Сравнительные характеристики авиационных профилей крыла. Самый лучший профиль для СЛА. Для малых скоростей

Полная аэродинамическая сила и ее проекции

При расчете основных летно-технических характеристик самолета, а также его устойчивости и управляемости необходимо знать силы и моменты, действующие на самолет.

Аэродинамические силы, действующие на поверхность самолета (давление и трение), можно привести к главному вектору аэродинамических сил , приложенному в центре давления (рис. 1), и паре сил, момент которых равен главному моменту аэродинамических сил относительно центра масс летательного аппарата.

Рис. 1. Полная аэродинамическая сила и ее проекции в двумерном (плоском) случае

Аэродинамическую силу обычно задают проекциями на оси скоростной системы координат (ГОСТ 20058-80). При этом проекцию на ось , взятую с обратным знаком, называют силой лобового сопротивления , проекцию на ось - аэродинамической подъемной силой , проекцию на ось - аэродинамической боковой силой . Эти силы могут быть выражены через безразмерные коэффициенты лобового сопротивления , подъемной силы и боковой силы , соответственно:

; ; ,

где - скоростной напор, Н/м 2 ; - воздушная скорость, м/с; r - массовая плотность воздуха, кг/м 3 ; S - площадь крыла самолета, м 2 . К основным аэродинамическим характеристикам относят также аэродинамическое качество

.

Аэродинамические характеристики крыла , , зависят от геометри­ческих параметров профиля и крыла, ориентации крыла в потоке (угла атаки a и скольжения b), параметров подобия (чисел Рейнольдса Re и Маха ),высоты полета H , а также от других параметров. Числа Маха и Рейнольдса являются безразмерными величинами и определяются выражениями

где a – скорость звука, n - кинематический коэффициент вязкости воздуха в м 2 /с, – характерный размер (как правило полагают , где – средняя аэродинамическая хорда крыла).Для определения аэродинамических характеристик самолета иногда исполь­зуются более простые, приближенные методы. Самолет рассматривается как совокупность отдельных частей: крыла, фюзеляжа, оперения, гондол двигателей и т.д. Определяются силы и моменты, действующие на каждую из отдельных частей. При этом используются известные результаты аналитических, численных и экспериментальных исследований. Силы и моменты, действующие на самолет, находятся как сумма соответствующих сил и моментов, действующих на каждую из его частей, с учетом их взаимного влияния.



Согласно предлагаемой методике, расчет аэродинамических харак­теристик крыла производится, если заданы некоторые геометрические и аэродинамические характеристики профиля крыла.

Выбор профиля крыла

Основные геометрические характеристики профиля задаются следующими параметрами. Хордой профиля называется отрезок прямой, соединенной две наиболее удаленные точки профиля. Хорда делит профиль на две части: верхнюю и нижнюю. Наибольший перпендикулярный хорде отрезок, заключенный между верхним и нижним обводами профиля, называется толщиной профиля c (рис. 2). Линия, соединяющая середины отрезков, перпендикулярных хорде и заключенных между верхним и нижним обводами профиля, называется средней линией . Наибольший перпендикулярный хорде отрезок, заключенный между хордой и средней линией профиля, называется кривизной профиля f . Если , то профиль называется симметричным .

Рис. 2. Профиль крыла

b - хорда профиля; c - толщина профиля; f - кривизна профиля; - координата максимальной толщины; - координата максимальной кривизны

Толщину c и кривизну профиля f , а также координаты и , как правило измеряют в относительных единицах , , , или в процентах , , , .

Выбор профиля крыла связан с удовлетворением различных требований, предъявляемых к самолету (обеспечение требуемой дальности полета, высокой топливной эффективности,крейсерской скорости , обеспечение безопасных условий взлета и посадки и др.). Так, для легких самолетов с упрощенной механизацией крыла следует обращать особое внимание на обеспечение максимального значения коэффициента подъемной силы, особенно на режиме взлета и посадки. Как правило, такие самолеты имеют крыло с большим значением относительной толщины профиля % = 12 ¸ 15%.

Для дальних самолетов с высокой дозвуковой скоростью полета, у которых увеличение на взлетно-посадочных режимах достигается благодаря механизации крыла, упор делается на достижение лучших характеристик на крейсерском режиме, в частности, на обеспечение режимов .

Для нескоростных самолетов выбор профилей производится из серии стандартных (обычных) профилей NACA или ЦАГИ, которые при необходи­мости могут быть модифицированы на этапе эскизного проектирования самолета.

Так, профили NACA с четырехзначными обозначениями могут быть использованы на легких тренировочных самолетах, а именно для концевых сечений крыла и хвостового оперения. Например, профили NACA2412 (относительная толщина % = 12%, координата максимальной толщины % = 30%, относительная кривизна % = 2%, координата максимальной кривизны % = 40%) и NACA4412 ( % = 12%, % = 30%, % = 4%, % = 40%) имеют достаточно высокое значение и плавные срывные характеристики в районе критического угла атаки .

Пятизначные профили NACA (серии 230) обладают наибольшей подъемной силой из всех стандартных серий, но их срывные характеристики менее благоприятны.

Профили NACA с шестизначным обозначением ("ламинарные") имеют низкое профильное сопротивление в узком диапазоне значений коэф­фициента . Эти профили очень чувствительны к шероховатости поверхности, загрязнениям, наростам .

Классические (обычные) профили, используемые на самолетах с малы­ми дозвуковыми скоростями, отличаются достаточно большими местными возмущениями (разряжениями) на верхней поверхности и, соответственно, небольшими значениями критического числа Маха . Критическое число Маха является важным параметром, определяющим величину лобового сопротивления самолета (при > на поверхности летательного аппарата появляются области местных сверхзвуковых течений и дополнительное волновое сопротивление).

Активный поиск путей повышения крейсерской скорости полета (без увеличения сопротивления самолета) привел к необходимости изыскать спо­собы дальнейшего повышения по сравнению с классическими скорост­ными профилями. Таким способом повышения является уменьшение кривизны верхней поверхности, что приводит к снижению возмущений на значительной части верхней поверхности. При малой искривленности верхней поверхности сверхкритического профиля уменьшается доля создаваемой им подъемной силы. Для компенсации этого явления производится подрезка хвостового участка профиля путем плавного изгиба его вниз (эффект "закрылка"). В связи с этим, средняя линия суперкритических профилей имеет харак­терный S - образный вид, с отгибом вниз хвостового участка. Для суперкритических профилей, как правило, характерно наличие отрицательной кривизны в носовой части профиля. В частности, на авиасалоне МАКС 2007 в экспозиции ОАО ²Туполев² был представлен макет самолета ТУ-204-100СМ с усеченным крылом, что позволяет получить представление о геометрических характеристиках профиля в корневой части крыла. Из представленного ниже фото (рис. 3.) видно наличие у профиля ²брюшка² и достаточно плоской верхней части, характерных для суперкритических профилей. Сверх­критические профили по сравнению с обычными скоростными профилями позволяют повысить примерно на = 0,05 ¸ 0,12 или увеличить тол­щину на % = 2,5 ¸ 5%. Применение утолщенных профилей позволяет увели­чить удлинение lкрыла на = 2,5 ¸ 3 или уменьшить угол стреловид­ности c крыла примерно на = 5 ¸ 10° при сохранении значения .

Рис. 3. Профиль крыла самолета ТУ-204-100СМ

Использование сверхкритических профилей в компоновке стреловид­ных крыльев является одним из основных направлений совершенствования аэродинамики современных транспортных и пассажирских самолетов .

Следует отметить, что при несомненном преимуществе сверхкритичес­ких профилей, по сравнению с обычными, некоторыми недостатками их яв­ляются повышение значения коэффициента момента на пикирование и тонкая хвостовая часть профиля.

Основные геометрические и аэродинамические характеристики крыла конечного размаха

В течение последних 30 ¸ 40 лет основным типом крыла для дозвуковых магистральных самолетов являлось стреловидное (c = 30 ¸ 35°) крыло с удли­нением , выполненное с сужением h = 3 ¸ 4. Перспективные пас­сажирс­кие самолеты, представленные на авиасалоне ²МАКС - 2007² (Ту - 334, Sukhoy Superjet 100) имели удлинение . Прогресс в увеличении удлинения крыла достигнут, в основном, за счет использования композиционных материалов в конструкции крыла.

Рис. 4. Однопанельное крыло

Сечение крыла в плоскости симметрии называется корневым профилем , а его хорда - корневой ; на концах крыла, соответственно, концевой профиль и концевая хорда . Расстояние от одного концевого профиля до другого называется размахом крыла . Хорда профиля крыла может изменяться вдоль его размаха. Отношение корневой хорды к концевой называется сужением крыла h. Отношение называется удлинением крыла . Здесь S - площадь проекции крыла на плоскость, перпендикулярную плоскости симметрии крыла и содержащую корневую хорду. Если по ходу полета концы отклонены относительно корневого сечения, говорят о стреловидности крыла . На рис. 4 показан угол между перпендикуляром к плоскости симметрии и передней кромкой крыла определяющий стреловидность по передней кромке . Говорят также об угле стреловидности по задней кромке , но важнее всего - угол (или просто c) стреловидностипо линии фокусов , т.е. по линии, соединяющий фокусы профилей крыла вдоль его размаха. При нулевой стреловидности по линии фокусов у крыла с ненулевым сужением кромки крыла не перпендикулярны плоскости симметрии крыла. Тем не менее, принято считать его прямым, а не стреловидным крылом. Если концы крыла отклонены относительно корневого сечения назад, то говорят о положительной стреловидности , если вперед - об отрицательной . Если передняя и задняя кромки крыла не имеют изломов, то стреловидность не меняется вдоль размаха. В противном случае, стреловидность может изменять свое значение и даже знак.

Современные стреловидные крылья с углом стреловидности c= 35° дозвуковых магистральных самолетов, рассчи­танных на крейсерские скорости, соответствующие = 0,83 ¸ 0,85, имеют среднюю относи­тельную толщину крыла % = 10 ¸ 11%, а сверхкрити­ческие крылья с углом стреловидности c = 28 ¸ 30° (для перспективных самолетов) около % = 11 ¸ 12%. Распределение толщины по размаху крыла определяется из условий реализации заданного полезного объема и минимального волнового сопротивления. С целью реализации эффекта скольжения в бортовых сече­ниях стреловидных крыльев применяют профили с "более передним" расположением точки максимальной толщины ,по сравнению с остальной частью крыла.

Расположены не в одной плоскости, то крыло имеет геометрическую крутку (рис. 6), характеризующую углом j.

Рис. 6. Концевой и корневой профили крыла при наличии геометрической крутки

Исследования аэродинамических моделей самолетов показали, что применениесверхкритических профилей в сочетании с геометрической круткой позволяют обеспечить . В данной работе использует­ся приближенная методика определения аэродинамических характеристик крыла, основанная на использовании экспериментальных данных. Расчет аэродинамических коэффициентов и крыла проводится в несколько этапов. Исходными данными для расчета являются некоторые геометрические и аэродинамические характеристики профиля. Эти данные могут быть взяты, в частности, из атласа профилей.

По результатам расчета аэродинамических коэффициентов строится зависимость и поляра - зависимость . Типичный вид этих зависимостей для малых дозвуковых скоростей представлен, соответственно, на рис. 7 и рис. 8.

Цель работы

Исследовать обтекание профиля крыла без учета его размаха, т.е. крыла бесконечного размаха. Выяснить, как меняется картина обтекания профиля при изменении угла атаки. Исследование провести для трех режимов – дозвукового взлетно-посадочного, дозвукового крейсерского и сверхзвукового полетов. Определить подъемную силу и силу сопротивления, действующие на крыло. Построить поляру крыла.

КраТкая теория

Профиль крыла – сечение крыла плоскостью, параллельной плоскости симметрии самолета (сечение А-А). Иногда под профилем понимают сечение, перпендикулярное передней или задней кромке крыла (сечение Б-Б).

Хорда профиля b – отрезок, соединяющий наиболее удаленные точки профиля.

Размах крыла l – расстояние между плоскостями, параллельными плоскости симметрии и касающимися концов крыла.

Центральная (корневая) хорда b 0 – хорда в плоскости симметрии.

Концевая хорда b K – хорда в концевом сечении.

Угол стреловидности по передней кромке χ ПК – угол между касательной к линии передней кромки и плоскостью, перпендикулярной центральной хорде.

Как было указано в предыдущей работе, полная аэродинамическая сила R раскладывается на подъемную силу Y и силу сопротивления X :

Подъемная сила и сила сопротивления определяются по похожим формулам:

где C Y и С Х – коэффициенты подъемной силы и силы сопротивления соответственно;

ρ – плотность воздуха;

V – скорость тела относительно воздуха;

S – эффективная площадь тела.

В исследованиях обычно имеют дело не самими силами Y и Х , а с их коэффициентами C Y и C X .

Рассмотрим обтекание воздушным потоком тонкой пластины:

Если установить пластину вдоль потока (угол атаки равен нулю), то обтекание будет симметричным. В этом случае поток воздуха пластиной не отклоняется и подъемная сила Y равна нулю. Сопротивление X минимально, но не нуль. Оно будет создаваться силами трения молекул воздуха о поверхность пластины. Полная аэродинамическая сила R минимальна и совпадает с силой сопротивления X .

Начнем понемногу отклонять пластину. Из-за скашивания потока сразу же появляется подъемная сила Y . Сопротивление X немного увеличивается из-за увеличения поперечного сечения пластины по отношению к потоку.

По мере постепенного увеличения угла атаки и увеличения скоса потока подъемная сила увеличивается. Очевидно, что сопротивление тоже растет. Здесь необходимо отметить, что на малых углах атаки подъемная сила растет значительно быстрее, чем сопротивление .

По мере увеличения угла атаки воздушному потоку становится все труднее обтекать пластину. Подъемная сила хотя и продолжает увеличиваться, но медленнее, чем раньше. А вот сопротивление растет все быстрее и быстрее, постепенно обгоняя рост подъемной силы. В результате полная аэродинамическая сила R начинает отклоняется назад.

И тут вдруг картина резко меняется. Воздушные струйки оказываются не в состоянии плавно обтекать верхнюю поверхность пластины. За пластиной образуется мощный вихрь. Подъемная сила резко падает, а сопротивление увеличивается. Это явление в аэродинамике называют СРЫВ ПОТОКА. «Сорванное» крыло перестает быть крылом. Оно перестает лететь и начинает падать

Покажем зависимость коэффициентов подъемной силы С Y и силы сопротивления С Х от угла атаки α на графиках.

Объединим получившиеся два графика в один. По оси абсцисс отложим значения коэффициента сопротивления С Х , а по оси ординат – коэффициент подъемной силы С Y .

Получившаяся кривая называется ПОЛЯРА КРЫЛА – основной график, характеризующий летные свойства крыла. Откладывая на осях координат значения коэффициентов подъемной силы C Y и сопротивления C X , этот график показывает величину и направление действия полной аэродинамической силы R .

Если считать, что воздушный поток движется вдоль оси C X слева направо, а центр давления (точка приложения полной аэродинамической силы) находится в центре координат, то для каждого из разобранных ранее углов атаки вектор полной аэродинамической силы будет идти из начала координат в точку поляры, соответствующую заданному углу атаки. На поляре можно легко отметить три характерные точки и соответствующие им углы атаки: критический, экономический и наивыгоднейший.

Критический угол атаки – это угол атаки, при превышении которого происходит срыв потока. При этом С Y максимально и ЛА может удерживаться в воздухе на минимально возможной скорости. Это полезно при заходе на посадку. Смотри точку (3) на рисунках.

Экономический угол атаки – это угол атаки, на котором аэродинамическое сопротивление крыла минимально. Если установить крыло на экономический угол атаки, то оно сможет двигаться с максимальной скоростью.

Наивыгоднейший угол атаки – это угол атаки, на котором отношение коэффициентов подъемной силы и сопротивления C Y /C X максимально. В этом случае угол отклонения аэродинамической силы от направления движения воздушного потока максимален. При установке крыла на наивыгоднейший угол атаки оно полетит дальше всего.

Аэродинамическое качество крыла – это отношение коэффициентов C Y /C X при установке крыла на наивыгоднейший угол атаки.

Порядок выполнения работы

    Подбор профиля крыла:

Обширная библиотека авиационных профилей находится на сайте Иллинойского университета: http://aerospace.illinois.edu/m-selig/ads/coord_database.html

Здесь собрано база из примерно 1600 разнообразных профилей крыла. Для каждого профиля имеется его рисунок (в формате *.gif) и таблица координат верхней и нижней части профиля (в формате *.dat). База находится в свободном доступе, постоянно обновляется. Кроме того, на этом сайте имеются ссылки на другие библиотеки профилей.

Выбираем любой профиль и скачиваем *.dat файл к себе на компьютер.

    Редактирование *.dat файла с координатами профиля:

Перед тем, как импортировать файл с координатами профиля в SW, его необходимо подкорректировать в Microsoft Excel. Но если напрямую открыть этот файл в Excel, то все координаты окажутся в одном столбце.

Нам же необходимо, чтобы координаты X и Y профиля были в разных столбцах.

Поэтому мы сначала запускаем Excel, а затем открываем из него наш *.dat файл. В выпадающем списке указываем «Все файлы». В мастере текстов формат данных указываем – с символом-разделителем «Пробел».


Теперь X и Y координаты каждая в своем столбце:

Теперь удаляем строку 1 с текстом, строку 2 с посторонними данными и пустую строку 3. Далее просматриваем все координаты и тоже удаляем пустые строки, если они имеются.

Еще добавляем третий столбец для координаты Z . В этом столбце все ячейки заполняем нулями.

И смещаем всю таблицу влево.

Отредактированный *.dat файл должен выглядеть примерно так:

Сохраняем этот файл, как текстовый файл (с разделителями табуляции).

    Создание профиля в SW:

В SW создаем новую деталь.

Запускаем команду «Кривая через точки XYZ» на вкладке «Элементы».

Откроется окно:

Нажимаем ОК и вставляем в документ кривую профиля крыла.

Если выдается предупреждение, что кривая самопересекается (это возможно для некоторых профилей), то нужно вручную в Excel отредактировать файл, чтобы устранить самопересечение.

Теперь эту кривую нужно преобразовать в эскиз. Для этого создаем на передней плоскости эскиз:

Запускаем команду «Преобразование объектов» на вкладке «Эскиз» и в качестве элемента для преобразования указываем нашу кривую профиля.

Поскольку исходная кривая очень маленького размера (хорда профиля всего 1 мм!), то с помощью команды «Масштабировать объекты» увеличиваем профиль в тысячу раз, чтобы значения аэродинамических сил более-менее соответствовали реальным.

Закрываем эскиз и с помощью команды «Вытянутая бобышка/основание» выдавливаем эскиз в твердотельную модель длиной 1000 мм. Выдавливать можно на самом деле на любую длину, все равно мы будем решать задачу двумерного обтекания.

    Обдувка профиля в модуле Flow Simulation:

На необходимо выполнить обдувку полученного профиля в трех скоростных режимах: дозвуковом взлетно-посадочном (50 м/с), дозвуковом крейсерском (250 м/с) и сверхзвуковом (500 м/с) при разных углах атаки: –5°, 0°, 10°, 20°, 30°, 40°.

При этом необходимо построить картины в сечении для каждого случая и определить подъемную силу и силу сопротивления, действующие на профиль.

Таким образом, необходимо 18 раз выполнить расчет во Flow Simulation и заполнить такую таблицу:

Скоростной режим

Углы атаки, град

Дозвуковой

взлетно-посадочный,

Дозвуковой

крейсерский,

Сверхзвуковой,

Вращение крыла в SW выполняется с помощью команды «Переместить/копировать тела» .

Общие параметры проекта такие: тип задачи (внешняя без учета замкнутых полостей), тип текучей среды (воздух, ламинарное и турбулентное течение, большие числа Маха для сверхзвукового режима), скорость в направлении оси Х V Х = 50, 250 и 500 м/с. Остальные параметры оставляем по умолчанию.

В свойствах расчетной области указываем тип задачи – 2D моделирование .

Указываем цель расчета – поверхностная, ставим метки для средних скоростей по X и Y , а также для сил по X и Y .

В заключение, строятся 6 графиков – зависимости подъемной силы Y и силы сопротивления X от угла атаки α , а также 3 поляры крыла.

Контрольные вопросы

    Что такое профиль крыла?

    Что такое угол атаки?

    Что такое размах крыла?

    Чем обтекание крыла конечного размаха отличается от обтекания крыла с бесконечным размахом?

    Что такое хорда крыла?

    Какие бывают хорды у крыла?

    Как определить подъемную силу и силу сопротивления (формулы)?

    Как выглядят графики зависимости C Y и C X от угла атаки α ?

    Что такое поляра крыла?

    Какие характерные точки есть на поляре?

    Что такое аэродинамическое качество крыла?

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОФИЛЯ

рис 1. Геометрические характеристики профиля.

Хорда профиля (b) - отрезок прямой, соединяющий две наиболее удалённые точки профиля.

Толщина профиля (Сmax) - величина максимального утолщения профиля.

Относительная толщина профиля (С) - отношение максимальной толщины С макс к хорде, выраженное в процентах:

С до 13% считается тонким или средним профилем, свыше 13% - толстым профилем.

Кривизна профиля (f) - наибольшее расстояние от средней линии до хорды, выраженное в процентах.

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ КРЫЛА

Геометрические характеристики крыла сводятся в основном к характеристикам формы крыла в плане и к характеристикам профиля крыла. Крылья современных самолетов по форме в плане могут быть (Рис. 1): эллипсовидные (а), прямоугольные (б), трапециевидные (в), стреловидные (г) и треугольные (д)

Наилучшей в аэродинамическом отношении является эллипсовидная форма, но такое крыло сложно в производстве, поэтому редко применяется. Прямоугольное крыло менее выгодно с точки зрения аэродинамики, но значительно проще в изготовлении. Трапециевидное крыло по аэродинамическим характеристикам лучше прямоугольного, но несколько сложнее в изготовлении.

Стреловидные и треугольные в плане крылья в аэродинамическом отношении на дозвуковых скоростях уступают трапециевидным и прямоугольным, но на околозвуковых и сверхзвуковых имеют значительные преимущества. Поэтому такие крылья применяются только на самолетах, летающих на околозвуковых и сверхзвуковых скоростях.

Рис. 1 Формы крыльев в плане

Рис. 2 Угол поперечного V крыла

Рис. 3 Геометрические характеристики крыла

Форма крыла в плане характеризуется размахом, площадью удлинением, сужением, стреловидностью (Рис. 3) и поперечным V (Рис. 2)

Размахом крылаL называется расстояние между концами крыла по прямой линии.

Площадь крыла в плане S кр ограничена контурами крыла.

Площадь трапециевидного и стреловидного крыльев вычисляет как площади двух трапеций

(2.1)

где b 0 - корневая хорда, м;

b к - концевая хорда, м;

- средняя хорда крыла, м.

Удлинением крыла l называется отношение размаха крыла к средней хорде

(2.2)

Если вместо b ср подставить его значение из равенства (2.1), то удлинение крыла будет определяться по формуле

(2.3)

Для современных сверхзвуковых и околозвуковых самолетов удлинение крыла не превышает 2- 5. Для самолетов малых скоростей величина удлинения может достигать 12-15, а для планеров до 25.

Сужением крыла h называется отношение осевой хорды к концевой хорде

(2.4)

Для дозвуковых самолетов сужение крыла обычно не превышает 3, а для околозвуковых и сверхзвуковых оно может изменяться в широких пределах.

Углом стреловидности c называется угол между линией передней кромки крыла и поперечной осью самолета. Стреловидность также может быть замерена по линии фокусов (проходящей на расстоянии 1/4 хорды от ребра атаки) или по другой линии крыла. Для околозвуковых самолетов она достигает 45°, а для сверхзвуковых - до 60°.

Углом поперечного V крыла называется угол между поперечной осью самолета и нижней поверхностью крыла (Рис. 2). У современных самолетов угол поперечного V колеблется от +5° до -15°.

Профилем крыла называется форма его поперечного сечения. Профили могут быть (Рис. 4): симметричными и несимметричными. Несимметричные в свою очередь могут быть двояковыпуклыми, плосковыпуклыми, вогнутовыпуклыми и.S-образными. Чечевицеобразные и клиновидные могут применяться для сверхзвуковых самолетов.

На современных самолетах применяются в основном симметричные и двояковыпуклые несимметричные профили.

Основными характеристиками профиля являются: хорда профиля, относительная толщина, относительная кривизна (Рис. 5).

Хордой профиля b называется отрезок прямой, соединяющий две наиболее удаленные точки профиля.

Рис. 4 Формы профилей крыла

1 - симметричный; 2 - не симметричный; 3 - плосковыпуклый; 4 - двояковыпуклый; 5 - S-образный;6 -ламинизированный; 7 - чечевицеобразный; 8 - ромбовидный; 9 - D видный

Рис. 5 Геометрические характеристики профиля:

b - хорда профиля; С макс - наибольшая толщина; f макс - стрела кривизны; х с - координата наибольшей толщины

Рис. 6 Углы атаки крыла

Рис. 7 Полная аэродинамическая сила и точка ее приложения

R - полная аэродинамическая сила; Y - подъемная сила; Q - сила лобового сопротивления; a- угол атаки; q - угол качества

Для малых скоростей

Познакомившись с основными понятиями, рассмотрим особенности аэродинамики профиля крыла при разных расчетных значениях Re.

Самыми тихоходными летающими моделями являются комнатные модели класса F1D. Скорости полета у них настолько малы, что их аэродинамика вообще не изучена. Кроме этого класса такие числа нигде больше не используются. Профиля крыла там, собственно и нет. Точнее он вырождается в тончайшую, толщиной в несколько микрон изогнутую пленку. Далее мы о таких моделях говорить не будем, – слишком уж они специфичны.

Следующими тихоходами являются свободнолетающие модели класса F1. Как известно, для этих моделей главной задачей является максимум времени парения в воздухе. Поскольку правилами ограничена минимальная (отношение веса модели к площади его крыла), то увеличение продолжительности полета достигается за счет максимально возможного значения Су. При этом аэродинамическое качество получается отнюдь не наибольшим, но оно и не важно. Даже внутри класса F1 используются разные профили, попробуем разобраться - почему?

На свободнолетающих планерах – класс F1A используются профили с очень большой кривизной. Они позволяют летать на минимально-возможной скорости с очень большим значением Су. Часто используются профили Бенедека, слегка модифицированные. Сейчас у национальных спортсменов популярен профиль Макарова-Кочкарева – именитых московских спортсменов:

У таких профилей есть она особенность – работа на низких значениях Re. В этом случае скоростной напор невелик, и допустимый перепад давлений вдоль верхней дуги профиля – тоже. Работа на углах атаки, близких к критическому, создает угрозу к срыву обтекания и проваливанию модели. Для оптимизации обтекания применяют специальные меры. В частности, для увеличения толщины пограничного слоя (толстый пограничный слой более устойчив) используют для обтяжки крыла материал с повышенной шероховатостью. У более шероховатой поверхности силы трения о воздух больше, чем у гладкой. Это, конечно, снижает аэродинамическое качество, но позволяет использовать большие углы атаки и большее Су, что важно для увеличения продолжительности полета. Сейчас используется специальная двухслойная пленка с шероховатой поверхностью. В прошлом – микалентные длинноволокнистые сорта бумаги.

Выше уже говорилось о двух режимах обтекания – ламинарном и турбулентном. Достоинством ламинарного обтекания профиля является малое трение крыла о воздух, и как следствие – меньшее его профильное сопротивление. Но ламинарное течение в пограничном слое снижает его устойчивость к отрыву от профиля при увеличении угла атаки. Турбулентный пограничный слой отрывается позже ламинарного, при больших углах атаки и больших Су. Чтобы поднять несущие свойства профиля на крыльях планеров F1A устанавливают специальныйтурбулизатор , который создает в пограничном слое вихри и повышает его устойчивость к отрыву. Чаще всего турбулизатор представляет из себя тонкую нить, приклеенную в нескольких миллиметрах от носика профиля на верхней поверхности крыла. Чтобы он не провоцировал преждевременный срыв потока, иногда его приклеивают зигзагообразно. Профиль планеров F1A оптимизирован только под один режим полета – парение, поскольку во время затяжки леером его аэродинамические свойства играют второстепенную роль.

У резиномоторных моделей класса F1B помимо парения есть еще режим моторного полета. Поскольку скорость моторного полета невелика, на этих моделях часто используют те же профили что и на F1A. Некоторые моделисты используют профили с меньшей кривизной. Дело в том, что большое значение кривизны профиля обуславливает и значительное профильное сопротивление крыла. На моторном режиме нет потребности в высоком значении Су, и повышенное профильное сопротивление на малых углах атаки снижает скорость набора высоты.

Некоторые спортсмены в этом классе успешно используют управление пограничным слоем . Для этого в верхней обшивке крыла делаются два ряда отверстий – в районе максимального разряжения и недалеко от задней кромки крыла, где разряжение невелико:



За счет разности давлений часть воздуха через второй ряд отверстий отсасывается и подается внутри полости крыла на передний ряд, - в зону максимального разряжения. Подача дополнительного воздуха в эту зону оттягивает срыв потока на большие углы атаки, за счет чего достигается большее значение Су. Попутно отметим, что сдув и отсос пограничного слоя широко используется на больших самолетах (истребителях) при взлетно-посадочных режимах. Там, правда, совсем другие числа Re.

Особенно значима двухрежимность работы крыла на таймерных моделях класса F1C. Здесь время моторного полета жестко ограничено пятью секундами, и при равной мощности мотора, высота взлета определяется Сх крыла. Если на таймерку поставить профиль с F1A, то высота взлета уменьшится, что не компенсируется более высоким Су на этапе парения. Поэтому профиль для таймерных моделей выбирается как компромисс между малым значением Сх при нулевой подъемной силе (таймерки взлетают вертикально) и высоким значением Су.

Представляет интерес техническое решение, которое можно смело назвать бескомпромиссным. Чемпион России и Европы в классе F1C Леонид Фузеев из Саратова сделал крыло таймерки складным втрое. На этапе моторного взлета консоли крыла складываются, образуя симметричный профиль крыла в 2,5 раза меньшего размаха:



После набора высоты и остановки мотора крыло раскладывается в полный размах. По наблюдениям автора на финале последнего Чемпионата России, модель Фузеева взлетает не выше других призеров. Сказывается высокая толщина профиля сложенного крыла. Однако, на этапе парения она не оставляет надежд другим моделям, поскольку Леонид применил чисто планерный профиль Макарова-Кочкарева с большой кривизной.

Так подробно рассмотрены профили свободнолетающих моделей потому, что многолетняя история развития сформировала их весьма высокое техническое совершенство. У моделистов периодически возникает соблазн заимствовать готовые решения из класса F1 для радиоуправляемых моделей. С одним из таких решений – классическим чемпионатным планером F1A, конвертированным в радиоуправляемый для выступления в классе кроссовых планеров, автор познакомился на прошлогодних межнациональных соревнованиях самолетостроительных предприятий в Орле МАП-2003. Такую конструкцию привез молодой спортсмен из Запорожья. С точки зрения развлекательной – это интересное решение. Однако, по летным качествам для спортивных целей оно интереса не представляет. Профиль с большой кривизной хорош только для полетов модели вместе с потоком воздуха на минимальных относительных скоростях. Попытка рулить таким планером против даже слабого ветра, показала его непригодность для управляемого полета, - планер либо сносило ветром, либо он просто сыпался с высоты.

Для высоких скоростей

Летательные аппараты этой группы оптимизированы под однорежимный полет с максимальной скоростью. Из спортивных классов сюда можно отнести кордовых скоростников F2A и гоночные группы D, кордовые F2C, радио-ДВСки F3D и радио-электрички F5D. А также многочисленные экспериментальные и рекордные самолеты. Поскольку скорость полета этих самолетов очень высокая, то характер поведения Су мало кого волнует. Скоростной напор очень высок и полет проходит при малых углах атаки и малых значениях Су. Главное для профиля этих моделей, - минимально возможное значение Сх при крейсерской скорости полета. Его значение зачастую определяет лобовое сопротивление всего самолета. Такая оптимизация достигается уменьшением толщины профиля до величин, когда определяющим становится уже не аэродинамика обтекания, а строительная прочность и жесткость крыла на кручение. Применение современных высокопрочных и высокомодульных композитных материалов позволило уменьшить толщину профиля гоночных моделей до 5 – 7 %. Кривизна профиля применяется около 1 – 2% для возможности крейсерского полета с нулевым углом атаки, Сх – при этом минимален. Вместе с острым носиком типовой гоночный профиль выглядит так:



Такие профили плохо работают на взлетно-посадочных режимах, когда скорость полета невелика. Самолет с таким профилем имеет плохие штопорные характеристики и маленький критический угол атаки. Острый носик и почти плоская верхняя поверхность профиля легко провоцируют срыв обтекания. Поэтому сажать такие самолеты приходится на больших скоростях, что требует высокого мастерства пилота. Типовое значение чисел Re для этой группы профилей может легко превысить 1000000.

Пилотажный самолет

Для пилотажного самолета, наряду с другими требованиями, важна симметрия летных характеристик для прямого и перевернутого полета. Поэтому в их крыльях используются исключительно симметричные профили. Относительная толщина профиля, определяется исходя из предполагаемых чисел Re при выполнении фигур. Для классического пилотажа типовая толщина профиля – 12-15 %. Чтобы обеспечить качественное исполнение срывных фигур, таких как «штопор» и «штопорная бочка» носик профиля имеет достаточно малый радиус скругления.

Фан-флаи тоже предназначены для выполнения пилотажных фигур, но на гораздо меньших скоростях. Для них важен плавный, а не резкий срывной режим. Толщина профиля здесь до 20% и максимально большой радиус скругления носика профиля. Почему радиус скругления так влияет на срывные характеристики? Обратимся к картине обтекания толстого профиля с тупым носиком на малом и большом углах атаки



Хорошо видно, что точка разделения верхнего и нижнего пограничных слоев при изменении угла атаки перемещается по образующей носика. Поэтому переход к срыву потока при увеличении угла атаки здесь происходит позже и более плавно.

Для острого носика такое перемещение приводит к локальному резкому повышению скорости обтекания в месте большой крутизны носика. Такое повышение провоцирует более ранний отрыв пограничного слоя сразу от носика профиля. На графиках Cy=f(a) это выражается так:


Частный случай пилотажки – учебно-тренировочный самолет. Вообще то сочетание этих названий в одном самолете не совсем правильное. Для учебного самолета хорошо подходит плоско-выпуклый профиль ClarkY, с относительной толщиной 15-18%. Он обеспечивает при прочих равных условиях более низкую скорость сваливания на крыло, что для учебки очень важно. Однако, тренировать на нем навыки выполнения фигур пилотажа неудобно, поскольку он имеет ярко выраженную асимметрию характеристик. У тренировочной модели должен быть тот же профиль и та же нагрузка на крыло, что и у пилотажки, на которой пилот будет выступать на соревнованиях.

Бесхвостка

Помимо самолетов обычной схемы с оперением, бывают самолеты без оперения. Чаще всего киль все-таки сохраняется в том или ином виде, а вот стабилизатора нет вовсе. О достоинствах и недостатках такой аэродинамической схемы мы говорить здесь не будем. Балансировка и продольная устойчивость таких самолетов достигается за счет различных конструктивных ухищрений. Но, если крыло бесхвостки не стреловидное, а прямое, то единственный способ обеспечить балансировку и продольную устойчивость самолета – применить на крыле самобалансирующийся профиль:



Как видно, у таких профилей кривизна меняет вдоль хорды свой знак. В передней части профиля он выпуклый вверх, в задней – вниз. Такие профили еще называют S-образными, потому что средняя линия профиля напоминает латинскую букву S. Чем замечательны эти профили? У обычного несимметричного профиля при увеличении угла атаки точка приложения аэродинамической силы R смещается по хорде профиля вперед. При этом момент крыла, способствующий подъему носа самолета, увеличивается с ростом угла атаки. Крыло с таким профилем само по себе, без оперения устойчивым быть не может. У S-профилей наоборот. В диапазоне летных углов атаки увеличение этого угла приводит к смещению точки приложения аэродинамической силы по хорде профиля назад. В результате появляется момент на пикирование, стремящийся вернуть угол атаки к первоначальному значению.

К сожалению, в жизни не бывает, чтобы к бочке меда не добавили ложку дегтя. Так и здесь. Увесистая ложка дегтя: у S-профилей значительно более низкие предельные значения Су. Это заставляет конструктора самолета при равной с обычной аэродинамической схемой скорости полета делать у бесхвостки гораздо меньшую нагрузку на крыло, то есть значительно увеличивать площадь крыла при равном весе с самолетом обычной схемы.

Копия

Модели-копии в силу своего предназначения должны копировать все геометрические формы оригинала. В том числе и профиль крыла, иначе какая же это копия. Однако, число Re у копий намного ниже, чем у оригинала. Как будет летать такая модель?

При масштабном уменьшении и снижении чисел Re аэродинамическое качество снижается. Безмоторные копии летают хуже своих оригиналов. Для моделей вязкость воздуха играет гораздо большую роль. Однако, снижение летных свойств вовсе не катастрофично. От копий, как правило, и не требуется выдающихся аэродинамических характеристик. К тому же моторные модели, как правило, имеют большую энерговооруженность, чем копируемые оригиналы. В результате чего их летные свойства при точном копировании профиля крыла вполне удовлетворительны. Есть даже примеры обратной зависимости. На бипланах времен первой мировой войны широко использовались тонкие сильно изогнутые профили крыльев. Вовсе не потому, что они оптимальны для полетных чисел Re, а по конструктивно-технологическим причинам – их проще было делать для расчалочных крыльев деревянно-полотняной конструкции. При переходе к уменьшенным копиям, такой профиль оказывается более оптимален, чем у оригинала.

Для моделей современных сверхзвуковых самолетов приходится отступать от копийности профиля крыла, поскольку очень тонкие профили оригиналов с острым носиком определяют крайне неудовлетворительные срывные свойства у копий. Приходится мириться с неполной копийностью.

Радиопланер

Как было указано выше, оптимален тот или иной профиль крыла только при вполне определенных числах Re. Чем шире у модели диапазон полетных скоростей, тем труднее оптимизировать профиль ее крыла. Из всех видов крылатых моделей, один из самых больших диапазонов полетных скоростей у кроссовых радиопланеров F3B. В упражнении на продолжительность этому планеру выгодно лететь как можно медленнее, особенно в атермичную погоду. Скорость полета не превышает 7 – 8 м/сек. В упражнении на скорость планера разгоняются до скоростей в 40 – 45 м/сек. Для расширения диапазона чисел Re широко используют механизацию крыла. На кроссовых планерах вдоль всей задней кромки крыла размещена механизация, – на корневой половине консолей – закрылки, на концевой – элероны, смикшированные, как правило, с закрылками. В результате пилот имеет возможность в полете менять эффективную кривизну профиля крыла при помощи механизации, оптимизируя ее под требуемый режим полета. Используется как правило три, реже четыре режима предустановленные в процессе регулировки и переключаемые в полете пилотом. В стартовом режиме кривизна максимальна. Это делается для увеличения максимально возможного значения Су, которое определяет скорость затяжки на леере планера относительно буксировщика леера. В конечном итоге это определяет высоту старта при ограниченной правилами длине леера. Сх при этом значителен, а аэродинамическое качество невелико. Но это и не важно, поскольку энергия поступает извне – от буксировщика. Крутые пилоты используют при старте два предустановленных режима – в начале и в конце с разной кривизной профиля. На режиме парения механизация возвращает кривизну профиля к исходной, где его аэродинамическое качество максимально. Для скоростных режимов механизация слегка приподнимает заднюю кромку крыла, создавая минимальную эквивалентную кривизну профиля. Сх принимает свое наименьшее значение.

Сейчас наиболее распространены для кроссовых планеров профили серий MH, RG и HQ. Их разработчики при оптимизации геометрии профиля учитывают поведение аэродинамических характеристик при работе механизации крыла. Для справки можно привести профили 16 типов моделей финалистов чемпионата Мира по F3B 2001 года. На шести моделях стоял профиль MH-32, по две модели использовали профили HQW-3.0, RG-15 и SD7037. На остальных моделях, не занявших призовых мест, использовались оригинальные профили. Но на чемпионате Европы 2004 года MH-32 лишь у одного из спортсменов первой десятки. Призовые же места у SD7032 и RG-15.

Упрощенные профили

В некоторых случаях, чаще всего из конструктивных соображений, упрощают контуры профиля до примитива, когда его образующие – прямые линии. Иногда – они оправданы, в других случаях – нет. Для наглядности приведем по одному примеру таких случаев.

В последние пару лет появился новый класс авиамоделей – F3AI (I здесь от Indoor – внутрикомнатный) пилотаж внутри помещений. Самолеты этого класса имеют очень маленькую нагрузку на крыло и летают ни крайне низких числах Рейнольдса. Многие из них имеют крыло в виде тонкой прямой пластины из депрона с угольными передней и задней кромками. Такой профиль имеет малое значение максимального Су. Однако для крайне малых нагрузок на крыло это не важно. Срывные характеристики профиля тоже ужасны. Полет самолета больше напоминает порхание стрекозы, чем полет аиста. Тем не менее, такие самолеты показывают 3Dпилотаж весьма высокого уровня. Это – пример оправданного упрощения.

Некоторые начинающие в стремлении упростить изготовление крыла тренировочной модели сводят его профиль к примитивному треугольнику, где две вершины – острые передняя и задняя кромки, а третья – верхняя полка лонжерона. Нижняя полка лежит на плоской нижней поверхности крыла. Что может быть проще? Однако летать на таком крыле – неинтересно. Прошедшим летом, наблюдая за мучениями такого горе-конструктора, жалко становилось не его, а самолет, - на пять взлетов – две посадки. Остальные посадки – «кирпичом». К концу полетного дня от модели, и кстати – мотора, остались жалкие дрова. Такой профиль имеет низкое значение Су на предельных углах атаки и провоцирует к тому же лавинообразный срыв потока. Модель просто летит кубарем к земле. Это - пример неоправданного упрощения.

Резюме

Поскольку разнообразие видов крылатых моделей очень велико, мы не будем детально рассматривать особенности применяемых в них профилей крыла. Подведем итог в виде описания характера влияния геометрических параметров профиля на его аэродинамические свойства. Итак:

1. Толщина профиля – влияет на величину лобового сопротивления. Увеличение толщины увеличивает сопротивление, в том числе на нулевой подъемной силе. Косвенно, увеличение толщины приводит к срыву обтекания на больших углах атаки, чем у тонких профилей. Увеличение толщины от малых значений до 12 – 15% увеличивает максимальное значение Су. Дальнейшее увеличение толщины его снижает. После 20% резко растет Сх.

2. Радиус скругления носика профиля – связан с толщиной профиля. Влияет в первую очередь на поведение профиля на критических углах атаки. Косвенно влияет на лобовое сопротивление профиля. Большие значения радиуса приемлемы только на невысоких числах Re.

3. Кривизна профиля – влияет на асимметрию свойств. Увеличение кривизны приводит к увеличению Су на сравнительно небольших числах Re. При росте Re кривизна профиля для сохранения приемлемых значений лобового сопротивления должна уменьшаться.

4. Для обеспечения высокой эффективности профиля в большом диапазоне скоростей на крыле необходимо использовать механизацию, изменяющую в полете эффективную кривизну профиля для разных скоростей.

5. Свойства профиля крыла влияют на требуемую для балансировки и продольной устойчивости самолета эффективность горизонтального оперения, что необходимо учитывать при проектировании модели в целом.

Характеристики несущего крыла зависят не только от примененного профиля, но и от ряда других его геометрических параметров. Их определение и характер влияния на аэродинамику крыла будет рассмотрен во второй части статьи.

Само понятие профиль, я думаю, ясно каждому. Помните, «фото в профиль и анфас»…

профиль крыла в потоке

По простому говоря, это поперечное сечение крыла (не крыльев, а именно крыла, об этом мы с вами договорились ).

Однако по простому, да не совсем, потому что профиль крыла – это, говоря официальным языком, одна из основных составляющих, формирующих летательный аппарат и самолет в частности, так как крыло все же его неотъемлемая часть. Совокупность некоторого количества профилей составляют целое крыло, причем по всему размаху крыла они могут быть разные. А от того, какие они будут, зависит назначение самолета и то, как он будет летать. Например, скоростной и высотный самолет всегда имеет тонкий профиль крыла с острой передней кромкой. Известные предствители этого класса – самолеты МИГ-25 и МИГ-31. В то же время большинство пассажирских лайнеров имеют профиль с большой относительной толщиной и закругленной передней кромкой.

Типов профилей достаточно много, но форма их принципиально всегда каплевидна. Этакая сильно вытянутая горизонтальная капля. Однако капля эта обычно далека от совершенства, потому что кривизна верхней и нижней поверхностей у разных типов разная, как впрочем и толщина самого профиля. Классика – это когда низ близок к плоскости, а верх выпуклый по определенному закону. Это так называемый несимметричный профиль, но есть и симметричные, когда верх и низ имеют одинаковую кривизну.

Каждый образец математически рассчитывается согласно законам королевы авиационных наук аэродинамики. А потом продувается в аэродинамической трубе на различных режимах для иммитации полетных условий и сбора необходимых характеристик.

Эволюция профиля крыла. Исторические разработки NASA.

Всеми полученными данными потом могут пользоваться разработчики различной авиационной техники (от авиа моделистов до современных самолетов) для выбора подходящего варианта. Существуют даже так называемые таблицы профилей. А профиль крыла, о котором мы говорим, вообще-то более точно называется аэродинамический профиль крыла , потому что это один из основных терминов, которыми оперирует аэродинамика.

Разработка аэродинамических профилей проводилась практически с начала истории авиации, проводится она и сейчас.

Делается это в специализированных учреждениях. Ярчайшим представителем такого рода учреждений в России является ЦАГИ – Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского. А в США – такие функции выполняет Исследовательский центр в Лэнгли (подразделение NASA).

Фотографии кликабельны.