая молодая компания).

    Типы свечей зажигания:

    • Биметаллические свечи с центральным электродом.
    • Боковые свечи с биметаллическим электродом.
    • Платиновые свечи зажигания рекомендованы для использования при тяжелой эксплуатации автомобиля.
    • Иридиевые свечи зажигания снижают напряжение зажигания, дают быстрое воспламенение и обеспечивают защиту системы.

    Последние два вида свечей самые надежные и по качеству превзошли все остальные свечи.

    При выборе новых свечей зажигания нужно учитывать совместимость с конкретным двигателем. Свечи зажигания отличаются по размеру, резьбе, калильному числу и количеству электродов.

    Сбой процесса сгорания

    Иногда нормальный процесс сгорания нарушается, что влияет на надежность и срок эксплуатации свечи, а именно:

    1. Пропуски воспламенения, которые возникают из-за обедненной горючей смеси или недостаточной энергии искры. Из-за этого на электродах и изоляторе увеличивается слой нагара.
    2. Калильное зажигание. Перегретые участки поршня или свечи дают преждевременные или запаздывающие появление искры. Т.е. топливная смесь загорается от температуры, а нет от искры. Во время преждевременного калильного зажигания угол опережения увеличивается самопроизвольно, что дает высокую температуру и быстрый перегрев двигателя.Калильное зажигание повреждает выпускной клапан, поршень, поршневые кольца и прокладки головки блока цилиндра.
    3. Детонация появляется из-за недостаточной детонационной стойкости топлива. Детонация образовывает сколы и трещины на электродах, поршнях и цилиндрах, после чего электорды плавятся и полностью выгорают.При детонации появляются металлический стук, теряется мощность, появляется вибрация и увеличивается расход топлива, а также появляется черный дым из выхлопной трубы.
    4. Дизелинг. Бывает, что при выключенном зажигании на малых оборотах двигатель еще несколько секунд работает. Это происходит из-за того, что горючая смесь при сжатии самовоспламеняется.
    5. Нагар на свече появляется, когда температура поверхности достигает 200°С и более. Когда свечи от нагара очищают, их работоспособность восстанавливается.

    Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

    Около 100 лет назад, компанией Bosch была представлена свеча зажигания . Спустя непродолжительное время их начали повсеместно применять по всему миру , для поджигания смеси топлива и воздуха в двигателях .

    Они работают в жесточайших условия , постоянно подвергаясь воздействию высокой температуры (прим . 1000 градусов ) и высокому напряжению (до 40 тыс . вольт ).

    и принцип работы свечей зажигания

    Свечи зажигания устроены просто , по сути они состоят из проводника в центре , металлического корпуса к которому приварен боковой электрод, и изолятора . Несмотря на простоту своего устройства , они играют одну из важнейших ролей в работе двигателя автомобиля . Их обязанность заключается в поджигание горючей смеси, в любых условиях и при любой нагрузки на них.

    В момент , когда поршень в такте сжатия приходит в верхнюю мертвую точку , выбрасывается электрическая искра, воспламеняющие смесь из воздуха и горючего . Искра возникает между центральным и боковым электродами . Для ее возникновения , необходимо напряжения не менее 20 тыс . вольт . За его получения отвечает система зажигания , она преобразовывает 12 вольт получаемые с аккумулятора автомобиля , в 25 —35 тысяч вольт необходимые для нормальной работы свечи . Момент , когда должно подастся высокое напряжения определяется датчиком положения коленчатого вала .

    Существует три основных типа свечей зажигания которые сегодня широко применяются. Отличающихся они друг от друга особенностями конструкции и металлом из которого изготавливаются.

    Основные типы свечей зажигания:

    • Двухэлектродные;
    • Многоэлектродные;
    • Свечи из драгоценных металлов.

    Рассмотрим поподробней первые два типа.

    Двухэлектродные и многоэлектродные свечи зажигания

    Классической свечей зажигания считается двухэлектродная . Из названия может стать понятно , что данная свеча имеет два электрода один центральный , второй боковой . Между которыми возникает искра .

    Многоэлектродная это усовершенствованная классическая свеча . Она имеет так же один центральный электрод , а вот боковых электродов уже несколько может быть два , три и более . За счет увеличения их числа работа свечи стабилизируется и ее срок эксплуатации увеличивается . Работа двигателя при этом становится более ровной . Свечи данного типа также позволяют развивать ему большую мощность , а его экологические параметры становятся лучше .

    Холодные и горячие свечи зажигания

    Свечи зажигания различаются не только по типу , а также по своим характеристикам и подбираются индивидуально в зависимости от конструкции двигателя . По характеристикам они делятся на три различные группы холодные , средние и горячие .
    Что бы понять , что это означает и зачем они нужны , нужно разобраться что такое «калильное число » и «калильное зажигание ».

    • Калильным числом называют величину , показывающею время , через которое свеча достигает калильного зажигания . Чем выше у нее калильное число , тем меньше она будет нагреваться .
    • Калильным зажиганием называют негативный эффект , когда воспламенение горючей смеси в двигателе происходит не от свечи зажигания , а от нагревшихся элементов двигателя , чаще всего это бывает сама свеча зажигания . Этот эффект возникает если в автомобиле установлена свеча с неподходящим калильным числом .

    Условия работы свечей зажигание в летнее и зимнее время отличаются , поэтому в идеале лучше иметь в комплекте свечей для разного времени года .

    Например , в жаркую погоду , при езде на большой скорости свеча с низким калильным числом , быстро приведет к калильному заживанию . Что приводит к потере мощности . В этой ситуации свечу необходимо заменить на более «холодную »
    В обратной ситуации если при низкой температуре например в пробке , происходит ослабление искры . В холодную погоду возникнут проблемы с запуском двигателя . В случае возникновения этой проблемы необходимо поставить более «горячею » свечу .

    На выбор также влияет и размер двигателя , что он больше тем «холоднее » должна быть свеча .
    Группы свечей по калильному числу (Российская маркировка ):

    • В «горячею » группу входят свечи имущих калильное число от 11 до 14 .
    • В «среднею » группу входят свечи имеющих калильное число от 17 до 19 .
    • В «холодную » группу входят свечи имеющих калильное число от 20 до 26 .

    В дизельных двигателях очень часто используется калильное зажигание , то есть самовоспламенение , от накаленной свечи , что облегчает запуск двигателя при низких температурах .

    Форкамерная свеча зажигания

    Не так давно на рынке появился еще один тип свечей, так называем форкамерные или иначе плазменные. Производители таких свечей обещают значительное увеличение мощности двигателя, почти вечную работу и много других плюсов и преимуществ над другими свечами. Но как показывает практика большая часть этих обещания не сбываются, мощность двигателя по сравнению с классическими свечами не возрастает. В некоторых случаях на малых оборотах двигатель начинает «троить», а при высоких свечи могут начать плавятся. Единственным плюсом на деле оказывается количество вредных веществ в выхлопных газах, оно действительно снижается.

    Данная технология возможно будет иметь большое будущие, но на сегодняшний день она еще достаточно «сырая». Если вы не любитель экспериментов со своим автомобилем, и ван нужна его стабильная работа без сюрпризов, то лучше сразу отказаться от их приобретения.

    Неисправности свечей зажигания , признаки и причины

    Без рабочих свечей зажигания становится невозможным нормальная эксплуатация автомобиля .
    Рассмотрим признаки неисправности свечей , которые требующие срочного вмешательства водителя :

    • В разы увеличивается расход топлива ;
    • Происходит падение мощности и набора оборотов в работе силового агрегата ;
    • Тяжелый запуск двигателя ;
    • Возрастает концентрация CO в выхлопных газах ;
    • Ощущается подёргивания автомобиля во время движения ;
    • Не приятный шум доносящийся из двигателя на холостом ходу .

    Причины же таких явлений как привило просты :

    • Свеча просто выработала свой ресурс ;
    • Оплавление электродов или их коррозия ;

    • Не правильно подобрана свеча ;
    • Загрязнение (отложения , нагар , масло или топливо на электродах );
    • Повреждение или загрязнение изолятора .

    В случае возникновения подобных неисправностей , следует срочно принять меры . В противном случае может произойти детонация двигателя , что полностью выведет его из строя .

    Когда менять свечи зажигания на авто

    Неисправные свечи зажигания могут привести к тяжелы последствиям , таким как повреждения топливной системы и двигателя , а это грозит куда более крупными затратами . От их своевременной замены зависит сохранность силового агрегата автомобиля .

    Когда же всё —таки менять свечи зажигания ? Постараемся разобраться в этом вопросе . Такие признаки как:

    • Признаки износа самой свечи , они заметны невооруженным глазом . Это оплавления , сколы и коррозия .
    • Подтраивание при езде ;
    • Проблемы с запуском ;
    • Падение мощности и тяги двигателя ;
    • Увеличившие расхода топлива;
    • Регулярное образования нагара на свечах (каждые 20 —30 километров ).

    Могут свидетельствовать о необходимости замены свечей.
    В среднем свечи следует менять каждые 25 —30 тысяч пробега автомобиля .

    Нагар на свечах , анализ работы свечей зажигания

    Свечи устанавливаются в головке блока цилиндров, их электроды постоянно находятся в камере сгорания где температура может достигать трех тысяч градусов. Не смотря на свои небольшие размеры, при работе двигателя они постоянно находятся под воздействием высоких температур и электрического тока высокого напряжения. Подвергаются колоссальным перепадам давления, вибрации, воздействию разнообразных химических веществ находящихся в топливе.

    Существуют следующие причины образования нагара на электродах свечей зажигания :

    • Свеча неправильно подобраны по калильному числу (слишком холодная );
    • Проблемы в регулировки карбюратора (смесь поступает слишком переобогащенная );
    • Неправильно отрегулировано зажигание (ранее );
    • Прошиты высоковольтные провода или изолятор ;
    • Установлен неправильный зазор между центральным и боковым электродами .

    • Вследствие образования нагара на свече:
    • Снижается мощность двигателя и ухудшается его запуск ,
    • Возрастает расход топливо ,
    • Происходит дестабилизация работы на холостом ходу ,
    • Увеличивается выброс выхлопных газов .

    Свеча зажигания подвергается большому числу негативных воздействий и успешно работает при таких нагрузках.

    Правила ухода за свечами зажигания

    Нормальным цветом свечи считается от светло —серого до светло —коричневого . Их необходимо периодически очищать и производить проверку зазор а между электродами . На автомобиле находящимся в постоянной эксплуатации это необходимо делать каждые 10 тысяч километров . Если автомобиль в год проходит меньше 20 тысяч километров , то очистку и проверку зазора необходимо проводить два раза в году , рекомендуется это делать в конце весны и осени .
    Во время очистки свечей не рекомендуется пользоваться острыми предметами , так как это может привести к повреждению и образованию царапин на изоляторе . Хорошо подходит для очистки, щетка из тонкой металлической проволоки .
    Идеальным способом по очистки свечей считается:

    • Вымыть свечи в бензине ;
    • Просушить ;
    • На легком огне прокипятить в 20 процентной уксусной кислоте 20 —30 минут ;
    • После этого с помощью капроновой щенки очистить и вымыт их в воде .

    Внимание ! Этот метод необходимо использовать на открытом воздухе или в помещение имеющем очень хорошую вентиляцию , так как во время кипячение выделяются едкие пары уксуса .

    Как выбрать правильные и самые лучшие свечи зажигания

    При выборе свечи зажигания в первую очередь следует отталкиваться от размеров и калильного числа . С размерами сложностей не у кого возникнуть не должно . Калильное число же подбирается в зависимости от времени года и эксплуатации автомобиля .
    Так , например , для любителей быстрой езды калильное число должно быть выше , чтобы предотвратить перегрев, и следовательно , эффект калильного зажигания . При спокойной езде свечи берутся с меньшим калильным числом .
    В идеале, лучше всего изучить инструкцию автомобиля , в ней указывается какие свечи подходят для данного типа двигателя .

    На сегодняшний день лучшими свечами зажигания по праву считаются свечи из драгоценных металлов (платина , серебро , иридиум и т .д .). За эти свечи конечно придется заплатить внушающею сумму , но преимущества , которые они дают не менее внушительны :

    • Огромны срок эксплуатации ;
    • Хорошо самоочищаются ;
    • Значительное повышение экологических показателей ;
    • Увеличение мощности ;
    • Экономия (как бы это парадоксально не звучало , при их цене ).

    Такие свечи снижают расход топлива , при регулярной эксплуатации автомобиля способны окупится всего за пару месяцев .


    При выборе свечей из двухэлектродного и многоэлектродного выбора однозначно лучше сделать в пользу вторых , их параметры выше первых , а ценой не так уж и сильно они отличаются . Если же вы все таки решились купить свечи из драгоценного металла , то тут лучше не экономить , и взять качественные свечи от известного производителя , ведь как известно «скупой платит дважды ».

    Назначение свечи зажигания

    Одним из важнейших элементов систем зажигания двигателей внутрен-него сгорания являются свечи. Предназначены они для воспламенения горючей смеси в цилинд-рах при помощи искрового разряда.

    Искровой разряд, создаваемый системой зажигания, должен обладать энергией, необходимой для воспламенения горючей смеси на любом режиме работы двигателя при всех условиях эксплуатации.

    Различаются свечи по конструкции, размерам и тепловым характеристикам (калильным числам). Они могут быть неэкранированными, если их контактная часть выступает из металлического корпуса, и экранированными, у которых контактная часть расположена внутри металлического экрана.

    Искровой разряд у большинства свечей образуется непосредственно в искро-вом зазоре между электродами.

    При высоких значениях давления и температуры, возникающих в процессе работы двигателя, свечи должны надежно противостоять воздействию химиче-ски агрессивных продуктов сгорания. При этом изолятор должен выдерживать высокое электрическое напряжение.

    В процессе работы из-за неполноты сгорания в пристеночной зоне на рабо-чих деталях свечи образуется нагар. Чтобы избавиться от него свечи должны самоочищать-ся, автоматически поддерживая необходимую рабочую температуру в темпера-турных пределах, обеспечивающих удаление нагара и исключающих возмож-ность калильного зажигания.

    Свечи должны обеспечивать свою работоспособность в условиях с повышенными электри-ческими. механическими и химическими нагрузками. Непрерывный рост мощностей двигателей при ужесточении норм токсичности отработавших газов предъявляет к свечам все более жесткие требования по надежности и долговечности.

    От совершенства конструкции, качества изготовления и правильности подбо-ра свечи к двигателю сильно зависят его пусковые свойства, надежность, мощность, топливная экономичность, а также токсичность отработавших газов.

    В свою очередь, работоспособность свечи зависит от ее соответствия двига-телю по конструкции, основным размерам, величине искрового зазора и тепло-вой характеристике. Решающее влияние на надежность и долговечность свечи оказывает техническое состояние двигателя, характер и условия эксплуатации, качество топлива и моторного масла.

    Принцип действия свечи зажигания

    Газы и их смеси являются идеальными изоляторами. Но при приложении к электродам свечи достаточно высокого напряжения происходит пробой газа, и в искровом зазоре образуется ионизированный канал, проводящий электри-ческий ток.

    Явление пробоя газа высоким напряжением обусловлено тем, что случайные электроны, появление которых вызвано проникающим ионизирующим излучением, под воздействием электромагнитного поля получают ускорение в сторону положительного электрода.

    При столкновении с молекулами газа про-исходит цепная реакция ионизации, газ становится проводником, и образуется проводящий канал.

    Это явление называется пробоем, первой фазой существова-ния искры.

    После пробоя электрическое сопротивление канала стремится к нулю, сила тока увеличивается до сотен ампер, а напряжение уменьшается.

    Первона-чально процесс протекает в очень узкой зоне, но вследствие быстрого нарастания температуры канал расширяется со сверхзвуковой скоростью. При этом образу-ется ударная волна, воспринимаемая на слух как характерный треск, создаваемый искрой.

    Протекание сильного тока приводит к появлению электрической дуги, и температура в канале разряда при определенных условиях может достиг-нуть величины до 6000 К.

    Скорость расширения проводящего канала стабили-зируется. а затем уменьшается до нормальной скорости распространения пла-мени.

    При силе тока ниже 100 мА возникает тлеющий разряд, и температура уменьшается до 3000 К.

    По мере убывания энергии, запасенной во вторичной цепи системы зажигания, искровой разряд угасает.

    Тлеющий разряд более продолжителен, чем дуговой, и плазма разряда может перемещаться относительно электродов свечи с потоком смеси газов в цилиндре, возникающим вследствие движения поршня. Эффективная длина искры возрастает, а напряжение разряда увеличивается.

    Если напряжение оказывается недостаточ-ным для поддержания искры, появляется вероятность ее угасания и повторного возникновения. Из-за остаточной ионизации в искровом зазоре повторная искра возникает при значительно меньшем напряжении, она по целому ряду причин менее эффективна для воспламенения.

    В горючей смеси невозможно разделить процессы образования искрового разряда и воспламенения. Уже на этапе пробоя можно обнаружить продукты химических реакций горения. Эффективность первичного очага воспламенения определяется энергией искрового разряда и дополнительной энергией химических реакций горения.

    Если скорость расширения плазмы разряда превышает скорость распро-странения пламени, большее значение имеет энергия искры. Когда скорость расширения канала уменьшается, большее значение приобретает энергия химических реакций.

    Основные характеристики и определения свечи зажигания

    Верхний температурный предел те-пловой характеристики - величи-на, равная рабочей температуре свечи, при которой возникает ка-лильное зажигание.

    «Горячая» или «холодная» свечи - при прочих равных условиях имею-щие соответственно большую или меньшую рабочую температуру.

    Детонация - аномальный процесс сгорания, имеющий взрывной ха-рактер с резким местным повыше-нием температуры и образованием ударной волны. Сопровождается звонким металлическим стуком, вызванным вибрацией деталей двигателя.

    Искрообразование - возникновение искрового разряда в искровом за-зоре свечи в период от пробоя до угасания.

    Искровая свеча зажигания (свеча зажигания, свеча) - электриче-ский ввод в комбинации с искро-вым разрядником, предназначен-ный для воспламенения горючей смеси в цилиндре двигателя при помощи искрового разряда в зазо-ре между электродами.

    Искровой зазор - промежуток между изолированным центральным элек-тродом и боковым электродом -массы».

    Искровой разряд (электрическая искра, искра) - нестационарный электрический разряд в газе, воз-никающий в электрическом поле.

    Калильное зажигание - воспламене-ние горючей смеси, вызванное от-дельными перегретыми участками поверхностей выпускного клапана, поршня, цилиндра или свечи.

    Калильное число свечи - условная величина, численно равная средне-му индикаторному давлению в ци-линдре двигателя испытательной установки, при котором появляется калильное зажигание.

    Контактная часть свечи - элементы со стороны высоковольтного про-вода: головка изолятора, контакт-ная головка и контактная гайка.

    Нагар - образовавшиеся на поверхно-сти рабочей части свечи продукты неполного сгорания.

    Нижний температурный предел те-пловой характеристики - величи-на, равная температуре рабочей части свечи, при которой нагар вы-горает.

    Работоспособность свечи - обеспече-ние бесперебойного новообразова-ния и герметичности в условиях, пре-дусмотренных нормативно-техниче-ской документацией и стандартами.

    Рабочая камера свечи - полость, образуемая внутренней поверхно-стью корпуса и наружной поверхно-стью теплового конуса изолятора, сообщающаяся с камерой сгора-ния двигателя.

    Рабочая температура свечи - тем-пература рабочей части свечи на данном режиме работы двигателя.

    Рабочая часть свечи - элементы, расположенные непосредственно в камере сгорания: тепловой конус изолятора, торец центрального электрода и боковой электрод.

    Тепловой конус изолятора (юбка изолятора) - часть изолятора, расположенная в рабочей каме-ре свечи, воспринимающая своей поверхностью поток тепла от пламени и раскаленных сгоревших газов.

    Тепловая характеристика свечи - зависимость рабочей температу-ры свечи от режимов работы дви-гателя.

    Цоколь свечи - часть корпуса с резь-бой, предназначенная для уста-новки свечи в двигателе и для связи электрической цепи высоко-го напряжения системы зажигания с «массой».

    Шунтирование системы зажига-ния - короткое замыкание высоко-вольтной цепи системы зажигания на «массу» при утечке тока по нага-ру на поверхности теплового кону-са изолятора и (или) по токопро-водящему мостику в искровом зазоре.

    Электропроводный (токопроводя-щий) мостик - нагар, частично или полностью заполняющий искровой зазор, обладающий проводи-мостью и создающий электриче-скую цепь, замыкающую изолиро-ванный

    Условия работы свечи зажигания

    Современные поршневые двигатели внутреннего сгорания работают по четы-рехтактному или двухтактному рабочему циклу.

    Автомобильные двигатели, за ред-ким исключением, работают по четырехтактному циклу, осуществляемому за два полных оборота коленчатого вала и четыре хода поршня. Двигатели различного назначения особо малого рабочего объема работают по двухтактному циклу, осу-ществляемому за один оборот коленчатого вала и два хода поршня.

    В процессе работы двигателя на свечи воздействуют переменные электриче-ские, тепловые, механические и химические нагрузки с частотой, пропорцио-нальной частоте вращения коленчатого вала. Нагрузка на свечу при работе на двухтактном двигателе по меньшей мере вдвое больше, чем на четырехтактном, что существенно уменьшает срок ее службы.

    Тепловые нагрузки.

    Свечу устанавливают в головке блока цилиндров так, что ее рабочая часть находится в камере сгорания, а контактная - в подкапотном пространстве. Температура газов в камере сгорания изменяется от нескольких десятков градусов Цельсия на впуске до двух-трех тысяч при сгорании. Темпера-тура под капотом автомобиля может достигать 150°С.

    На многих автомобилях, и тем более мотоциклах, не исключена возможность попадания воды на свечу, особенно при мойке, что может привести к поврежде-нию изолятора.

    Из-за неравномерности нагрева температура 8 различных сечениях свечи мо-жет отличаться на сотни градусов, что приводит к тепловым напряжениям и дефор-мациям. Это усугубляется тем, что изолятор и металлические детали значительно отличаются по величине коэффициента термического расширения.

    Механические нагрузки.

    Давление в цилиндре двигателя изменяется от давления ниже атмосферного на впуске до 50 кгс/см2 и выше при сгорании. При этом свечи дополнительно подвергаются вибрационным нагрузкам.

    Химические нагрузки.

    При сгорании образуется целый «букет» химически активных веществ, способных вызвать окисление даже весьма стойких материа-лов, тем более что рабочая часть изолятора и электродов может иметь рабочую температуру до 900°С.

    Электрические нагрузки.

    При искрообразовании, длительность которого может составлять до 3мс, изолятор свечи оказывается под воздействием им-пульса высокого напряжения, максимальное значение которого зависит от дав-ления и температуры в камере сгорания и величины искрового зазора. В неко-торых случаях напряжение может достигать 20-25 кВ (амплитудное значение).

    Некоторые типы систем зажигания могут создавать напряжение значительно выше, но его ограничивает пробивное напряжение искрового зазора или напря-жение поверхностного перекрытия изолятора.

    В дуговой фазе разряда протекание сильного тока приводит к появлению го-рячих катодных пятен на электроде. Электрическая дуга не может существовать без электронов, излучаемых горячими катодными пятнами. Температура пятен достигает 3000К, что выше температуры плавления любого материала электро-дов. Это приводит к неизбежному микроскопическому испарению материала электрода с каждой новой искрой. Скорость электрической эрозии при прочих равных условиях пропорциональна энергии искрового разряда и температуре электрода.

    Отклонения от нормального процесса сгорания

    Нормальное сгорание рабочей смеси происходит со скоростью нескольких десятков метров в секунду и сопровождается относительно плавным нарастани-ем температуры и давления в цилиндре двигателя. В результате искрового зажи-гания образуется первичный очаг воспламенения, затем формируется фронт пламени, который быстро распространяется по всему объему камеры сгорания. Несгоревшее топливо догорает уже за фронтом пламени, в пристеночных зонах, в зазорах между поршнем и цилиндром.

    При некоторых условиях нормальный процесс сгорания может нарушаться, что отражается на надежности и сроке службы свечи. К таким нарушениям мож-но отнести следующие.

    Пропуски воспламенения.

    Могут возникнуть из-за переобеднения горючей смеси, пропусков искрообразования или недостаточной энергии искры. При этом усиливается процесс образования нагара на изоляторе и электродах.

    Калильное зажигание.

    Различают преждевременное, до появления искры, сопровождающее появление искры и запаздывающее, возникающее после воспламенения горючей смеси, вызванное перегретыми участками поверхностей выпускного клапана, поршня, цилиндра или свечи.

    Преждевременное воспламе-нение может быть вызвано тлеющими частицами нагара.

    При преждевременном калильном зажигании самопроизвольно увеличивается угол опережения зажига-ния. Это приводит к росту скорости нарастания давления и температуры, увели-чивается их максимальное значение, детали двигателя перегреваются и угол опережения зажигания еще больше увеличивается. Процесс принимает ускоря-ющийся характер до момента, когда угол опережения зажигания станет таким, что мощность двигателя начнет стремительно падать.

    При калильном зажигании вероятны повреждения выпускного клапана, поршня, поршневых колец, поверхности цилиндра и прокладки головки блока цилиндров. У свечи могут полностью или частично сгореть электроды, а в некоторых случаях может даже оплавиться изолятор.

    Детонация.

    Это явление возникает при недостаточной детонационной стойкости топлива в наиболее удаленном от свечи месте у горячих поверхно-стей, в результате сжатия еще не сгоревшей горючей смеси основным фронтом пламени.

    Ударные волны при детонации распространяются со скоростью 1500-2500 м/с, что превышает скорость звука. Они многократно отражаются от стенок и вызывают вибрацию и локальный перегрев цилиндра, поршня, клапанов и свечи. Возможны повреждения, как при калильном зажигании, так как перегретые детали становятся неспособными выдерживать возросшую нагрузку. На изоляторе свечи могут образоваться сколы и трещины, электро-ды могут оплавиться и даже полностью выгореть.

    Характерными признаками детонации являются металлические стуки, вибрация и потеря мощности двига-теля, увеличение расхода топлива и иногда появление черного дыма из выпуск-ной трубы.

    Особенностью детонации является некоторая задержка по времени от момента наступления необходимых условий до ее возникновения. Задержка необходима для образования активных веществ, способствующих возникновению взрывного процесса. В связи с этим детонация более вероятна при относительно небольших оборотах коленчатого вала и полной нагрузке.

    Наиболее вероятен выход на этот режим при движении автомобиля на подьеме при полностью нажатой педали газа. Если при этом мощность двигателя оказывается недостаточной, скорость автомобиля и частота вращения коленчатого вала уменьшаются. При недостаточ-ном в данных условиях октановом числе топлива возникает детонация, сопровож-даемая звонким металлическим стуком.

    Для устранения детонации достаточно перейти на пониженную передачу и увеличить обороты двигателя.

    Безусловным является требование использовать только топливо, соответст-вующее двигателю по октановому числу.

    Дизелинг.

    В некоторых случаях возникает крайне неравномерная неуправляе-мая работа бензинового двигателя с выключенным зажиганием при очень малой частоте вращения коленчатого вала. Это явление возникает из-за самовоспла-менения горючей смеси при сжатии, подобно тому, как это происходит в дизелях. В русской технической литературе «дизелинг» является сравнительно новым тер-мином, взятым из английского языка (dieseling).

    На двигателях, преимущественно карбюраторных, где не исключена воз-можность подачи топлива в цилиндр при выключенном зажигании, дизе-линг возникает при попытке остановить двигатель. При выключении зажигания двигатель продолжает работать с очень малыми оборотами и крайне неравно-мерно. Это может продолжаться несколько секунд, иногда дольше, затем двига-тель самопроизвольно останавливается. Объяснять это явление калильным за-жиганием от перегретой свечи было бы неправильно, она тут ни при чем.

    Причина дизелинга - в особенностях конструкции камеры сгорания и в каче-стве топлива (то есть дизелинг наступает при низкой стойкости топлива к само-воспламенению при сжатии). Свечи не могут являться причиной этого явления, так как их температура при малых оборотах явно недостаточна для воспламене-ния горючей смеси. Калильное зажигание возникает при температуре электро-дов и изолятора 850-900°С, такой величины она может достигнуть только при работе двигателя с максимальной мощностью. При остановке двигателя темпе-ратура этих деталей не превышает 350°С. Свеча в этих условиях не причина, а скорее «жертва», так как из-за неполноты сгорания усиливается процесс обра-зования нагара.

    Качество топлива и моторного масла

    Для обеспечения нормальной работы свечей автомобильные бензины долж-ны иметь достаточную детонационную стойкость, минимальное коррозионное воздействие и не иметь склонности к отложениям.

    Детонационная стойкость топлива зависит от его химического состава и структу-ры углеводородов, полученных при переработке нефти. Способность сопротив-ляться появлению детонации зависит от молекулярной массы - чем она выше, тем ниже стойкость топлива к детонации и наоборот. Стойкость бензина к детонации, так называемое октановое число, определяется в лабораторных условиях моторным и исследовательским методом на специальной моторной установке, путем сравнения стойкости испытуемого бензина и изооктана в смеси с гептаном. Октановое число изооктана принимают равным 100. Добавка гептана, нестойкого к детонации, снижает октановое число смеси.

    Промышленное производство бензина включает первичную и вторичную перера-ботку нефти с последующим смешением различных компонентов для получения необходимых свойств.

    При первичной переработке нефти (прямой перегонке) получают 10-25% бензина невысокого качества с октановым числом 40-50. При вторичной переработке неф-ти на крупных нефтеперерабатывающих заводах ее подвергают сложной технологи-ческой обработке с целью расщепления крупных молекул на мелкие, стабилизации химического состава и удаления вредных примесей, особенно серы. Выход бензи-на увеличивается до 60 %. Затем, путем смешения продуктов первичной и вторич-ной переработки нефти с добавлением различных присадок получают товарные бензины. Автомобильные бензины одной мархи, производимые на разных предпри-ятиях, в связи с разницей в технологии, имеют несколько различные составы.

    Для повышения октанового числа в бензин добавляют антидетонаторы - хи-мические соединения, подавляющие детонацию. Для удаления из камеры сгора-ния продуктов сгорания при применении антидетонационных присадок в топливо добавляют так называемые выносители - химические вещества, способствую-щие удалению продуктов сгорания. Тем не менее, условия работы свечи при ис-пользовании антидетонаторов существенно ухудшаются.

    Полностью удалить продукты сгорания не удается, и на электродах и тепло-вом конусе изолятора свечи образуется нагар. Под воздействием температуры эти отложения могут стать электропроводящими и вызвать частичный или пол-ный отказ 8 искрообразовании.

    Небольшие фирмы получают высокооктановые бензины АИ-95 и АИ-98 путем добавки в бензины АИ-92 и АИ-95 до 12-15% метил-трет-бутилового эфира, при этом бензин имеет необходимое качество. Достаточно широко используются раз-личные железосодержащие антидетонаторы и традиционный антидетонатор на ос-нове тетраэтилсвинца (ТЭС). В бензин добавляют краситель, так как ТЭС ядовит.

    К сожалению, недобросовестные производители изготавливают суррогатный бензин из низкооктановых бензинов, добавляя антидетонационные присадки свыше действующих норм.

    Сверхнормативное использование (более 37 мг Fe/л) содержащих железо антидетонаторов, например ФерРоз, ФК-4 или АПК вызывает отложение токо-проводящего нагара красного цвета на свечах. Этот нагар практически невоз-можно удалить, он приводит к полному и необратимому их отказу.

    Коррозионное воздействие бензина определяется содержанием кислот, щело-чей и сернистых соединений. Сильным коррозионным воздействием на металлы обладают минеральные кислоты и щелочи, их наличие в бензинах недопустимо. Сернистые соединения обладают высокой коррозионной активностью и способст-вуют образованию нагара, однако полностью избавиться от них непросто, особен-но при переработке сернистой нефти.

    Большинство моторных масел имеют нефтяное происхождение и содержат присадки: противостоящие износу, стабилизирующие, антикоррозионные, мою-щие и т. д. При сгорании масла, попавшего в камеру сгорания, образуются зольные остатки, которые, как и продукты неполного сгорания топлива, могут образовывать нагар на свечах.

    Образование нагара и самоочищение

    Нагар на свече - это твердая углеродистая масса с шероховатой поверхностью, образующаяся при температуре поверхности 200°С и выше. Свойства, внешний вид и цвет нагара зависят от условий его образования, состава топлива и моторно-го масла. В некоторых случаях, особенно на двухтактных двигателях, нагар может образовать в искровом зазоре электропроводный мостик и вызвать короткое замы-кание во вторичной цепи системы зажигания.

    И в том, и в другом случае происхо-дит частичное или полное прекращение искрообразования.

    Если свечу очистить от нагара, то ее работоспособность восстанавливается. Поэтому одно из важней-ших требований к свече - способность самоочищаться от нагара. Во многом степень совершенства ее конструкции определяется именно этим свойством.

    Удаление нагара, если в продуктах сгорания нет несгораемых веществ, проис-ходит при температуре 300-350°С - это нижний температурный предел работо-способности свечи.

    Эффективность самоочищения от нагара зависит от того, как быстро тепловой конус изолятора нагреется до этой температуры после пуска двигателя. С этой точки зрения длину теплового конуса изолятора необходимо выполнять как можно большей, а сам тепловой конус целесообразно выдвигать в камеру сгорания.

    То же самое требуется для предотвращения утечек тока и соот-ветственно для снижения потерь энергии зажигания.

    Тепловая характеристика

    Тепловая характеристика свечи - это зависимость температуры теплового конуса изолятора или центрального электрода от режима работы двигателя.

    Различие в тепловых характеристиках свечей достигают в основном за счет изменения длины теплового конуса изолятора.

    Удлинение теплового конуса изолятора приводит к увеличению подвода тепла в свечу и к росту ее рабочей температуры. Максимальное значение температуры не может превышать

    1,