Система впрыскивания топлива. Системы впрыска топлива для бензиновых двигателей. Краткая история появления

С непосредственным впрыском (также используется термин «прямой впрыск», или GDI) начали появляться на автомобилях не так давно. Однако технология набирает популярность и все чаще встречается на моторах новых автомобилей. Сегодня мы в общих чертах постараемся ответить, что такое технология непосредственного впрыска и стоит ли ее опасаться?

Для начала стоит отметить, что главной отличительной особенностью технологии является расположение форсунок, которые размещены непосредственно в головке блока цилиндров, соответственно, и впрыск под огромным давлением происходит напрямую в цилиндры, в отличие от давно зарекомендовавшей себя с лучшей стороны горючего во впускной коллектор.


Прямой впрыск впервые был испытан в серийном производстве японским автопроизводителем Mitsubishi. Эксплуатация показала, что среди плюсов главными преимуществами стали экономичность - от 10% до 20%, мощность - плюс 5% и экологичность. Основной минус - форсунки крайне требовательны к качеству топлива.

Стоит также отметить, что схожая система уже долгие десятилетия успешно устанавливается на . Однако именно на бензиновых моторах применение технологии было сопряжено с рядом трудностей, которые до сих пор не были окончательно решены.

В видео с YouTube-канала «Savagegeese» объясняется, что такое прямой впрыск и что может пойти не так в ходе эксплуатации автомобиля с данной системой. В дополнение к главным плюсам и минусам в видеоролике также объясняются тонкости профилактического обслуживания системы. Кроме того, в ролике затрагивается тема систем впрыска во впускные каналы, которые можно в изобилии наблюдать на более старых моторах, а также , которые используют оба метода впрыска горючего. Наглядно используя диаграммы Bosch, ведущий объясняет, как все это работает.


Чтоб узнать все нюансы, предлагаем посмотреть видео ниже (включение перевода субтитров поможет разобраться, если вы не очень хорошо знаете английский). Для тех, кому не слишком интересно смотреть, об основных плюсах и минусах непосредственного впрыска бензина можно прочитать ниже, после видео:

Итак, экологичность и экономичность - благие цели, но вот чем чревато использование современной технологии в вашем автомобиле:

Минусы

1. Очень сложная конструкция.

2. Отсюда вытекает вторая важная проблема. Поскольку молодая бензиновая технология подразумевает внесение серьезных изменений в конструкцию головок цилиндров двигателя, конструкцию самих форсунок и попутное изменение иных деталей мотора, к примеру ТНВД (топливный насос высокого давления), стоимость автомобилей с непосредственным впрыском топлива выше.

3. Производство самих частей системы питания также должно быть крайне точным. Форсунки развивают давление от 50 до 200 атмосфер.

Прибавьте к этому работу форсунки в непосредственной близости со сгораемым топливом и давлением внутри цилиндра и получите необходимость производства очень высокопрочных компонентов.

4. Поскольку сопла форсунок смотрят в камеру сгорания, все продукты сгорания бензина также осаждаются на них, постепенно забивая или выводя форсунку из строя. Это, пожалуй, самый серьезный минус использования конструкции GDI в российских реалиях.

5. Помимо этого необходимо очень тщательно следить за состоянием двигателя. Если в цилиндрах начинает происходить угар масла, продукты его термического распада достаточно быстро выведут из строя форсунку, засорят впускные клапаны, образовав на них несмываемый налет из отложений. Не стоит забывать, что классический впрыск с форсунками, расположенными во впускном коллекторе, хорошо очищает впускные клапаны, омывая их под давлением топливом.

6. Дорогой ремонт и необходимость профилактического обслуживания, которое тоже недешевое.


Помимо этого, в также объясняется, что при ненадлежащей эксплуатации на автомобилях с прямым впрыском могут наблюдаться загрязнение клапанов и ухудшение производительности, в особенности на турбированных двигателях.

На современных автомобилях используются различные системы впрыска топлива. Система впрыска (другое наименование - инжекторная система, от injection – впрыск) как следует из названия, обеспечивает впрыск топлива.

Система впрыска используется как на бензиновых, так и дизельных двигателях. Вместе с тем, конструкции и работа систем впрыска бензиновых и дизельных двигателей существенным образом различаются.

В бензиновых двигателях с помощью впрыска образуется однородная топливно-воздушная смесь, которая принудительно воспламеняется от искры. В дизельных двигателях впрыск топлива производится под высоким давлением, порция топлива смешивается со сжатым (горячим) воздухом и почти мгновенно воспламеняется. Давление впрыска определяет величину порции впрыскиваемого топлива и соответственно мощность двигателя. Поэтому, чем больше давление, тем выше мощность двигателя.

Система впрыска топлива является составной частью топливной системы автомобиля. Основным рабочим органом любой системы впрыска является форсунка (инжектор ).

Системы впрыска бензиновых двигателей

В зависимости от способа образования топливно-воздушной смеси различают следующие системы центрального впрыска, распределенного впрыска и непосредственного впрыска. Системы центрального и распределенного впрыска являются системами предварительного впрыска, т.е. впрыск в них производится не доходя до камеры сгорания - во впускном коллекторе.

Системы впрыска дизельных двигателей

Впрыск топлива в дизельных двигателях может производиться двумя способами: в предварительную камеру или непосредственно в камеру сгорания.

Двигатели с впрыском в предварительную камеру отличает низкий уровень шума и плавность работы. Но в настоящее время предпочтение отдается системам непосредственного впрыска. Несмотря на повышенный уровень шума, такие системы имеют высокую топливную экономичность.

Определяющим конструктивным элементом системы впрыска дизельного двигателя является топливный насос высокого давления (ТНВД).

На легковые автомобили с дизельным двигателем устанавливаются различные конструкции систем впрыска: с рядным ТНВД, с распределительным ТНВД, насос-форсунками, Сommon Rail. Прогрессивные системы впрыска - насос-форсунки и система Сommon Rail.

Современные автомобили оснащают разными системами с впрыском топлива. В двигателях, работающих на бензине, смесь топлива и воздуха принудительно возгорается с помощью искры.

Система с впрыском топлива является неотъемлемым элементом . Форсунка является главным рабочим элементом любой системы впрыска.

Бензиновые двигателя оснащаются системами с впрыском, которые различаются между собой способом образования смеси топлива с воздухом:

  • системы с центральным впрыском;
  • системы с распределенным впрыском;
  • системы с непосредственным впрыском.

Центральный впрыск, или иначе его называют моновпрыск (Monojetronic), осуществляется одной центральной электромагнитной форсункой, которая впрыскивает топливо во впускной коллектор. Это чем-то напоминает карбюратор. Сейчас автомобили с такой системой впрыска не производятся, так как у автомобиля с такой системой наблюдается и невысокие экологические свойства автомобиля.

Система распределенного впрыска постоянно с годами совершенствовалась. Начало положила система K-jetronic . Впрыск был механическим, что давало ему хорошую надежность, но расход топлива был весьма высоким. Топливо додавалось не импульсно, а постоянно. На смену данной системы пришла система KE-jetronic .


Она ни чем принципиально не отличалась от K-jetronic , но появился электронный блок управления (ЭБУ), который позволил незначительно сократить расход топлива. Но и эта система не принесла ожидаемых результатов. Появилась система L-jetronic .


В которой ЭБУ воспринимал сигналы от датчиков и направлял электромагнитный импульс на каждую форсунку. Система обладала хорошими экономическими и экологическими показателями, но конструктора не стали на этом останавливаться, и разработали совершенно новую систему Motronic .

Блок управления стал управлять и впрыском топлива, и системой зажигания. Топливо стало лучше сгорать в цилиндре, увеличилась мощность двигателя, уменьшился расход и вредные выбросы автомобиля. Во всех этих системах представленных выше впрыск осуществляется отдельной форсункой на каждый цилиндр во впускной коллектор, где и происходит образование смеси топлива с воздухом, которая попадает в цилиндр.

Наиболее перспективной системой на сегодняшний день является система с непосредственным впрыском.

Суть данной системы заключается в том, что топливо впрыскивается сразу в камеру сгорания каждого цилиндра, и уже там смешивается с воздухом. Система определяет и подает оптимальный состав смеси в цилиндр, что обеспечивает хорошую мощность на различных режимах работы двигателя, хорошую экономичность и высокие экологические свойства двигателя.

Но с другой стороны, двигателя с данной системой впрыска обладают более высокой ценой по сравнению со своими предшественниками, из-за сложности своей конструкции. Так же данная система очень требовательна к качеству топлива.

Д.Соснин

Начинаем публикацию статей по современным системам впрыска топлива для бензиновых двигателей внутреннего сгорания легковых автомобилей.

1. Предварительные замечания

Топливное питание бензиновых двигателей на современных легковых автомобилях реализуется с применением систем впрыска. Эти системы по принципу действия принято подразделять на пять основных групп (рис. 1): K, Mono, L, M, D.

2. Преимущества систем впрыска

Топливовоздушная смесь (ТВ-смесь) подается от карбюратора к цилиндрам двигателя внутреннего сгорания (ДВС) по длинным трубам впускного коллектора. Длина этих труб к различным цилиндрам двигателя неодинакова, а в самом коллекторе имеет место неравномерность нагрева стенок, даже на полностью прогретом двигателе (рис. 2).


Это приводит к тому, что из однородной ТВ-смеси, созданной в карбюраторе, в разных цилиндрах ДВС образуются неодинаковые топливовоздушные заряды. Как следствие, двигатель не отдает расчетную мощность, теряется равномерность крутящего момента, расход топлива и количество вредных веществ в выхлопных газах увеличиваются.

Бороться с этим явлением в карбюраторных двигателях очень сложно. Следует также отметить, что современный карбюратор работает на принципе пульверизации, при которой распыление бензина происходит в струе всасываемого в цилиндры воздуха. При этом образуются достаточно крупные капли топлива (рис. 3, а),

Что не обеспечивает качественного перемешивания бензина и воздуха. Плохое перемешивание и крупные капли облегчают оседание бензина на стенках впускного коллектора и на стенках цилиндров во время всасывания ТВ-смеси. Но при принудительном распылении бензина под давлением через калиброванное сопло форсунки частицы топлива могут иметь значительно меньшие размеры по сравнению с распылением бензина при пульверизации (рис. 3, б). Особенно эффективно бензин распыляется узким пучком под высоким давлением (рис. 3, в).

Установлено, что при распылении бензина на частицы диаметром менее 15...20 мкм его перемешивание с кислородом воздуха происходит не как взвешивание частиц, а на молекулярном уровне. Это делает ТВ- смесь более устойчивой к воздействию перепадов температуры и давления в цилиндре и длинных трубах впускного коллектора, что способствует более полному ее сгоранию.

Так родилась идея заменить пульверизационные жиклеры механического инерционного карбюратора на центральную безынерционную форсунку впрыска (ЦФВ), открывающуюся на заданное время по электроимпульсному сигналу управления от блока электронной автоматики. При этом, помимо качественного распыления и эффективного перемешивания бензина с воздухом, легко получать более высокую точность их дозирования в ТВ-смеси на всех возможных режимах работы ДВС.

Таким образом, за счет применения системы топливного питания с впрыском бензина двигатели современных легковых автомобилей не имеют вышеуказанных недостатков, присущих карбюраторным двигателям, т.е. они более экономичны, обладают более высокой удельной мощностью, поддерживают постоянство крутящего момента в широком интервале частот вращения, а выброс вредных веществ в атмосферу с отработавшими газами минимален.

3. Система впрыска бензина "Mono-Jetronic"

Впервые система центрального одноточечного импульсного впрыска топлива для бензиновых двигателей легковых автомобилей была разработана фирмой BOSCH в 1975 году. Эта система получила название "Mono-Jetronic" (Monojet - одиночная струя) и была установлена на автомобиле "Volkswagen".

На рис. 4 показан центральный впрыскивающий узел системы "Mono-Jetronic". Из рисунка видно, что центральная форсунка впрыска (ЦФВ) устанавливается на стандартном впускном коллекторе вместо обычного карбюратора.

Но в отличие от карбюратора, в котором автоматика смесеобразования реализуется механическим управлением, в моносистеме впрыска применяется чисто электронное управление.

На рис. 5 показана упрощенная функциональная схема системы "Mono-Jetronic".

Электронный блок управления (ЭБУ) работает от входных датчиков 1-7, которые фиксируют текущее состояние и режим работы двигателя. По совокупности сигналов от этих датчиков и с использованием информации из трехмерной характеристики впрыска в ЭБУ вычисляются начало и продолжительность открытого состояния центральной форсунки 15.

На основании расчетных данных в ЭБУ формируется электроимпульсный сигнал S управления для ЦФВ. Этот сигнал воздействует на обмотку 8 магнитного соленоида форсунки, запорный клапан 11 которой открывается, и через распылительное сопло 12 бензин принудительно под давлением 1,1 бар в топливоподающей магистрали 19 распыляется во впускной коллектор через открытую дроссельную заслонку 14.

При заданных размерах диафрагмы дроссельной заслонки и калиброванного сечения распылительного сопла массовое количество пропущенного в цилиндры воздуха определяется степенью открытия дроссельной заслонки, а массовое количество впрыснутого в воздушный поток бензина - продолжительностью открытого состояния форсунки и подпорным (рабочим) давлением в топливоподающей магистрали 19.

Для того чтобы бензин сгорал полностью и наиболее эффективно, массы бензина и воздуха в ТВ-смеси должны находиться в строго определенном соотношении, равном 1/14,7 (для высокооктановых сортов бензина). Такое соотношение называется стехиометрическим, и ему соответствует коэффициент а избытка воздуха, равный единице. Коэффициент а = Мд/М0, где М0 - количество массы воздуха, теоретически необходимой для полного сгорания данной порции бензина, а Мд- масса фактически выгоревшего воздуха.

Отсюда ясно, что в любой системе впрыска топлива обязательно должен иметься измеритель массы воздуха, впущенного в цилиндры двигателя при всасывании.

В системе "Mono-Jetronic" масса воздуха рассчитывается в ЭБУ по показаниям двух датчиков (см. рис. 4): температуры всасываемого воздуха (ДТВ) и положения дроссельной заслонки (ДПД). Пер вый расположен непосредственно на пути воздушного потока в верхней части центральной форсунки впрыска и представляет собой миниатюрный полупроводниковый термистор, а второй является резистивным потенциометром, движок которого насажен на поворотную ось (ПДЗ) дроссельной заслонки.

Так как конкретному угловому положению дроссельной заслонки соответствует строго определенное объемное количество пропущенного воздуха, то дроссельный потенциометр выполняет функцию расходомера воздуха. В системе "Mono-Jetronic" он является также датчиком нагрузки двигателя.

Но масса всасываемого воздуха в значительной степени зависит от температуры. Холодный воздух более плотный, а значит более тяжелый. По мере повышения температуры плотность воздуха и его масса уменьшаются. Влияние температуры учитывается датчиком ДТВ.

Датчик ДТВ температуры всасываемого воздуха, как полупровод никовый термистор с отрицательным температурным коэффициентом сопротивления, изменяет величину резистивности от 10 до 2,5 кОм при изменении температуры от -30 до +20°С. Сигнал датчика ДТВ используется только в таком температурном диапазоне. При этом базовая продолжительность впрыска бензина корректируется с помощью ЭБУ в интервале 20...0%. Если температура всасываемого воздуха выше +20°С, то сигнал датчика ДТВ блокируется в ЭБУ и датчик не используется.

Сигналы от датчиков положения дроссельной заслонки (ДПД) и температуры всасываемого воздуха (ДТВ) в случаях их отказов дублируются в ЭБУ сигналами датчиков частоты вращения (ДОД) и температуры охлаждающей жидкости (ДТД) двигателя.

По рассчитанному в ЭБУ объему воздуха, а также по сигналу о частоте вращения двигателя, который поступает от датчика числа оборотов системы зажигания, определяется требуемая (базовая) продолжительность открытого состояния центральной форсунки впрыска.

Так как подпорное давление Рт в топливоподающей магистрали (ПБМ) постоянно (для "Mono-Jetronic" Рт = 1...1,1 бар), а пропускная способность форсунки задана суммарным сечением отверстий распылительного сопла, то время открытого состояния форсунки однозначно определяет количество впрыснутого бензина. Момент впрыска (на рис. 5 сигнал от датчика ДМВ) обычно задается одновременно с сигналом на воспламенение ТВ-смеси от системы зажигания (через 180° поворота коленвала ДВС).

Таким образом, при электронном управлении процессом смесеобразования обеспечение высокой точности дозировки впрыскиваемого бензина в измеренное количество массы воздуха является легко решаемой задачей и, в конечном счете, точность дозирования определяется не электронной автоматикой, а точностью изготовления и функцио нальной надежностью входных датчиков и форсунки впрыска.

На рис. 6 показана главная деталь системы "Mono-Jetronic" - центральная форсунка впрыска (ЦФВ).


Центральная форсунка впрыска представляет собой бензоклапан, который открывается электрическим импульсом, поступающим от электронного блока управления. Для этого в форсунке имеется электромагнитный соленоид 8 с подвижным магнитным керном 14. Основной проблемой при создании клапанов для импульсного впрыска является необходимость обеспечения высокой скорости срабатывания запорного устройства 9 клапана как на открывание, так и на закрытие. Решение проблемы достигается облегчением магнитного керна соленоида, увеличением тока в импульсном сигнале управления, подбором упругости возвратной пружины 13, а также формой притертых поверхностей для распылительного сопла 10.

Сопло форсунки (рис. 6, а) выполнено в виде раструба капиллярных канальцев, число которых обычно не менее шести. Углом при вершине раструба задается раскрыв струи впрыска, которая имеет форму воронки. При такой форме струя бензина не попадает на дроссельную заслонку даже при малом ее открытии, а пролетает в два тонких полумесяца открывшейся щели.

Центральная форсунка системы "Mono-Jetronic" надежно обеспечивает минимальную продолжительность открытого состояния распылитель ного сопла 11 в течение 1±0,1 мс. За такое время и при рабочем давлении в 1 бар через распылительное сопло площадью в 0,08 мм2 впрыскивается около одного миллиграмма бензина. Этому соответствует расход топлива 4 л/ч на минимальных холостых оборотах (600 об/мин) прогретого двигателя. При пуске и прогреве холодного двигателя форсунка открывается на более продолжительное время (до 5...7 мс). Но с другой стороны максимальная продолжительность впрыска на прогретом двигателе (время открытого состояния форсунки) ограничивается предельной частотой вращения коленвала ДВС (6500...7000 мин-1) в режиме полного дросселя и не может быть более 4 мс. При этом тактовая частота срабатывания запорного устройства форсунки на холостом ходу не менее 20 Гц, а при полной нагрузке - не более 200...230 Гц.

С особой тщательностью изготавливается датчик ДПД положения дроссельной заслонки (дроссельный потенциометр), показанный на рис. 7. Его чувствительность к повороту движка должна отвечать требованию ±0,5 угловых градусов поворота оси 13 дросселя. По строгому угловому положению оси дросселя определяются начала двух режимов работы двигателя: режима холостого хода (3±0,5°) и режима полной нагрузки (72,5±0,5°).

Для обеспечения высокой точности и надежности резистивные дорожки потенциометра, которых четыре, включены по схеме, показанной на рис. 7, б, а ось движка потенциометра (движок двухконтактный) посажена в безлюфтовый тефлоновый подшипник скольжения.

Потенциометр и ЭБУ соединены между собой четырехпроводным кабелем через контактный разъем. Для повышения надежности соединений контакты в разъеме и в фишке потенциометра позолочены. Контакты 1 и 5 предназначены для подачи опорного напряжения 5±0,01 В. Контакты 1 и 2 - для снятия сигнального напряжения при повороте дроссельной заслонки на угол от 0 до 24° (0...30 - режим холостого хода; 3...24° - режим малых нагрузок двигателя). Контакты 1 и 4 - для снятия сигнального напряжения при повороте дроссельной заслонки на угол от 18 до 90° (18...72,5° - режим средних нагрузок, 72,5...90° - режим полной нагрузки двигателя).

Сигнальное напряжение с дроссельного потенциометра дополнительно используется:
для обогащения ТВ-смеси при разгоне автомобиля (регистрируется быстрота изменения сигнала от потенциометра);
для обогащения ТВ-смеси в режиме полной нагрузки (регистрируется значение сигнала с потенциометра после 72,5° поворота дроссельной заслонки в сторону увеличения);
для прекращения впрыска топлива в режиме принудительного холостого хода (регистрируется сигнал потенциометра, если угол открытого состояния дроссельной заслонки менее 3°. Одновременно контролируется частота W вращения двигателя: если W>2100 мин-1, то подача топлива прекращается и восстанавливается вновь при W
Интересной особенностью системы впрыска "Mono-Jetronic" является наличие в ее составе подсистемы стабилизации оборотов холостого хода с помощью электросервопривода, который воздействует на ось дроссельной заслонки (рис. 8). Электросервопривод снабжен реверсным электродвигателем 11 постоянного тока.

Сервопривод включается в работу в режиме холостого хода и совместно со схемой отключения вакуумного регулятора угла опережения зажигания (стабилизации холостого хода - рис. 2) обеспечивает стабилизацию частоты вращения двигателя в этом режиме.

Такая подсистема стабилизации холостого хода работает следующим образом.

Когда угол открытого состояния дроссельной заслонки менее 3°, сигнал К (см. рис. 9)


Является для ЭБУ сигналом режима холостого хода (замыкается концевой выключатель ВК штоком сервопривода). По этому сигналу запорный пневмоклапан ЗПК срабатывает и канал разрежения от задроссельной зоны впускного коллектора к вакуумному регулятору ВР перекрывается. Вакуумный регулятор с этого момента не работает и угол опережения зажигания становится равным значению установочного угла (6° до ВМТ). При этом двигатель на холостых оборотах работает устойчиво. Если в это время включается кондиционер или другой мощный потребитель энергии двигателя (например, фары дальнего света опосредствованно через генератор), то его обороты начинают падать. Двигатель может заглохнуть. Чтобы этого не происходило, по команде от электронной схемы управления холостым ходом (ЭСХХ) в контроллере включается электросервопривод, который несколько приоткрывает дроссельную заслонку. Обороты увеличиваются до номинального значения для данной температуры двигателя. Ясно, что при снятии нагрузки с двигателя его обороты уменьшаются до нормы тем же электросервоприводом.

В ЭБУ системы "Mono-Jetronic" имеется микропроцессор МКП (см. рис. 5) с постоянной и оперативной памятью (блок ЗУ). В постоянную память "зашита" эталонная трехмерная характеристика впрыска (ТХВ). Эта характеристика в какой-то мере подобна трехмерной характеристике зажигания, но отличается тем, что ее выходным параметром является не угол опережения зажигания, а время (продолжительность) открытого состояния центральной форсунки впрыска. Входными координатами характеристики ТХВ являются частота вращения двигателя (сигнал поступает от контроллера системы зажигания) и объем всасываемого воздуха (рассчитывается микропроцессором в ЭБУ впрыска). Эталонная характеристика ТХВ несет в себе опорную (базовую) информацию о стехиометрическом соотношении бензина и воздуха в ТВ-смеси при всех возможных режимах и условиях работы двигателя. Эта информация выбирается из памяти ЗУ в мик ропроцессор ЭБУ по входным координатам характеристики ТХВ (по сигналам датчиков ДОД, ДПД, ДТВ) и корректируется по сигналам от датчика температуры охлаждающей жидкости (ДТД) и кислородного датчика (КД).

О кислородном датчике надо сказать отдельно. Наличие его в системе впрыска позволяет удерживать состав ТВ-смеси постоянно в стехиометрическом соотношении (а=1). Это достигается тем, что датчик КД работает в цепи глубокой адаптивной обратной связи от системы выпуска отработавших газов к системе топливного питания (к системе впрыска).

Он реагирует на разность концентрации кислорода в атмосфере и в выхлопных газах. По сути дела датчик КД является химическим источником тока первого рода (гальваническим элементом) с твердым электролитом (специальная сотовая металлокерамика) и с высокой (не ниже 300°С) рабочей температурой. ЭДС такого датчика почти по ступенчатому закону зависит от разности концентрации кислорода на его элект родах (платино-радиевое пленочное покрытие с разных сторон пористой керамики). Наибольшая крутизна (перепад) ступеньки ЭДС приходится на значение а=1.

Датчик КД вворачивается в трубу выпускного канала (например, в выхлопной коллектор) и его чувствительная поверхность (положительный электрод) оказывается в потоке выхлопных газов. Над крепежной резьбой датчика имеются щели, через которые наружный отрицательный электрод сообщается с атмосферным воздухом. На автомобилях с каталитическим газонейтрализатором кислородный датчик устанавливается перед нейтрализатором и имеет спираль электроподогрева, так как температура выпускных газов перед нейтрализатором может быть ниже 300°С. Кроме того, электроподогрев кислородного датчика ускоряет его подготовку к работе.

Сигнальными проводами датчик соединен с ЭБУ впрыска. Когда в цилинд ры поступает бедная смесь (а>1), то концентрация кислорода в выхлопных газах чуть выше штатной (при а=1). Датчик КД выдает низкое напряжение (около 0,1 В) и ЭБУ по этому сигналу корректирует время продолжительности впрыска бензина в сторону его увеличения. Коэффициент а снова приближается к единице. При работе двигателя на богатой смеси кислородный датчик выдает напряжение около 0,9 В и работает в обратном порядке.

Интересно отметить, что кислородный датчик участвует в процессе смесеобразования только на режимах работы двигателя, при которых обогащение ТВ-смеси ограничено значением а>0,9. Это такие режимы как нагрузка на низких и средних оборотах и холостой ход на прогретом двигателе. В противном случае датчик КД отключается (блокируется) в ЭБУ и коррекция состава ТВ-смеси по концентрации кислорода в отработавших газах не осуществляется. Это имеет место, например, в режимах пуска и прогрева холодного двигателя и на его форсированных режимах (разгона и полной нагрузки). В этих режимах требуется значительное обогащение ТВ-смеси и поэтому срабатывание кислородного датчика ("прижимающего" коэффициент а к единице) здесь недопустимо.

На рис. 10 приведена функциональная схема системы впрыска "Mono-Jetronic" со всеми составными ее компонентами.

Любая система впрыска в своей топливоподающей подсистеме обязательно содержит замкнутое топ ливное кольцо, которое начинается от бензобака и заканчивается там же. Сюда входят: бензобак ББ, электробензонасос ЭБН, фильтр тонкой очистки топлива ФТОТ, распределитель топлива РТ (в системе "Mono-Jetronic" - это центральная форсунка впрыска) и регулятор давления РД, работающий по принципу стравливающего клапана при превышении заданного рабочего давления в замкнутом кольце (для системы "Mono-Jetronic" 1...1,1 бар).

Замкнутое топливное кольцо выполняет три функции:

С помощью регулятора давления поддерживает требуемое постоянное рабочее давление для распределителя топлива;

С помощью подпружиненной диафрагмы в регуляторе давления сохраняет некоторое остаточное давление (0,5 бар) после выключения двигателя, благодаря чему не допускается образование паровых и воздушных пробок в топливных магистралях при остывании двигателя;

Обеспечивает охлаждение системы впрыска за счет постоянной циркуляции бензина по замкнутому контуру. В заключение следует отметить, что система "Mono-Jetronic" используется только на легковых автомобилях среднего потребительского класса, например таких как западно-германские автомобили: "Volkswagen-Passat", "Volkswagen-Polo", "Audi-80".
РЕМОНТ&СЕРВИС-2"2000

Многие современные инжекторные двигатели оснащаются различной системой впрыска топлива. Уже давно ушел в историю моновпрыск, а тем более карбюратор, и сейчас остались два основных вида – это распределенный и непосредственный тип (на многих автомобилях они «скрыты» под аббревиатурами MPI и GDI). Однако простой обыватель реально не понимает в чем разница, а также — какой из них лучше. Сегодня мы закроем этот пробел в конце будет видео версия и голосование, так что читаем-смотрим-голосуем …


Действительно пришел в салон смотришь на комплектации, а там сплошные MPI или GDI, могут быть еще и ТУРБО варианты. Начинаешь спрашивать консультанта, а он однозначно хвалит непосредственный впрыск, а вот распределенный (ну если уж денег не хватает). НО чем он так хорош то? Зачем переплачивать, и тратится именно на него?

Распределенный или многоточечный впрыск топлива

Начнем именно с него, все потому что он появился первым (перед своим оппонентом). Прототипы существовали еще на заре 20века, правда они были далеко от идеала и зачастую использовали механическое управление.

Сокращение MPI (Multi Point Injection) – многоточечный распределенный впрыск. По сути это и есть современный инжектор

Сейчас с развитием электроники карбюратор и прочие системы питания, которые были на заре, уходят в прошлое. Распределенный впрыск это электронная система питания, которая основана на инжекторах (от слова injection — впрыск), топливной рампе (куда они устанавливаются), электронном насосе (который крепится в баке). Все просто ЭБУ дает приказания насосу качать топливо, оно по магистрали идет до топливной рампы, далее в инжектора и после распыляется на уровне .

Но эта система также шлифовалась годами. Существуют три типа впрыска:

  • Одновременный . Раньше в 70 – 80 годы никого не заботила цена на бензин (стоял он дешево), также никто не думал об экологии. Поэтому впрыск топлива происходил сразу во все цилиндры, при одном обороте коленчатого вала. Это было крайне не практично, потому как обычно (в 4 цилиндровом двигателе) — два поршня работают над сжатием, а другие два отводят отработанные газы. И если подавать бензин сразу во все «горшки» то другие два просто выкинут его в глушитель. Крайне затратно по бензину и очень вредно по экологии.
  • Попарно-параллельный . Этот вид в распределительном впрыске как вы наверное уже догадались, происходил в два цилиндра по очереди. То есть топливо поступало именно туда, где сейчас происходит сжатие.
  • Фазированный тип . Это самый совершенный на данный момент метод, здесь каждая форсунка живет «своей жизнью» и управляется отдельно. Она подает бензин именно перед тактом впуска. Здесь происходит максимальная экономия смеси, а также высокая экологическая составлявшая

Я думаю с этим понятно, именно третий тип сейчас устанавливается на все современные модели автомобилей.

ГДЕ РАСПОЛАГАЕТСЯ ИНЖЕКТОР . Здесь кроется основное отличие распределительного впрыска от непосредственного. Форсунка находится на уровне впускного коллектора, рядом с блоком двигателя.

Смешение воздуха и бензина происходит именно в коллекторе. От дроссельной заслонки поступает дозированный воздух (который вы регулируете педалью газа), при достижении им форсунки впрыскивается топливо, получается смесь, которая уже затягивается через впускные клапана в цилиндры мотора (дальше сжатие, воспламенение и отвод отработанных газов).

ПЛЮСАМИ такого метода можно назвать относительную простоту конструкции, дешевизну, также сами инжектора не должны быть сложными и устойчивыми к высоким температурам (потому как не имею контакта с горючей смесью), работают дольше без очистки, не так требовательны к качеству топлива.

МИНУСЫ больший расход топлива (по сравнению с оппонентом), меньшая мощность

НО из-за простоты, дешевизны и неприхотливости устанавливаются на большое количество моторов не только бюджетного сегмента, но и D-класса.

Появился не так давно, в 80 – 90 года прошлого века. Развитием активно занимались такие бренды как MERCEDES, VOLKSWAGEN, BMW и т.д.

Сокращение GDI (Gasoline Direct Injection) – впрыск непосредственно в камеру сгорания

Впрыск происходит по принципу фазированного типа, то есть каждая форсунка управляется отдельно. Зачастую они закреплены в рампу высокого давления (что-то наподобие COMMON RAIL), но бывают и отдельные элементы топливо подходит именно к каждой отдельно.

КАКОЕ ЗДЕСЬ ОТЛИЧИЕ – форсунки вкручиваются в сам блок двигателя и имеют непосредственное соприкосновение с камерой сгорания и воспламененной топливной смесью.

Воздух также подается через дроссель, далее по впускному коллектору – через клапана заходит в цилиндры мотора, после этого на цикле сжатия впрыскивается топливо, смешиваясь с воздухом и воспламеняясь от свечи. ТО есть смесь происходит непосредственно в двигателе, а не во впускном коллекторе, в этом то и кроется основная РАЗНИЦА!

ПЛЮСЫ. Топливная экономичность (может достигать до 10%), большая мощность (до 5%), лучшая экология.

МИНУСЫ . Нужно понимать форсунка находится рядом с воспламененной смесью, из этого вытекает:

  • Сложная конструкция
  • Сложное обслуживание
  • Дорогой ремонт и профилактика
  • Требование к качеству топлива (иначе банально забьется)

Как видите эффективно-технологично, но дорого обслуживать.

Что же лучше — таблица?

Предлагаю подумать, составил таблицу по плюсам того и другого типов

Как видите и тот и другой тип имеют весомые преимущества перед другим, видимо пока существуют оба.

Сейчас видео версия смотрим.