Система управления передней опорой шасси самолета. Главные стойки шасси Описание стойки шасси

Стойки шасси на самолёте не только связывают через колёса (или
лыжи) летательный аппарат с поверхностью земли, но и выполняют
очень важную задачу – гасить удары и колебания при посадке,
взлёте и рулении на земле. Поэтому стойки шасси представляют
собой довольно сложную конструкцию, с подвижными деталями и
упругими элементами. Последними являются гидравлические или
пневмогидравлические амортизаторы и имеют очень заметную деталь
– шток. По требованиям герметичности шток отполирован и блестит,
как… зеркало. Достаточно посмотреть на экскаватор, там масса
гидроцилиндров с блестящими штоками, какой бы грязной и «убитой»
ни была сама машина.

Если на прототипе шток амортизатора не был закрыт гофрированным
чехлом (как, например, на МиГ-3), он очень заметен и, если
аккуратно имитирован, то этим здорово добавляет модели реализма
и зрелищности.

Когда речь идёт о покраске, то существует много хороших
красок-металликов, например, «металлическая» серия фирмы Testors,
краска «серебро» серии Супер фирмы Звезда. А если по вине
производителя деталь, имитирующая шток имеет не «совсем круглую»
форму в сечении? Тогда придется делать доработку. Или переделку,
если лечение «малой кровью» не даёт результата.

Нам понадобятся свёрла (вернее, набор свёрл различных диаметров),
не очень острая игла и очень острый нож, желательно, тисочки и
металлическая трубка подходящего диаметра, например, игла
медицинского шприца. Наборы прекрасных трубок выпускает фирма
Model Point, там диаметры есть на все случаи модельной жизни.

Отделяем стойку от литника.

Ножом удаляем
след стыка половинок пресс-формы и возможный облой.

Сначала либо
разрезаем, либо вовсе удаляем шарнир, т.н. двузвенник.

Если он даётся
отдельной деталью, просто пока его не приклеиваем. Отрезаем шток
не под самый «корень», т.е. не до того места, где начинается
корпус стойки, а оставляем ~0,5 мм бывшего штока с каждой
стороны.



Аккуратно,
чтобы не деформировать, зажимаем стойку в тиски и иглой отмечаем
центр будущего отверстия под шток. Говоря по слесарному,
накерниваем.

Теперь
начинается самый интересный, но и самый ответственный этап –
сверление. Начинаем сверлом, с диаметром вдвое меньшим нужного,
то есть, делаем центровочное отверстие.

Сверлить надо
не торопясь, постоянно контролируя процесс, чтобы сверло не «уходило»
в сторону, не перекашивалось. Пройдя около 2-3 мм, можно
остановиться и начать «бурить» сверлом уже требуемого диаметра,
т.е. равного диаметру штока. При этом без следа удалится тот, не
отрезанный, кусочек бывшего штока.

Просверлив отверстия в обеих частях корпуса
стойки, берём трубку и отрезаем кусочек длиной, чуть большей
длины бывшего штока на 3-5 мм, в зависимости от просверленных
отверстии в корпусе стойки. Набор деталей готов!

Остаётся,
предварительно окрасив детали, собрать всё в единую конструкцию.

Новый шток идеально круглый в сечении,
абсолютно не нуждается в покраске и радует глаз честным,
настоящим металлическим блеском.

Две основных опоры такого шасси располагаются за центром масс самолета, а третья опора устанавливается в носовой части фюзеляжа. Эта опора для обеспечения управляемости самолета на земле делается или свободно ориентирующейся, или снабжается принудительной системой разворота передних колес.

Схема характеризуется следующими параметрами:

b - база шасси;

B - колея шасси;

H - высота шасси;

e - вынос главных опор;

g - угол выноса главных опор;

jо - угол опрокидывания;

jст - стояночный угол.

Эти параметры связаны с посадочным углом α пос, установочным углом α уст и углом на разбеге α разб крыла.

Разбег самолета с данной схемой шасси выполняется в трехточечном положении при:

α разб = jст + α уст.

В конце разбега отклонением руля высоты летчик отрывает переднюю опору, а затем происходит и отрыв от земли основных опор. Посадка самолета происходит на основные опоры с улом атаки крыла

α пос = jо + α уст. + jст

с последующим переваливанием на переднюю опору. Условие переваливания обеспечивается углом выноса g = jо + (1 - 2)о.

Это условие дает величину относительного выноса e/b = 0,1 - 0,15, который показывает долю нагрузки от полной силы тяжести, приходящейся на переднюю опору при стоянке.

Отсутствие опрокидывания вбок обеспечивается углом e, равным (40 - 45)о, что соответствует относительной колее B/b = 0,7 - 1,2.

Схема шасси с передней опорой дает следующие важные преимущества:

Более простая техника пилотирования на взлете, посадке и пробеге;

Устойчивость движения на разбеге и пробеге, которая обеспечивается приложением сил трения колес главных опор за центром масс самолета;

Улучшенный обзор из кабины при движении по земле;

Простота маневрирования при использовании системы поворота передних колес;

Более интенсивное торможение на пробеге и возможность скоростной посадки, что обеспечивается исключением опасности капотирования самолета;

Близкое к горизонтальному положение пола пассажирских и грузовых кабин, а так же осей двигателей, что исключает обдув ВВП горячими газами ТРД.

К недостаткам схемы следует отнести большую за счет более длинной передней опоры массу шасси и возможность возникновения автоколебаний передней опоры типа "шимми". Для гашения этих колебаний передняя опора снабжается гидравлическими демпферами - гасителями колебаний передних колес.

Велосипедная схема шасси.

Шасси состоит из передней опоры, аналогичной передней опоре трехточечной схемы, и задней опоры, закрепляемой на фюзеляже позади центра масс самолета. Эта схема позволяет избежать установки основных опор шасси на крыле. В этом случае на крыле устанавливаются

только вспомогательные опоры, которые при отсутствии крена самолета могут не касаться земли

Основные параметры схемы:

b - база шасси;

H - высота шасси;

B" - колея подкрыльных стоек;

g - угол выноса основной опоры;

b - угол выноса передней опоры.

Различают два типа велосипедного шасси:

1) шасси с углом выноса задней опоры g = (25 - 30)о и e/b = 0,1 - 0,15.

Параметры такого шасси, кроме колеи, выбираются аналогично параметрам трехопорного шасси с носовой опорой. Взлет и посадка такого самолета ничем не отличаются от аналогичных режимов самолета с рассмотренной выше схемой шасси.

2) шасси с g = (40 - 60)о и e/b = 0,4 - 0,5.

Невозможность отрыва передней опоры на взлете требует взлета с обеих опор одновременно, а необходимое увеличение угла атаки крыла в конце разбега обеспечивается или удлинением передней опоры, или укорочением (приседанием) задней опоры. Сложность конструкции таких опор, сложность пилотирования самолета на взлете и посадке ограничивают применение данной схемы шасси. Обычно она используется лишь на военных самолетах.

Многоопорное шасси.

На тяжелых самолетах с очень большой взлетной массой для снижения и более равномерного распределения нагрузки на ВПП приходится увеличивать число опор шасси. В схеме с передней опорой может использоваться три, четыре и более основных опор. Число передних опор более двух сильно затрудняет маневрирование самолета на земле, поэтому даже на очень больших самолетах более двух передних опор не ставится. Для улучшения маневренности при большом числе опор кроме управляемых передних опор иногда делаются управляемыми и основные опоры - все или только некоторые из них (передние, задние). Параметры многоопорного шасси выбираются так же, как и параметры трехопорного. За точку опрокидывания в этом случае принимается точка приложения результирующей сил реакций земли на колесах основных опор при стоянке самолета.

При посадке самолет с многоопорным шасси вначале касается земли задними колесами основных опор, затем переваливается на остальные главные и передние колеса. Амортизаторы задних опор, которые первыми касаются земли делаются более мягкими, чем остальные.

Нагрузки шасси.

При взлете и посадке самолета, при его движении по аэродрому, на стоянке на колеса шасси действуют статические и динамические нагрузки. Их величина и направление определяются схемой шасси, условиями и характером посадки, типом ВПП, характеристиками амортизационной системы и др. Эти нагрузки можно представить в виде приложенных к колесам трех составляющих сил, направленных по основным координатным осям самолета:

Px - сила переднего удара;

Py - вертикальная сила;

Pz - сила бокового удара.

Величина этих нагрузок определяется нормами прочности или авиационными правилами (АП), которые задают основные расчетные случаи нагружения шасси, перегрузку и коэффициент безопасности для каждого случая, величину нагрузки, ее направление и распределение между опорами и колесами. По найденным таким образом нагрузкам строятся расчетные эпюры и проводятся все необходимые прочностные расчеты.

Конструктивно - силовые схемы шасси.

Опора шасси состоит из основного силового элемента - стойки, устройства для поглощения и рассеивания энергии ударных нагрузок - амортизатора и опорных устройств - колес.

Конструктивно-силовые схемы опор шасси можно классифицировать по следующим признакам:

Способу крепления стойки к самолету;

Способу размещения амортизатора на опоре;

Способу крепления колес к стойке.

Способы крепления стойки к самолету.

По этому признаку различают консольную и подкосную схемы крепления стоек.

При консольной схеме стойка жестко закрепляется (защемляется) в верхнем узле крепления и в силовом отношении представляет собой работающую на изгиб консольную балку. Жесткая заделка обеспечивается запиранием стойки в выпущенном положении механическим замком той или иной конструкции. Защемление неубирающейся стойки обеспечивается конструкцией узла ее крепления.

Основной недостаток данной схемы заключается в том, что в корневой части стойка воспринимает большие изгибные нагрузки, сильно увеличивающие ее массу.

В подкосной схеме стойка (1) снабжается дополнительными подкосами (2) в одной или двух плоскостях, которые существенно снижают изгибающие моменты в корневой части стойки и, как правило, обеспечивают общий выигрыш в массе шасси.

Подкосы для обеспечения уборки могут быть складывающимися. В качестве подкоса иногда используются подъемники шасси. В обоих случаях должна обеспечиваться надежная фиксация стойки в выпущенном положении. Подкосная схема кроме выигрыша в массе конструкции, обеспечивает и более жесткое закрепление стойки к самолету, что благоприятно сказывается на устранении некоторых видов автоколебаний стоек, возникающих при движении самолета по земле. Схема подкосного шасси получила самое широкое распространение на современных самолетах.

Схемы размещения амортизаторов.

В зависимости от расположения амортизатора относительно силового элемента опоры - стойки, различают телескопическую (а), рычажную (б и в) и полурычажную (г) схемы стоек.

Телескопическая (а) стойка объединяет в себе силовой элемент - трубчатую стойку и амортизатор. Труба стойки выполняет роль цилиндра амортизатора, внутрь которого входит шток с поршнем, образуя с цилиндром телескопическую пару. На нижнем конце штока подвешиваются колеса. Чтобы исключить вращение штока в цилиндре оба этих элемента соединяются двухзвенником (шлиц-шарниром), обеспечивающим только поступательное движение штока в цилиндре при действии осевой сжимающей нагрузки. К недостаткам этой схемы следует отнести отсутствие амортизации боковых нагрузок и нагрузок переднего удара, а также большое трение в буксах и уплотнении амортизатора при действии этих нагрузок. Частичную амортизацию переднего удара при этой схеме можно обеспечить, придав стойке некоторый угол наклона в продольной плоскости, параллельной плоскости симметрии самолета. Большего участия амортизатора в восприятии силы переднего удара можно получить, используя качающуюся телескопическую схему стойки. В этой схеме стойка шарнирно подвешивается в верхнем узле крепления и фиксируется в выпущенном положении жестким подкосом, присоединенным спереди к среднему шарниру двухзвенника. При переднем ударе в колеса усилие в подкосе заставляет обжиматься амортизатор, что обеспечивает снижение нагрузок и более мягкую передачу энергии переднего удара на конструкцию шасси и самолета. При обжатии амортизатора происходит поворот (качание) стойки относительно верхнего шарнира, чем и объясняется название данной схемы.

Рычажная схема стойки характерна тем, что колеса в этом случае закрепляются на рычаге, который шарнирно крепится к стойке или фюзеляжу.

Шток амортизатора соединяется с рычагом пространственным шарниром, что полностью исключает передачу на амортизатор изгибающих моментов и обеспечивает идеальные условия для работы уплотнения и букс амортизатора. Используются такие разновидности рычажных стоек:

Рычажная стойка с внутренним амортизатором, который размещен внутри стойки (б);

Рычажная стойка с выносным амортизатором, закрепленным снаружи стойки (а);

Рычажная схема без стойки (г).

Кроме улучшения условий работы амортизатора, рычажная схема обеспечивает амортизацию переднего удара, при котором происходит поворот рычага и обжатие амортизатора.

Полурычажная схема (в) представляет собой комбинацию телескопической и рычажной стоек. В этой схеме рычаг с колесами шарнирно подвешивается не к стойке, а к штоку амортизатора, и между рычагом и стойкой спереди с помощью двух шарниров устанавливается дополнительное звено - серьга, обеспечивающая обжатие амортизатора при нагружении колес. Амортизатор включается в работу и при вертикальной нагрузке, и при переднем ударе в колеса, однако сама сила переднего удара передается на шток и вызывает его изгиб.

Схема крепления колес.

Крепление колес к штоку амортизатора или к рычагу может выполняться с помощью вилки, полувилки, полуоси или двух полуосей.

Размещение более четырех колес на одной оси сильно затрудняет маневрирование самолета и размещение колес в убранном положении. Поэтому для четырех и более колес на одной опоре обычно используются многоколесные тележки, рассчитанные на размещение четырех, шести или восьми колес на двух или трех осях. Оси колес устанавливаются на силовом элементе - раме тележки. Крепление осей к раме может быть неподвижным или подвижным (в подшипниках скольжения) в зависимости от способа передачи тормозных моментов с колес на стойку.

Для выравнивания нагрузок между осями тележка подвешивается к стойке шарнирно, что требует установки дополнительного стабилизирующего амортизатора, задающего положение тележки относительно стойки и демпфирующего колебания тележки относительно шарнира.

Использование многоколесных тележек шасси требует особого способа передачи тормозных моментов колес на стойку. Если тормозные моменты колес передавать на оси тележки, то рама тележки под действием этих моментов будет поворачиваться относительно шарнира тележки, увеличивая нагрузку на передние колеса и разгружая задние.

Это приводит к неравномерному износу колес и снижает эффективность торможения на пробеге. Чтобы исключить влияние тормозных моментов на перераспределение нагрузки между осями колес эти моменты обычно не передаются на раму тележки. В этом случае корпус тормоза устанавливается на оси подвижно (или ось вместе с корпусом тормоза шарнирно закрепляются в раме) и удерживается от вращения при торможении специальной тягой, закрепленной на стойке (штоке амортизатора) выше или ниже шарнира подвески тележки. Расположение такой тормозной тяги должно подчиняться простому правилу - ось тяги должна быть направлена в точку пересечения линии, проходящей через ось шарнира тележки и ось колеса, с линией земли при обжатых пневматиках колес. Если шарнир тележки и оси колес расположены на одной горизонтали, то тормозная тяга располагается горизонтально.

Особенности крепления передних колес.

Особенности конструкции передних опор шасси связаны с необходимостью обеспечения управляемости самолета при движении по земле. С этой целью для передних колес обязательно предусматривается режим свободного ориентирования. Устойчивость движения в таком режиме обеспечивается созданием плеча устойчивости(t), при котором точка касания земли колесами находится позади оси разворота колес.

После отрыва самолета от земли свободноориентирующиеся колеса должны автоматически устанавливаться в нейтральном положении в плоскости симметрии самолета. Для этого в конструкции передней опоры предусматривается специальный механизм установки колес в нейтральное положение. Один из них показан на рисунке. В этом амортизаторе имеется пара профилированных кулачков, один из которых связан со штоком (верхний), а другой - с цилиндром. После отрыва от земли давлением зарядки амортизатора шток выдвигается наружу и верхний кулачек, скользя по нижнему неподвижному кулачку, устанавливает шток и колеса в нейтральное положение.

При движении самолета по земле с большой скоростью деформация колес и стоек под нагрузкой вызывают резкие развороты колес в обе стороны.

Такие автоколебания передних стоек получили название «шимми». Для исключения "шимми" передние колеса снабжаются специальными гидравлическими демпферами. При развороте колес движение передается на поршень или лопатки этого демпфера, которые перегоняют жидкость из одной полости в другую через малые калиброванные отверстия.

При быстрых колебательных движениях колес сопротивление жидкости резко возрастает, что исключает развитие автоколебаний. При маневрировании самолета скорость разворота колес мала и демпфер не оказывает существенного влияния на рулежные качества самолета.

На тяжелых самолетах, на самолетах с велосипедным шасси передние опоры снабжаются системой принудительного разворота колес по командам летчика. При отключении этой системы колеса переходят в режим свободного ориентирования.

Основные опорные элементы шасси.

В качестве опорных элементов шасси у современных сухопутных самолетов наибольшее распространение получили авиационные колеса. На главных опорах колеса обязательно снабжаются тормозами. Хвостовые опоры, вспомогательные опоры велосипедного шасси и большинство передних опор используют нетормозные колеса.

Авиационные колеса.

Колеса служат для движения самолета по земле. Колесо состоит из пневматика, корпуса и тормоза.

Пневматики.

Пневматик состоит из покрышки и камеры, устанавливаемых на корпусе колеса. Камера 4 с вентилем 5 помещается внутри покрышки.

Через вентиль в камере создается давление зарядки p0. В последнее время все большее распространение получают пневматики бескамерные, у которых герметизируется объем между покрышкой и корпусом колеса. В таком пневматике покрышка изнутри покрывается

герметизирующим слоем резины 7. Многослойный каркас пневматика 3 изготавливается из высокопрочного корда, состоящего из синтетических или стальных нитей. В борта каркаса заделываются кольца жесткости 6, изготавливаемые из стальной проволоки. Снаружи каркас покрывается защитным слоем резины 2. По ободу пневматика накладывается протектор 1 из высококачественной резины. Протектор снаружи для увеличения сцепления с поверхностью аэродрома имеет канавки определенного рисунка. Не тормозные колеса могут изготавливаться с гладкой поверхностью. На пневматиках, используемых зимой, для повышения сцепления с грунтом могут устанавливаться металлические шипы. Канавки на поверхности пневматика обеспечивают выдавливание воды из-под него при движении по мокрому аэродрому, исключая тем самым, режим аквапланирования (всплывания) колес на большой скорости.

Пневматики характеризуются:

Габаритными размерами;

Наружным диаметром D;

Наибольшей шириной B;

Формой поперечного сечения:

Баллонные,

Арочные,

Круглые,

Давлением зарядки:

Высокого давления - больше 1,5 МПа,

Среднего давления - 1 - 1,5 МПа,

Низкого давления - 0,5 - 1 МПа,

Сверхнизкого давления - менее 0,5 МПа.

С увеличением давления зарядки p0 уменьшаются габариты и масса пневматика, увеличивается допустимая нагрузка на колесо, но ухудшается его проходимость - растет требуемая прочность грунта или покрытия ВПП аэродрома.

Корпус колеса.

Корпус колеса (6) изготавливается литьем из алюминиевого или титанового сплава. В последнее время появились колеса с корпусами из двух штампованных половин, соединяемых болтами. В ступицу корпуса с двух сторон запрессовываются радиально-упорные подшипники.

Подшипники защищаются от грязи специальным уплотнением 1. Между подшипниками вставляется регулируемая распорная втулка 2, тарируемая на определенную затяжку подшипников. Пневматики монтируются на корпус и фиксируются на нем двумя ребордами 3 и 4, одна из которых (4) - съемная, состоит из двух половин, которые соединяются специальными замками 5.

Внутри корпуса колеса устанавливаются тормоза (7). В зависимости от типа тормоза к внутренней поверхности корпуса крепятся стальные оребренные тормозные рубашки или

устанавливаются шлицы (8) для тормозных дисков

Тормоза колес.

Тормоза служат для сокращения длины пробега после посадки, обеспечивают маневрирование самолета при рулении, его неподвижность на стоянке и при опробовании двигателей. Тормоза должны обеспечивать создание максимального тормозного момента на колесе, определяемого предельной величиной коэффициента трения колеса о поверхность ВПП, а также поглощение и рассеивание кинетической энергии самолета на пробеге.

Практическое применение получили три типа тормозов - колодочный, камерный и дисковый.

Колодочный тормоз состоит из двух или более жестких тормозных колодок, покрытых специальным фрикционным материалом (ретинакс), имеющим высокий коэффициент трения и выдерживающий нагрев до 10000 С.

Колодки шарнирно подвешиваются на корпусе тормоза, который неподвижно закреплен на оси колеса. Снаружи над колодками находится стальной барабан с оребрением (рубашка), связанный болтами с корпусом колеса и вращающийся вместе с ним. Тормозные колодки специальными гидроцилиндрами по сигналам летчика прижимаются к барабану и затормаживают колесо. При растормаживании пружины возвращают колодки в исходное положение.

Энергоемкость колодочного тормоза невелика, поэтому его применение оправдано лишь на легких самолетах с невысокими посадочными скоростями.

Камерный тормоз состоит из неподвижно закрепленного на оси колеса корпуса тормоза 2, на котором по окружности установлено большое количество тормозных колодок 4, покрытых фрикционным материалом.

Колодки за счет радиальных пазов могут перемещаться относительно корпуса только в радиальном направлении, причем специальными пластинчатыми пружинами 6 они отжимаются постоянно к оси колеса. На корпусе тормоза под колодками находится плоская кольцевая резиновая камера 3, в которую подается сжатый воздух или гидросмесь под давлением из тормозной системы самолета. Камера, расширяясь и преодолевая действие пружин, прижимает тормозные колодки к стальному барабану, закрепленному на корпусе колеса, и производит его торможение. Такой тормоз обеспечивает равномерное прижатие всех тормозных колодок к барабану, не требует регулировки зазоров между колодками и барабаном, но из-за наличия резиновой камеры, которая боится перегрева, его энергоемкость также невелика.

Дисковый тормоз работает по принципу фрикционной муфты. Он состоит из набора чередующихся между собой подвижных и неподвижных дисков, установленных на корпусе тормоза.

Подвижные диски 1 шлицами связаны с корпусом колеса 2 и вращаются вместе с ним. Неподвижные диски 3 по внутренней поверхности шпонками связаны с корпусом тормоза 4, болтами закрепленного на оси колеса. С торца пакет дисков сжимается кольцевым поршнем 5, создавая тормозной момент между дисками. При сбрасывании тормозного давления поршень специальными пружинами возвращается в исходное положение.

Дисковые тормоза компактны, обладают высокой энергоемкостью, не требуют точного концентричного расположения колеса и корпуса тормоза, поэтому они нашли самое широкое применение на современных самолетах.

Автомат торможения используется для предотвращения при торможении полного заклинивания колеса и его движения юзом.

С этой целью на колесе устанавливается инерционный датчик, корпус которого неподвижно закреплен на корпусе тормоза. В корпусе датчика вращается валик с малой шестерней 1. Эта шестерня входит в зацепление с большой шестерней 2, закрепленной на корпусе колеса. При вращении колеса валик датчика вращается со скоростью в несколько тысяч оборотов в минуту.

На валике устанавливается маховик, который соединяется с валиком подпружиненными фрикционными накладками. Силы трения в этих накладках раскручивают маховик, и он вращается совместно с валиком. При возникновении юза колесо и валик датчика начинают терять угловую скорость вращения. Маховик за счет сил инерции и, преодолевая силы трения в накладках, проворачивается относительно валика и за счет наклонных скосов перемещается вдоль оси. Это движение используется для включения микровыключателя и подачи сигнала в электроклапан, сбрасывающий давление в системе торможения. Тем самым исключается проскальзывание колеса юзом и обеспечивается высоквая эффективность торможения колес на пробеге.

Амортизаторы шасси.

Во время посадки самолет с посадочной массой mпос подходит к земле с некоторой вертикальной скоростью Vy . Кинетическая энергия вертикального движения самолета

А = (mпос Vy2)/2 должна быть поглощена в процессе соударения с землей теми частями самолета, которые деформируются под действием ударных нагрузок. За счет этих деформаций центр масс самолета опускается вниз к земле или, можно считать, что колеса перемещаются относительно центра масс самолета вверх под действием вертикальной реакции земли P. В конце удара вертикальная скорость самолета падает до нуля, силы реакции земли возрастают до максимальной величины Рmax, а работа этих сил на полном перемещении колес относительно центра масс самолета Нmax будет равна полной кинетической энергии удара А. Величина Рmax определяет перегрузку и расчетные нагрузки для всех элементов самолета при посадке. Для их

уменьшения всегда желательно снижать величину Рmax, а это возможно только за счет увеличения перемещения Нmax в процессе соударения самолета с землей. С этой целью в конструкцию шасси включают специальные элементы - амортизаторы, основное назначение которых заключается в увеличении деформаций опор самолета и увеличения Hmax. Кроме амортизаторов, на перемещение центра масс самолета при ударе существенно влияют деформации пневматиков колес. Упругие деформации конструкции - крыла, фюзеляжа и пр. мало влияют на перемещение Hmax и ими обычно пренебрегают.

Таким образом, основным свойством, которым должен обладать амортизатор, является его упругость - способность деформироваться под нагрузкой.

В процессе удара пневматики колес и амортизаторы, деформируясь, поглощают (аккумулируют) всю энергию удара А. В конце удара, когда скорость Vy полностью погашена, сила Рmax, действуя на самолет, начинает перемещать его вверх и возвращать накопленную в пневматиках и амортизаторах энергию обратно самолету. Энергия, накопленная пневматиками, практически полностью возвращается самолету на обратном ходе. Если бы и амортизаторы всю накопленную энергию возвращали самолету на обратном ходе, то самолет снова отрывался бы от земли и совершал бы такие подскоки достаточно долго. Чтобы этого не происходило, в конструкции амортизатора обязательно предусматривается возможность уменьшения усилий, а, следовательно, и возвращаемой самолету на обратном ходе энергии.

В результате - амортизатор часть энергии удара рассеивает, превращая ее обычно в теплоту, полностью исключая повторные подскоки самолета при посадке.

Отсюда следует, что вторым важнейшим свойством амортизатора является его способность рассеивать энергию удара, превращая ее в тепло.

Упругие свойства амортизатора обеспечиваются включением в его конструкцию специальных упругих тел или элементов - резины, стальных пружин, рессор, газа, жидкости. По удельной (на единицу массы) энергоемкости наиболее выгодными из них являются газ и жидкость, которые используются в жидкостно-газовых и жидкостных амортизаторах, получивших самое широкое применение на современных самолетах. Жидкость в этих амортизаторах обеспечивает рассеивание энергии за счет ее перетекания с большим сопротивлением из одной полости в другую, что сопровождается нагревом жидкости и переводом механической энергии в тепловую.

Жидкостно-газовый амортизатор.

Основными элементами жидкостно-газового амортизатора являются цилиндр 1, поступательно перемещающийся в нем шток 2, плунжер 3, профилированная игла 4, клапан торможения 6, пакет уплотнений 7, обеспечивающий герметизацию внутреннего объема амортизатора. Шток опирается на цилиндр бронзовыми буксами. Верхняя букса 5 связана со штоком и перемещается вместе с ним, а нижняя закреплена неподвижно в нижней части цилиндра. Амортизатор через специальные клапаны заливается до определенного уровня жидкостью и заряжается сжатым азотом до начального давления ро.

При действии сжимающих нагрузок шток входит в цилиндр, объем газовой камеры уменьшается, а давление в ней и нагрузка на штоке возрастают. Жидкость из нижней полости штока перетекает в верхнюю полость цилиндра через кольцевую щель между иглой и плунжером, испытывая при этом большое сопротивление. Далее жидкость через отверстия в буксе 5 проходит в кольцевую полость между штоком и цилиндром. Кольцевой клапан 6 при этом опускается вниз и открывает свободный проход для жидкости. Приложенная к штоку сила Р на прямом ходе затрачивается на сжатие газа Рг, преодоление сил сопротивления перетеканию жидкости Рж, сил трения в буксах и уплотнениях Рт и сил инерции Рин движущихся со штоком элементов.

Рп.х. = Рг + Рж + Рт + Рин.

Работа сил инерции невелика и ими можно пренебречь.

На рисунке показан характер изменения перечисленных сил в зависимости от перемещения штока d при обжатии амортизатора.

Давление газа и сила Рг определяются политропой с показателем к = 1,1 - 1, 2. Рго - сила, создаваемая давлением начальной зарядки амортизатора. Сила сопротивления перетеканию жидкости прямо пропорциональна квадрату отношения скорости штока к площади проходных отверстий для жидкости.

Заштрихованные на этом рисунке площади показывают величины энергии, поглощенной каждой из перечисленных сил.

Полная работа, поглощенная амортизатором, равна сумме А = Аг + Аж + Ат.

Ее можно выразить через максимальные усилие Рmax и перемещение штока dmax

Работа сил трения и жидкости превращается в теплоту и рассеивается, а работа, затраченная на сжатие газа, аккумулируется и возвращается самолету на обратном ходе. При обратном ходе штока, который происходит с меньшей скоростью, жидкость перетекает в обратном направлении. Кольцевой клапан поднимается жидкостью вверх и резко уменьшает площадь проходных отверстий в буксе 5 , что обеспечивает рассеивание энергии на обратном ходе. Изменение усилия Рг на обратном ходе происходит по той же самой политропе, что и на прямом ходе. Силы трения и сопротивления жидкости вычитаются из усилий, создаваемых газом Р = Рг - Рж - Рт.

Работа сил трения и сопротивления жидкости и на обратном ходе переходит в тепловую и рассеивается.

На диаграмме работы амортизатора площадь между кривыми прямого и обратного хода показывает полную рассеянную амортизатором работу DА = А1 - А2 (петля гистерезиса). У современных амортизаторов полная рассеянная работа составляет 50 - 60 % от поглощенной на прямом ходе энергии А1.

Полная поглащенная энергия удара при посадке Адеф. при опускании центра масс самолета на величину Нэ за счет деформаций амортизатора, пневматиков колес и конструкции определит максимальную нагрузку на колеса SРкэ.

При грубой посадке с повышенными вертикальными скоростями сопротивление жидкости резко возрастает, что приводит к увеличению расчетных нагрузок на амортизаторе - появлению пиковых перегрузок (f). Для устранения этого недостатка были разработаны двухкамерные жидкостно-газовые амортизаторы.

Двухкамерный жидкостно-газовый амортизатор.

Параметры амортизатора определяются исходя из расчетной вертикальной скорости Vy и соответствующей ей энергии удара при посадке. Однако большая часть посадок, выполняемых опытными летчиками, происходит со скоростями Vy, значительно меньшими расчетной. В этом случае желательно иметь более мягкий амортизатор, который обеспечит меньшие нагрузки при посадке. С этой целью желательно снижать давление начальной зарядки амортизатора ро. Обычно оно соответствует усилию, равному 0,5 - 0,6 от стояночной нагрузки. Дальнейшее уменьшение ро снижает запас энергоемкости амортизатора на разбеге, когда нагрузка на колеса максимальна и мягкий
амортизатор будет сильно обжат. Компромиссное решение можно получить, используя двухкамерный амортизатор.

В таком амортизаторе создается две газовых камеры, заряженных разными начальными давлениями - камера низкого (Н) и камера высокого (В) давления. В начальный момент обжатия амортизатора в работу вступает камера низкого давления, а когда в ней давление станет равным давлению зарядки второй камеры, начинают работать обе камеры совместно. За счет увеличения общего объема сжимаемого газа политропа обжатия становится более пологой. В двухкамерном амортизаторе давление зарядки в первой камере (Н) можно снизить до 0,1 - 0,15 от стояночной нагрузки и получить очень мягкий амортизатор при посадке. Если стояночную нагрузку на разбеге выбрать близкой к нагрузке в точке перелома политропы, то за счет ее малого наклона за точкой перелома можно получить достаточный запас энергоемкости амортизатора на разбеге и пробеге для поглощения ударных нагрузок при наезде на неровности, особенно на большой скорости в конце разбега.

Диаграммы работы двухкамерного амортизатора показаны на рисунках, на которых сохранены те же обозначения, что и в предыдущем разделе. На этих диаграммах Рст.взл - обозначена стояночная нагрузка на амортизатор при взлетной массе самолета.

Амортизаторы с разгрузочным клапаном.

Жидкостно-газовый амортизатор за счет использования на прямом ходе сопротивления жидкости имеет достаточно высокий (до 0.8 - 0.85) коэффициент полноты диаграммы работы, что обеспечивает его высокую энергоемкость при небольшом ходе штока. Эта энергоемкость нужна только при посадке самолета в момент его первого удара о землю. Все остальные режимы движения самолета по земле - пробег, разбег, маневрирование при рулежке - не требуют высокой энергоемкости амортизатора. На этих режимах амортизатор поглощает энергию ударных нагрузок при наезде колесами на неровности аэродрома. Энергия этих ударов невелика, но они сопровождаются резкими, с большой скоростью перемещениями штока амортизатора, что при высоком коэффициенте полноты диаграммы работы и при больших скоростях движения самолета приводит к большим пиковым нагрузкам, передаваемым на шасси и самолет. Для снижения этих нагрузок желательно иметь мягкий, пусть даже с меньшей энергоемкостью и с меньшим коэффициентом полноты диаграммы работы, амортизатор. Этого можно добиться уменьшением или даже полным устранением сопротивления жидкости при работе амортизатора на указанных выше режимах движения самолета. Такое превращение жесткого жидкостно-газового амортизатора в мягкий чисто газовый обеспечивается включением в его конструкцию специального разгрузочного клапана, который при первом ударе самолета о землю уменьшает площадь проходных отверстий для жидкости, а при движении самолета по земле при стояночном обжатии амортизатора клапан открывает дополнительные каналы перетекания жидкости, что превращает амортизатор в газовый. Уменьшение ударных пиковых нагрузок при движении самолета, особенно на разбеге и пробеге, благоприятно сказывается на ресурсе шасси и других агрегатов самолета.

Схема уборки и выпуска опор шасси на примере шасси самолета Ан-26.

Уборка и выпуск опоры шасси осуществляется силовыми цилиндрами. При уборке основной опоры шасси жидкость из гидросистемы поступает параллельно в верхнюю полость силового цилиндра и гидроцилиндр замка-распора. Обратная стрела прогиба при этом выбирается, распор в дальнейшем не препятствует складыванию подкоса и уборки амортстойки. Силовой цилиндр убирает амортстойку, поворачивая ее до постановки ее на замок убранного положения.

В ходе уборки амортстойки при помощи механизма, кинематически связанного с ней, происходит открытие, а затем закрытие передних створок отсека опоры. Створки полностью открываются при угле поворота амортстойки 35°, а начинают закрываться за 6° до полностью убранного положения стойки. В закрытом положении створки запираются механическим замком, управление которым осуществляется от замка убранного положения амортстойки.

При выпуске основной опоры шасси жидкость из гидросистемы поступает сначала в гидроцилиндр замка убранного положения амортстойки, открывая его и связанный с ним замок створок. Только после открытия этих замков жидкость поступает в нижнюю полость силового цилиндра, который за счет демпфирующего устройства обеспечивает безударное окончание выпуска амортстойки. В конце выпуска звенья распора под действием своих пружин устанавливаются на механический упор, образуя обратную стрелу прогиба, тем самым, фиксируя опору в выпущенном положении.

Открытие и закрытие передних створок отсека при выпуске амортстойки происходит также как и при уборке, но в закрытом положении створки замком не запираются.

При уборке передней опоры шасси жидкость из гидросистемы одновременно поступает в гидроцилиндр замка выпущенного положения и в гидроцилиндр уборки-выпуска передней опоры. Замок открывается, амортстойка начинает убираться, одновременно приводится в действие центрирующее устройство и механизм управления передними и средними створками, которые открываются на угол 85° и пропускают переднюю амортстойку в отсек шасси. В конце уборки закрывается замок убранного положения и одновременно происходит закрытие всех створок отсека передней опоры.

При выпуске передней опоры шасси работа механизмов осуществляется в обратном порядке. В ходе выпуска замок выпущенного положения закрывается, одновременно закрываются передние и средние створки.

Летательного аппарата, воспринимающий и передающий на конструкцию планёра концентрированные статические и динамические нагрузки, возникающие при взлёте и особенно при посадке летательного аппарата. Основные элементы С. ш. : амортизатор шасси (см. ), при балочной схеме тележки шасси он встроен в С. ш. , при рычажной — вынесен; ; складывающийся подкос, воспринимающий нагрузку от лотовых сил (уменьшающийся по длине при убирании С. ш. ); раскосы — стержни, расположенные по диагонали шарнирного многоугольника, образованного С. ш. и подкосом, и обеспечивающие геометрическую неизменяемость этого многоугольника; траверса — элемент крепления стойки к крылу или фюзеляжу (при подкосной С. ш. связь с летательным аппаратом осуществляется с помощью подкосов); механизм ориентации С. ш. , предназначенный для разворота стойки при её убирании или выпуске; узел у нижнего основания С. ш. для крепления оси колёс или тележки к С. ш. ; замки, обеспечивающие фиксацию С. ш. в выпущенном и убранном положениях; цилиндры механизма выпуска и убирания шасси. Консольная конструкция С. ш. , отличающаяся большой жёсткостью, исключает необходимость заднего подкоса. При рычажной и полурычажной схемах к С. ш. относятся также рычаги, на которых крепятся колёса. Передняя С. ш. включает цилиндры демпфера шимми летательного аппарата — устройство, защищающее летательный аппарат от вибрации колёс, и рулёжное устройство (с гидроцилиндром), предназначенное для поворота передней С. ш. при движении (рулении) летательного аппарата по земле, разбеге перед взлётом и пробеге после посадки.

В начальный период развития авиации С. ш. при полёте самолёта находились в воздушном потоке и являлись одним из основных источников аэродинамического сопротивления. Для его снижения сначала стали устанавливать обтекатели на колёса и С. ш. , а в 30-х гг. при создании скоростных самолётов началось широкое применение убирающегося шасси, хотя это и связано с увеличением массы и усложнением конструкции шасси.

Кинематика убирания С. ш. весьма разнообразна. На большинстве отечественных и зарубежных пассажирских самолётов они убираются вдоль по размаху крыла в сторону фюзеляжа; на самолётах семейства , как правило, — назад по потоку в специальные обтекатели; при этом тележка шасси поворачивается на 180° так, что передние колёса оказываются сзади. Такая компоновка предельно уменьшает размеры обтекателя.

В. М. Шейнин.


Энциклопедия «Авиация». - М.: Большая Российская Энциклопедия . Свищёв Г. Г. . 1998 .

Смотреть что такое "стойка шасси" в других словарях:

    Стойка шасси - основной силовой элемент шасси летательного аппарата, воспринимающий и передающий на конструкцию планёра концентрированные статические и динамические нагрузки, возникающие при взлёте и особенно при посадке летательного аппарата. Основные элементы … Энциклопедия техники

    Стойка шасси — основной силовой элемент шасси летательного аппарата, воспринимающий и передающий на конструкцию планёра концентрированные статические и динамические нагрузки, возникающие при взлёте и особенно при посадке летательного… … Энциклопедия «Авиация»

    подкосная стойка шасси самолета (вертолета) - подкосная стойка Стойка шасси самолета (вертолета), связанная с самолетом (вертолетом) подкосами. [ГОСТ 21891 76] Тематики шасси самолетов и вертолетов Синонимы подкосная стойка … Справочник технического переводчика

    шасси - 1) автомобиля – собранный комплект агрегатов трансмиссии, ходовой части и механизмов управления, т. е. автомобиль без двигателя и кузова. Шасси ещё не способно двигаться самостоятельно, но его можно катать на колёсах. В литературе часто… … Энциклопедия техники

    Рис. 1. Схемы шасси. шасси (франц. châssis, от лат. capsa — ящик, вместилище) — совокупность опор летательного аппарата, необходимых для стоянки и передвижения на земле, для разбега при взлёте, а также пробега и торможения при посадке.… … Энциклопедия «Авиация»

Стойка шасси являет собой один из силовых элементов конструкции самолета, может обеспечивать дополнительную жесткость крыльям или оперению летательного аппарата. Стойка является одной из главных составляющих системы шасси в самолетах любого класса. Данная часть шасси принимает и передает корпусу самолета смягченные статические нагрузки. Наибольшая нагрузка на стойку отмечается при посадке. Амортизирующая система шасси позволяет минимизировать удар от касания ВПП при посадке.

Стойки шасси в ферменном фюзеляже

Ферменная конструкция фюзеляжа сконструирована таким образом, что все нагрузки принимает на себя ферма, которая состоит из четырех или трех ферм плоской формы. В такой конструкции, кроме стойки, важной частью являются и расчалки, и подкосы. В ферменном фюзеляже стойка шасси работает на сжатие и растяжение. В современном авиастроении ферменный тип корпуса практически не используется, поскольку более эффективным является балочный фюзеляж. Преимуществом балочного фюзеляжа является то, что нагрузка и силы крутящего момента от стойки шасси передаются на весь корпус за счет силового каркаса, состоящего из стрингеров, лонжеронов и шпангоутов.

Стойка выступает самым главным силовым элементом конструкции шасси летательного аппарата. Данная деталь принимает и передает общей конструкции самолета все динамические и статические нагрузки, возникающие в момент разбега.

Составляющие части стойки шасси

    Складывающий подкос – обеспечивает восприятие нагрузок лотовых сил.

    Амортизатор шасси – обеспечивает плавность движения летательного аппарата по ВПП. Основной задачей является гашение колебаний и ударов, которые возникают в момент касания машиной взлетной полосы при посадке. В большинстве случаев для гашения используют длинноходные азото-масляные амортизаторы с несколькими камерами. При необходимости устанавливаются стабилизирующие демпферы.

    Раскосы – это стержни, которые имеют диагональное расположение относительно шарнирного многоугольника, который образовывается подкосом и стойкой. В свою очередь раскос обеспечивает неуязвимость всей конструкции многоугольника.

    Траверсы – элементы шасси, которые обеспечивают крепление стойки к фюзеляжу или крылу.

    Ориентационный механизм стойки – позволяет производить разворот при выпуске или уборке стойки.

    На стойке имеется нижний узел, расположенный в основании конструкции, он позволяет проводить крепление колес.

    Замки – механизмы, которые позволяют фиксировать стойку в определенном положении.

    Цилиндры – обеспечивают уборку и выпуск системы шасси.

Изначально при создании первых машин в авиации они имели неубирающееся шасси. Это был один из основных источников нарушения аэродинамики в полете. Чтобы снизить степень сопротивления, на шасси летательных аппаратов устанавливали щитки – обтекатели, которые прикрывали стойки и шасси. Системы шасси, которые убирались в фюзеляж, начали использовать с появлением и развитием скоростных самолетов. Конечно, это усложняло конструкцию и добавляло лишний вес, но при этом машины обретали необходимую обтекаемость. В современных моделях пассажирских самолетов стойки системы шасси убираются вдоль размаха крыла к фюзеляжу.

Схемы расположения амортизаторов стоек

В зависимости от того, каким образом расположены амортизаторы относительно опоры, выделяют такие типы схемы стоек:

    Телескопическая.

    Рычажная.

    Полурычажная.

Телескопическая схема строения объединяет в себе стойку трубчатого типа с амортизатором. Сама трубка выступает в роли цилиндра, в середине которого расположен поршень и шток, данное соединение элементов формирует телескопическую пару. В нижней части штока крепятся колеса. Во избежание возможности поворота штока в середине цилиндра используют шарнир, обеспечивающий поступательное движение штока под воздействием массы аппарата.

Данная схема имеет и недостатки, среди которых можно назвать отсутствие боковых амортизационных нагрузок и нагрузок от переднего удара. Частично передний удар амортизируется за счет наклона стойки шасси в плоскости, параллельной симметрии корпуса. Более эффективной считается качающийся вариант телескопических стоек. В этом варианте стойка фиксируется сверху. Жесткость выпущенного положения обеспечивается за счет подкоса.

Рычажная схема отличается тем, что колеса системы шасси крепятся на рычаге, соединенном с фюзеляжем или стойкой шарниром. За счет того, что шток амортизатора стойки соединен с рычагом шарниром, на саму опору не передается изгибающий момент. Это обеспечивает отличные условия для уплотнителя амортизатора.

Выделяют три основных подвида рычажных стоек:

    Рычажная стойка, в середине которой установлен амортизатор.

    Рычажная стойка с амортизатором выносного типа, который крепится с наружной стороны опоры.

    Рычажный тип без стойки.

Все эти варианты строения стоек позволяют обеспечить отличную амортизацию при переднем ударе самолета. При этом осуществляется поворот рычага и дальнейшее обжатие амортизатора.

Полурычажная схема имеет в своей конструкции элементы как рычажной, так и телескопической стойки. Основным отличием является то, что колеса шасси крепятся шарнирами к самой стойке, а не к штоку. Амортизаторы стоек начинают свою работу при вертикальной нагрузке. Смягчение переднего удара отличное, но оно передается на шток с дальнейшим его изгибом.

Как делают шасси самолета? (видео)

Посадка при сильном боковом ветре, смотрим на шасси

ШАССИ САМОЛЕТА

Компоновка шасси

Шасси самолета представляют систему опор, необходимых для маневрирования по аэродрому, разбега и пробега самолета при взлете, посадке и стоянки. Во время взлета и посадки шасси поглощает и рассеивает кинетическую энергию ударов и поступательного движения.

Шасси должно обеспечивать устойчивое движение самолета во время пробега, заданную проходимость по грунту и иметь минимальный вес и габариты.

По количеству и взаимному расположению шасси различают следующие компоновочные схемы.

Трехопорные шасси с хвостовой опорой (рис. 4.1 а) характеризуется посадочным углом φ между осью самолета и касательной к главной и задней опорам; противокапотажным углом γ между вертикалью при взлете и прямой, соединяющей центр тяжести самолета и точку касания главной опоры; углом выноса шасси λ= γ+ φ., колеей шасси В ш, представляющей расстояние между главными опорами.

Рассмотренная схема шасси обладает рядом недостатков – плохая путевая устойчивость, опасность капотирования при резком торможении, наклонный пол кабины при стоянке, возможность взмывания самолета при посадке.

С увеличением посадочных скоростей эти недостатки стали проявляться в большей степени. Поэтому схема шасси с хвостовой опорой, обладающая минимальным весом, применяется на легких самолетах с поршневыми двигателями.

Рис.4.1. Схемы шасси

Основной схемой шасси современных самолетов является трехопорная схема с носовым колесом (рис. 4.1 б).

Она характеризуется следующими параметрами: посадочным углом φ между осью фюзеляжа и касательной к главным опорам и нижней точки хвостовой части фюзеляжа; стояночным углом φ с между осью фюзеляжа и плоскостью земли; противокапотажным углом γ; высотой шасси Η; высотой главных опор e, относительно центра тяжести, колеей шасси B ш и базой шасси в ш, представляющей расстояние между носовой и главными опорами

Рассмотренная схема шасси обеспечивает хорошую путевую устойчивость, ухудшению проходимости по грунту, снижению безопасности при поломке носового колеса, возможности самовозбуждающихся колебаний типа шимми.

Велосипедная схема шасси (рис. 4.1. в) характеризуется наличием двух основных опор, расположенных под фюзеляжем, и подкрыльных опор, предохраняющий самолет от опрокидывания на крыло. Шасси характеризуется теми же параметрами, что и предыдущая схема и отличается лишь большим выносом шасси относительно центра тяжести. Велосипедная схема шасси является вынужденной и применяется для истребителей- бомбардировщиков с высоко - расположенным тонким крылом.

Из-за сравнительно большой нагрузки на носовую опору затруднен отрыв самолета при взлете. Для облегчения взлета применяются механизмы «вздыбливания » передней опоры или «приседания» задней опоры. Это значительно утяжеляет вес шасси и усложняет технику пилотирования.

Многоопорные шасси применяются на тяжелых самолетах, эксплуатирующихся на грунтовых аэродромах. Для повышения проходимости самолета требуется большое количество колес или дополнительные опоры. Дополнительная центральная опора смещается относительно основных для удобства уборки шасси в фюзеляж. Для улучшения маневренности самолета задняя стойка может выполняться управляемой.

Конструктивно- силовые схемы шасси

Нога шасси современных самолетов состоит из опорных элементов (колес, лыж) ; амортизаторов для поглощения кинетической энергии; амортизаторных стоек, механизмов уборки и выпуска шасси; замков, фиксирующих шасси в убранном и выпущенном положении; механизмов поворота и управления шасси.

На самолетах применяются преимущественно три схемы шасси:

· ферменная,

· балочная

· и ферменно-балочная или подкосная.

Ферменная конструкция является наиболее легкой, поскольку основными элементами служат подкосы, работающие на растяжение- сжатие. Ферменные стойки применяются на не убирающимся шасси легких самолетов (например, АН-2) и поэтому распространены сравнительно редко.

Балочная схема (4.2.а) наиболее проста по конструкции и компактна. Стойка закреплена шарнирно по оси О-О \ и фиксируется замком или упором. В узле крепления изгибающий момент достигает наибольшей величины. При большой длине стойки шасси получаются тяжелыми. Для уменьшения нагрузки в узле крепления применяются подкосы, разгружающие амортизаторную стойку в одной или двух плоскостях. Такая схема называется подкосной или ферменно-балочной (4.2.б).

Конструкция шасси состоит из амортизаторной стойки 1, боковых подкосов 2, траверсы с цапфами 3, цилиндра- подъемника 4, складывающегося лобового подноса 5, механизма поворота колес 6. двухзвенника (шлиц-шарнир) 7, колес 8.

Стойка является основным элементом шасси, связывающая опоры шасси с конструкцией шасси с конструкцией самолета. Внутренняя полость стойки используется для устройства амортизатора.

Подкосы шасси служат дополнительными опорами стойки и разгружают ее от изгибающего момента и увеличивают жесткость конструкции.

Траверса представляют верхнюю часть стойки, предназначенные для крепления ноги шасси с конструкцией самолета.

Цилиндр- подъемник служит для уборки и выпуска шасси, а также для фиксации шасси в выпущенном положении.

Механизм поворота колес обеспечивает поворот колес передней ноги шасси для маневрирования самолета по аэродрому и предотвращает возникновение самовозбуждающихся колебаний типа шимми

Двухзвенник - устройство, состоящее из двух звеньев, соединяющих шток амортизаторной стойки с цилиндром и препятствующих повороту штоку в цилиндре.

Колесо состоит из пневматиков, барабана и тормозных устройств.

В зависимости от крепления колес к стойке различают рычажную подвеску колес (4.2.а) и телескопическую (4.2.б).

В стойках с рычажной подвеской колесо крепится к рычагу, поворачивающемуся относительно оси шарнира. Благодаря этому рычажные стойки способны амортизировать горизонтальные составляющие ударных нагрузок.

Недостатком рычажных стоек является большой вес и габариты.

В телескопических стойках колеса крепятся непосредственно на штоке амортизатора.

Такая стойка амортизирует нагрузки, действующие только вдоль ее оси. Для амортизации горизонтальных составляющих стойка устанавливается под некоторым углом к вертикали.

На тяжелых самолетах с целью уменьшения нагрузок на одно колесо применяются стойки с многоколесовыми тележками (рис. 4.3.), имеющие 4-8 колес.

Нога шасси состоит из амортизаторной стойки 1, выполненной как одно целое с траверсой, штока 2 сварной конструкции, в нижней части которого располагается узел крепления тележки 4.

Рама тележки крепится к штоку шарнирно, что уменьшает неравномерность нагружения колес при движении самолета по неровному грунту и разгружает стойку от изгиба. Требуемое положение перед посадкой придается тележке стабилизирующим амортизатором 8. Повороту тележки относительно оси стойки препятствует шлиц-шарнир 7. Для удобства уборки шасси стойка наклонена вперед по полету. Уборка и выпуск шасси осуществляется гидравлическим цилиндром подкосом 9, который в выпущенном положении выполняет роль подкоса.

Тележка (рис. 4.4.) служит для крепления колес. Она состоит из продольной балки 8; двух осей 2 для крепления 4 колес; двух передних 15 и двух задних тормозных тяг и тормозных рычагов 4,12, служащих для торможения колес; узла подвески тележки 9.

Шасси с многоколесными тележками довольно сложны по конструкции, имеют большой вес и ухудшают маневренность самолета при движении по грунту.