Регуляторы давления газа. Регуляторы давления газа разделяют на

  1. Дроссель надмембранный РДГ
  2. Дроссель подмембранный РДГ
  3. Клапан отсечной РДГ
  4. Клапан пилота РДГ
  5. Клапан рабочий РДГ
  6. Клапан стабилизатора РДГ
  7. Кольцо уплотнительное РДГ
  8. Мембрана механизма контроля РДГ
  9. Мембрана пилота РДГ
  10. Мембрана рабочая РДГ
  11. Мембрана стабилизатора РДГ
  12. Пружина клапана отсечного РДГ
  13. Пружина клапана пилота РДГ
  14. Пружина механизма контроля большая РДГ
  15. Пружина пилота РДГ
  16. Пружина стабилизатора РДГ
  17. Пружина механизма контрля малая РДГ
  18. Седло пилота РДГ
  19. Седло регулятора РДГ
  20. Уплотнитель клапана отсечного РДГ
  21. Фильтр регулятора РДГ
  22. Шток клапана рабочего РДГ
  23. Шток механизма контроля РДГ
  24. Пилот РДГ
  25. Стабилизатор РДГ
Выше мы перечислили основные детали, которые в процессе эксплуатации регулятора могут выйти из строя. В настоящее время, в условиях кризиса зачастую проще отремонтировать работающий регулятор, чем покупать новый. Конечно это не всегда рентабельно, но зачастую это реальный выход, который экономичен по деньгам, но довольно трудозатратен. Сразу следует оговориться, что ремонт регулятора РДГ-50 следует производить только специально обученному персоналу, имеющему допуск к данному виду работ! Экономия в данном случае может привести к печальным последствиям, начиная от серьезной поломки регулятора, до аварий с человеческими жертвами.
РДГ-50Н без особых усилий можно найти во многих организациях, занимающимися поставками газового оборудования. Но следует учесть, что далеко не все разбираются в тонкостях работы редуктора и в отличиях основных узлов. Если вы решили ремкомплект РДГ-50Н заказать , то в первую очередь следует уточнить производителя данного продукта и желательно год его производства. Дело в том, что с виду можно сказать, что регуляторы разных производителей практически не отличаются, но вот составные части могут иметь значительные различия. Что касается РТИ, то, например, мембрана рабочая РДГ-50 у всех одинаковая. Единственное, чем они могут отличаться это материалом.
Некоторые производители изготавливают мембраны из мембранного полотна, а некоторые делают их литыми. То же самое касается мембрана пилота РДГ-50 и мембрана стабилизатора РДГ-50 . Но с мембранами пилота не все так просто. Есть несколько конструкций пилотов. Круглая мембрана пилота РДГ-50 и квадратная мембрана пилота отличаются не только формой, но и размером. Стоит обратить внимание и на дроссели.
Дроссель РДГ-50 может иметь различную конструкцию. Был случай, когда заказчик предоставил название завода, но не уточнил год производства. Когда запасные части к РДГ-50 были поставлены выяснилось, что дроссели не подходят. У них оказались экспериментальные регуляторы, запчасти к которым уже давно никто не делал. Седло РДГ-50 редко у кого отличается, но все таки бывают разные. При заказе седла, а так же клапан РДГ-50 , необходимо уточнять диаметр.
Не мало важным аспектом при выборе запасных частей является материал, из которого они
изготавливаются да и сам процесс производства тоже накладывает отпечаток на качество деталей. Например, если уплотнение клапана РДГ-50 будет запресовано не качественно, то такой клапан проработает не долго и придется его вновь ремонтировать.
Производители постоянно работают над конструкцией своих регуляторов. Это происходит из-за стремления понизить себестоимость, а так же повысить качество и точность работы. Технические специалисты разрабатывают новые конструкции и это приводит к изменениям внутренних деталей регуляторов.
Регуляторы РДГ-50, РДГ-80 и РДГ-150 имеют схожую конструкцию и отличие ремкомплектов состоит в размерах деталей. К примеру мембрана рабочая РДГ-150 значительно больше чем мембрана рабочая РДГ-80 . Так же обстоят дела и с клапанами рабочими. Из-за различия проходных диаметров и соответственно пропускной способности клапан рабочий РДГ-150 больше чем клапан рабочий РДГ-80 , а тот в свою очередь больше чем клапан рабочий РДГ-50. Такие узлы как пилот и стабилизатор у одного производителя не отличаются у регуляторов с разным диаметром. У высоких регуляторов отсутствует в конструкции стабилизатор, поэтому стоимость ремкомплекта у них будет ниже. У ремкомплект РДГ-150 цена самая высокая среди трех модификаций, у ремкомплект РДГ-80 цена промежуточная и соответственно у РДГ-50 цена ремкомплекта самая низкая.

Мы предоставляем возможность ремкомплект РДГ купить с доставкой в Серпухове, Одинцово, Красногорске, Химках, Балашихе, Домодедово, Люберцах, Подольске, Чехове, Ступино, Раменском, Королеве, Пушкино, Ногинске, Тамбове, Алмате, Атырау, Актау, Москве, Новосибирске, Нижнем Новгороде, Омске, Томске, Ярославле, Петрозаводске, Казани, Актобе, Караганде, Улан-Удэ, Владивостоке, Хабаровске, Пензе, Калуге, Волгограде, Челябинске, Екатеринбурге, Иваново, Кстово, Чебоксарах, Рязани, Дзержинске, Ростове-на-Дону, Перьми, Санкт-Петербурге, Курске, Туле, Твери, Самаре, Воронеже, Набережных Челнах, Тюмени, Гатчине, Владимире, Великом Новгороде, Красноярске, Волжском, Белгороде, Рыбинске, Барнауле, Смоленске, Самаре, Щекино, Кемерово, Оренбурге, Сургуте, Хасавьюрте, Махачкале, Грозном, Каспийске, Уфе, Миассе, Краснодаре, Ставрополе, Тольятти, Старом Осколе, Стерлитамаке, Ишимбае, Рудном, Брянске, Костанае, Уральске Сочи, Новокузнецке, Астане, Амурске, Ангарске, Норильске, Нижнекамске, Элисте, Бийске, Мурманске, Владикавказе, Ханты-Мансийске, Нальчике, Орле, Калининграде, Йошкар-Оле. Для этого Вам необходимо связаться с нами любым удобным для Вас способом.

Полезная модель относится к технике автоматического регулирования газа, а именно к газорегулирующей аппаратуре и может быть использована в системах газоснабжения промышленных, сельскохозяйственных объектов, а также на объектах коммунально-бытового хозяйства, требующих автоматического поддержания выходного давления газа на заданном уровне. Задачей, на решение которой направлено заявляемое техническое решение, является создание простого и надежного в эксплуатации прямоточного регулятора давления газа. Технический результат заключается в повышении стабильности и безопасности работы регулятора давления газа. Регулятор давления газа содержит исполнительное устройство, выполненное с возможностью подключения между входной и выходной линиями, и соединенное со стороны входной линии со стабилизатором давления, в свою очередь соединенным с пилотом. Исполнительное устройство включает корпус с крышкой, мембранный привод, делящий полость исполнительного устройства на исполнительную и управляющую камеры, при этом выход пилота соединен через первый дроссель с управляющей камерой, а выходная линия соединена с исполнительной камерой и пилотом. Регулятор снабжен импульсной стойкой с расположенным в ней вторым дросселем, выполненным с возможностью обеспечения исключения колебаний выходного давления в процессе работы, при этом импульсная стойка закреплена на корпусе исполнительного устройства со стороны входа в исполнительную камеру, обеспечивая соединение выходной линии с исполнительной камерой и пилотом, а первый дроссель расположен в крышке исполнительного устройства, стабилизатор выполнен с возможностью регулирования выходного давления газа, а выход пилота, соединенный через первый дроссель с управляющей камерой, одновременно соединен через второй дроссель с исполнительной камерой. Кроме того, пилот снабжен регулировочным стаканом, встроенным в корпус пилота и выполненный с возможностью перемещения для обеспечения настройки выходного давления. Мембранный элемент мембранного привода исполнительного устройства, а также мембранный элемент пилота могут быть выполнены литыми, например, из сырой резины НО-68, а корпус с крышкой исполнительного устройства изготовлен из алюминия марки от АК 5 М2 до АК 12 ОЧ. Рабочая поверхность клапана исполнительного устройства покрыта слоем вулканизированной резины. Регулировочный стакан и корпус пилота соединены посредством резьбового соединения, при этом полость регулировочного стакана выполнена сообщающейся с полостью корпуса пилота, который выполнен из алюминия.

Полезная модель относится к технике автоматического регулирования газа, а именно к газорегулирующей аппаратуре и может быть использована в системах газоснабжения промышленных, сельскохозяйственных объектов, а также на объектах коммунально-бытового хозяйства, требующих автоматического поддержания выходного давления газа на заданном уровне. Конструкция заявляемой полезной модели обеспечивает высокую надежность в процессе эксплуатации и может быть рекомендована для установки в системах обеспечения природным газом опасных производственных объектов.

С помощью регуляторов давления газа осуществляют управление режимом работы системы газораспределения, которые автоматически поддерживают постоянное давление в точке отбора независимо от интенсивности потребления газа. При регулировании давления происходит снижение начального - более высокого - давления до конечного - более низкого. Это достигается автоматическим изменением степени открытия мембранного блока исполнительного устройства регулятора, вследствие чего автоматически изменяется сопротивление проходящему потоку газа.

Автоматический регулятор давления состоит из задающего и исполнительного механизмов. Основной частью исполнительного механизма является чувствительный элемент, который сравнивает сигналы задатчика и текущего значения регулируемого давления. Исполнительный механизм преобразует командный сигнал в регулирующее воздействие и в соответствующее перемещение подвижной части регулирующего органа за счет энергии рабочей среды - газа. Регулирование обеспечивается подвижным состоянием регулирующего органа исполнительного механизма.

В системах газораспределения наиболее распространены следующие типы автоматических регуляторов давления газа (по виду нагрузки):

Регуляторы давления газа прямого действия с пружинной и рычажно-пружинной нагрузками, например регуляторы давления газа РДГД-20 и РДСК-50, в которых усилие рабочей мембраны передается непосредственно на клапан, находящийся на штоке и закрепленный в центре мембраны. В целях разгрузки клапана от влияния входного давления используется дополнительная разгрузочная мембрана.

Регуляторы давления газа непрямого действия с командным прибором -регулятором управления (пилотом), например, устройства типа РДУК2, РДБК1, РДГ. Процесс регулирования определяется взаимодействием выходного давления на рабочую мембрану, силы так называемого управляющего давления, подаваемого из пилота в подмембранное пространство, грузом подвижных частей, силами трений в соединениях (http://www.exform.ru/catalog/regulator/RDP/).

Пилотные регуляторы давления газа имеют достаточно широкие интервалы входного и выходного давления и пропускной способности. Эти факторы обеспечиваются воздействием на рабочую мембрану регулятора давления газа подмембранного управляющего давления, создаваемого пилотом, вместо непосредственного воздействия настроечной пружины на мембрану.

Известен прямоточный регулятор давления газа, содержащий корпус с закрываемым отверстием и соосными выходным и входным патрубками. В корпусе на одной оси с патрубками расположены поршневой чувствительный привод с радиальным кронштейном, имеющим каналы подвода задающего и выходного давлений, и запорно-регулирующий орган, содержащий затвор и седло. Устройство снабжено концентрично расположенным к затвору коллектором, выполненным в виде цилиндра с окнами для прохода газа, имеющими изменяющееся в зависимости от хода затвора проходное сечение, определяемое требуемой расходной характеристикой. Одна часть коллектора жестко связана с приводом, а в другую с осевым и радиальным зазорами установлено подвижное седло из твердого сплава с уплотнением по опорному торцу. Поверхность седла, контактируемая с потоком газа и затвором, выполнена конусообразной, а ее профиль представляет собой часть общего плавного профиля газового канала (Патент на изобретение РФ 2125737, МПК: G05D 16/06).

Данное изобретение характеризуется повышенной надежностью запорно-регулирующего органа прямоточного регулятора давления газа, однако не обеспечивает высокую стабильность работы при резких скачках давления газа, подаваемого на вход в регулятор.

Известен регулятор давления газа прямого действия РДУВ производства ООО «Старорусприбор», в состав которого входит исполнительное устройство с ответными фланцами и задающее устройство, соединенное с исполнительным устройством медными или латунными трубками. В качестве задающего устройства установлены либо редуктор-задатчик на РДУ 100/50 и РДУ 100/80, либо редуктор перепада с усилителем на РДУ 100/100 и РДУ 63/100. Исполнительные устройства регуляторов всех типоразмеров конструктивно подобны и отличаются друг от друга типоразмерами и являются конечным звеном системы автоматического регулирования. При перемещении затвора изменяется проходное сечение исполнительного устройства, а, следовательно, и количество проходящего газа. Этим обеспечивается поддержание выходного давления на заданном значении при колебании газопотребления или входного давления. Перемещение затвора происходит за счет изменения управляющего давления, поступающего на привод исполнительного устройства от задающего устройства. Для питания задающего устройства используется газ входного давления. Исполнительное устройство состоит из корпуса с крышкой, мембранного привода, затвора, возвратной пружины, седла и кожуха. Седло размещено во внутренней полости крышки на ребрах. Для обеспечения герметичности исполнительного устройства, последнее снабжено прокладкой, прикрепленной к седлу посредством винта. Затвор выполнен в виде тонкостенной трубы и связан с мембранным приводом с помощью диска и двух шайб. В исходном положении затвор прижат к седлу возвратной пружиной (см. http://www.staroruspribor.ru/files/catalog/gallery/0/66/9.pdf Руководство по эксплуатации РДУ 00.00.00РЭ).

Известен также регулятор давления газа, содержащий исполнительное устройство, стабилизатор давления с обходной линией и пилот, имеющий многокамерную конструкцию, регулируемый дроссель и клапан. Стабилизатор выполнен со скрытой внутрь корпуса обходной линией, представляющей собой канал в перегородке корпуса стабилизатора. Пилот выполнен с каналом, в котором сцентрирован клапан пилота, а регулируемый дроссель установлен в стенке пилота, таким образом, что его ось параллельна оси пилота и он связан с камерами пилота при помощи каналов (Патент на изобретение 2319193, МПК: G05D 16/00).

Однако известные регуляторы давления газа характеризуются нестабильной работой при резких скачках давления газа, подаваемого на вход в регулятор.

Наиболее близким к заявляемому техническому решению является регулятор давления газа, содержащий исполнительное устройство, стабилизатор давления и пилот. Пилот включает регулируемый дроссель. Выходная линия пилота соединена с управляющей камерой исполнительного устройства и через регулируемый дроссель с трубопроводом газопотребителя, а выход исполнительного устройства связан с линией обратной связи стабилизатора давления и импульсной камерой исполнительного устройства (Патент на полезную модель РФ 25105, МПК: G05D 16/06).

Однако данный регулятор давления газа также характеризуется нестабильной работой при резких скачках давления газа, подаваемого на вход в регулятор.

Задачей, на решение которой направлено заявляемое техническое решение, является создание простого и надежного в эксплуатации прямоточного регулятора давления газа.

Технический результат заключается в повышении стабильности и безопасности работы регулятора давления газа.

Поставленная задача решается тем, что регулятор давления газа, содержащий исполнительное устройство, выполненное с возможностью подключения между входной и выходной линиями, и соединенное со стороны входной линии со стабилизатором давления, в свою очередь соединенным с пилотом, исполнительное устройство включает корпус с крышкой, мембранный привод, делящий полость исполнительного устройства на исполнительную и управляющую камеры, при этом выход пилота соединен через первый дроссель с управляющей камерой, а выходная линия соединена с исполнительной камерой и пилотом, согласно техническому решению, снабжен импульсной стойкой с расположенным в ней вторым дросселем, выполненным с возможностью обеспечения исключения колебаний выходного давления в процессе работы, при этом импульсная стойка закреплена на корпусе исполнительного устройства со стороны входа в исполнительную камеру, обеспечивая соединение выходной линии с исполнительной камерой и пилотом, а первый дроссель расположен в крышке исполнительного устройства, стабилизатор выполнен с возможностью регулирования выходного давления газа, а выход пилота, соединенный через первый дроссель с управляющей камерой, одновременно соединен через второй дроссель с исполнительной камерой.

Кроме того, пилот снабжен регулировочным стаканом, встроенным в корпус пилота и выполненный с возможностью перемещения для обеспечения настройки выходного давления. Мембранный элемент мембранного привода исполнительного устройства, а также мембранный элемент пилота могут быть выполнены литыми, например, из сырой резины НО-68, а корпус с крышкой исполнительного устройства изготовлен из алюминия марки от АК 5 М2 до АК 12 ОЧ. Рабочая поверхность клапана исполнительного устройства покрыта слоем вулканизированной резины. Регулировочный стакан и корпус пилота соединены посредством резьбового соединения, при этом полость регулировочного стакана выполнена сообщающейся с полостью корпуса пилота, который выполнен из алюминия.

В заявляемой полезной модели пилот применяется в качестве задатчика давления. Подача давления в пилот осуществляется через регулируемый стабилизатор, обеспечивающий постоянный перепад давления на пилоте. Наличие регулируемого стабилизатора позволяет стабилизировать давление на выходе из него в зависимости от входного давления. Соответственно, на вход пилота поступает давление заданной величины, настроенное на «нормальную» (бесперебойную) работу пилота. Наличие импульсной стойки облегчает установку регулятора на объект. Наличие второго дросселя, расположенного в импульсной стойке обеспечивает настройку регулятора давления на работу без автоколебаний.

Полезная модель поясняется чертежами, где на фиг 1 схематично представлена заявляемая конструкция, на фиг.2 - блок, включающий исполнительное устройство с импульсной стойкой, на фиг.3 - устройство в сборе, вид сверху. Позициями на чертеже обозначены: 1 - исполнительное устройство, 2 - стабилизатор, 3 - пилот, 4 - импульсная стойка, 5, 6 - дроссели, 7 - корпус исполнительного устройства, 8 - крышка корпуса исполнительного устройства, 9 - мембранный привод, 10 - исполнительная (импульсная) камера, 11 - управляющая камера, 12 - гильза (втулка-затвор), 13 - пружина, 14 - клапан, 15 - гайка, 16 - мембранный элемент, 17 - диск, 18 - крепежные элементы, 19 - 21 каналы исполнительного устройства, 22 - уплотнительные элементы, 23 - корпус пилота, 24 - крышка пилота, 25 - мембранный элемент пилота, 26 - клапан плота, 27 - шток пилота, 28 - пружина, 29 - стакан.

Прямоточный регулятор давления газа содержит связанные трубопроводами исполнительное устройство 1, стабилизатор 2 и пилот 3. Регулятор снабжен импульсной стойкой 4, закрепленной на исполнительном устройстве 1, и двумя дросселями 5, 6. Исполнительное устройство 1 представляет собой корпус 7 с входным фланцем, снабженный крышкой 8 с выходным фланцами. Между корпусом 7 и крышкой 8 закреплен мембранный привод 9, делящий полость исполнительного устройства 1 на исполнительную (импульсную) 10 и управляющую 11 камеры, который связан с запорным органом в виде подвижной гильзы (втулки-затвора) 12. Гильза выполнена с возможностью возвратно-поступательного перемещения в направляющих втулках корпуса и крышки. В исходном состоянии гильза 12 поджата пружиной 13 и взаимодействует с клапаном 14, неподвижно закрепленным в крышке 8 посредством гайки 15. При этом импульсная камера 9 образована стенками корпуса 7 и мембранным приводом, управляющая камера 10 образована мембранным приводом и крышкой 8. Мембранный привод 9 представляет собой мембранный элемент 16 с тарелкой, закрепленные на диске 17 посредством крепежных элементов 18. Мембранный элемент 16 изготовлен литьем из сырой резины НО-68. Исполнительное устройство 1 снабжено каналами 19, 20 подвода задающего и выходного давлений, выполненными в корпусе 7 и крышке 8 соответственно, а также каналом 21, выполненным во входном фланце для связи со стабилизатором. При этом канал 19 предназначен для соединения полости импульсной камеры 10 с пилотом 3, канал 20 - для соединения управляющей камеры 11 с выходной линией (выходным газопроводом). Исполнительное устройство снабжено уплотнительными элементами 22, выполненными в виде резиновых колец, предназначенными для уплотнения гильзы 12 при ее возвратно-поступательном перемещении. Рабочая поверхность клапана 14 покрыта слоем вулканизированной резины. В канал 20, расположенный в крышке со стороны управляющей камеры, встроен первый дроссель 5. Соединение полости камеры 10 с пилотом 3 и выходной линией осуществляется через импульсную стойку 4, которая закреплена на корпусе 7 и снабжена со стороны входа газа, поступающего от стабилизатора, вторым дросселем 6. Корпус исполнительного устройства может быть изготовлен из алюминия марки АК 5 М2.

Стабилизатор 2 выполнен с возможностью регулирования давления газа на выходе для обеспечения стабильной подачи газа на вход пилота 3, что исключает влияние колебаний входного давления на работу регулятора в целом. Выход пилота 3 соединен через первый дроссель 5 с управляющей камерой 11 и через второй дроссель 6 с исполнительной камерой 10. Назначением пилота является задание величины давления на выходной линии (за исполнительным устройством) и поддержание его постоянной величины. Пилот по свой конструкции аналогичен стабилизатору и состоит из корпуса 23 с крышкой 24, между которыми расположен подпружиненный мембранный элемент 25, выполненный из литой резины, сопряженный с клапаном 26 при помощи штока 27, при этом клапан 26 поджат пружиной 28. Пилот снабжен регулировочным стаканом 29, расположенным соосно с цилиндрической полостью корпуса 23. Регулировочный стакан 29 и корпус 23 пилота соединены посредством резьбового соединения, обеспечивающего перемещение стакана 29, необходимое для настройки выходного давления. Корпус 23 пилота выполнен из алюминия. Выходной газопровод (выходная линия) через канал импульсной стойки 4 соединен с надмембранной полостью пилота 3 и исполнительной камерой 10.

Регулятор давления газа работает следующим образом. При отсутствии давления на входе регулятора под воздействием пружины 13 гильза 12 поджимается к рабочему клапану 14. Регулятор закрыт, газ в выходной линии (трубопроводе газопотребителя) отсутствует. Стабилизатор и пилот предварительно настраивают на требуемое давление газа. При подаче газа во входную линию входное давление поступает в исполнительное устройство 1 и на вход стабилизатора 2. С выходного патрубка стабилизатора 2 пониженное (настроенное) давление поступает на вход пилота 3. От пилота 3 пониженное давление поступает через дроссель 5 в управляющую камеру 11, а также через дроссель 6, закрепленный на импульсной стойке 4, - в исполнительную камеру 10. Исполнительная камера 10 связана с газопроводом (выходной линией) за регулятором. В надмембранную полость пилота 3 также подается контролируемое давление газа. Благодаря непрерывному потоку газа через дроссель 5 давление перед ним, а следовательно, и в управляющей камере 11 исполнительного устройства 1 всегда выше выходного (контролируемого) давления. Разница на мембранном элементе 16 исполнительного устройства 1 создает аксиальное усилие, которое при любом устоявшемся режиме работы регулятора уравновешивается перепадом давления на клапане 14. Любое изменение входного давления или расхода газа мгновенно вызывает отклонение выходного давления от заданного и, следовательно, перемещение мембранного элемента 25 пилота 3. При этом меняется расход газа на выходе пилота и в результате - давление газа в управляющей камере 11 исполнительного устройства 1, что вызывает перемещение мембранного привода 9 с гильзой 12 в новое равновесное состояние, при котором выходное давление возвращается к заданной величине. Регулируемые дроссели служат для настройки на работу регулятора без автоколебаний.

Заявляемое техническое решение характеризуется высоким уровнем безопасной эксплуатации и продолжительным сроком эксплуатации без обслуживания (до 20 и более лет). Наличие в схеме регулируемых пилотов и стабилизаторов, а также наличие уплотнений и высокая точность изготовления позволяют увеличить стабильность работы регулятора при резких скачках давления газа, подаваемого на вход устройства. В заявленном устройстве полностью сохранены все преимущества прямоточных регуляторов: разгрузка седла клапана с увеличением его диаметра, и следовательно, увеличение пропускной способности, герметичность затвора, практическое отсутствие шума, вибрации. Стабильность поддержания выходного давления составляет 1-2%. Регулятор одинаково устойчиво работает и при снижении входного давления до 0.05 Мпа и при повышении до максимального. Полностью устойчивые параметры получены при резких изменениях величин выходного давления и расхода. Эффект "зависания" полностью отсутствует. При нулевом расходе газа прирост давления после регулятора находится в пределах поддержания стабильности выходного давления.

1. Регулятор давления газа, содержащий исполнительное устройство, выполненное с возможностью подключения между входной и выходной линиями и соединенное со стороны входной линии со стабилизатором давления, в свою очередь соединенным с пилотом, исполнительное устройство включает корпус с крышкой, мембранный привод, делящий полость исполнительного устройства на исполнительную и управляющую камеры, при этом выход пилота соединен через первый дроссель с управляющей камерой, а выходная линия соединена с исполнительной камерой и пилотом, отличающийся тем, что он снабжен импульсной стойкой с расположенным в ней вторым дросселем, выполненным с возможностью обеспечения исключения колебаний выходного давления в процессе работы, при этом импульсная стойка закреплена на корпусе исполнительного устройства со стороны входа в исполнительную камеру, обеспечивая соединение выходной линии с исполнительной камерой и пилотом, а первый дроссель расположен в крышке исполнительного устройства, стабилизатор выполнен с возможностью регулирования выходного давления газа, а выход пилота, соединенный через первый дроссель с управляющей камерой, одновременно соединен через второй дроссель с исполнительной камерой.

2. Регулятор давления газа по п.1, отличающийся тем, что пилот снабжен регулировочным стаканом, встроенным в корпус пилота и выполненный с возможностью перемещения для обеспечения настройки выходного давления.

3. Регулятор давления газа по п.1, отличающийся тем, что мембранный элемент мембранного привода исполнительного устройства выполнен литым из сырой резины НО-68, а корпус с крышкой исполнительного устройства изготовлен из алюминия марки от АК 5 М2 до АК 12 ОЧ.

4. Регулятор давления газа по п.1, отличающийся тем, что рабочая поверхность клапана исполнительного устройства покрыта слоем вулканизированной резины.

5. Регулятор давления газа по п.1, отличающийся тем, что мембранный элемент пилота выполнен из литой резины.

6. Регулятор давления газа по п.2, отличающийся тем, что регулировочный стакан и корпус пилота соединены посредством резьбового соединения, при этом полость регулировочного стакана выполнена сообщающейся с полостью корпуса пилота, который выполнен из алюминия.

Регулятор давления газа РДУК предназначен для редуцирования давления газа и автоматического поддержания выходного давления в заданных пределах независимо от изменения входного давления и расхода газа. Регулятор применяется в системах газоснабжения промышленных, сельскохозяйственных и коммунально-бытовых объектов.

Ду 50 изготавливаются с седлом 35 мм, Ду 100 с седлом 50, 70 мм, Ду 200 с седлом 105, 140 мм. Диаметр седла влияет на пропускную способность регулятора, чем больше седло, тем больше пропускная способность регулятора.

На базе регуляторов давления газа РДУК нами изготавливаются газорегуляторные пункты и газорегуляторные установки шкафного, блочного типа или на раме.

Выпускаемые модели РДУК


РДУК изготавливается в следующих модификациях:

РДУК-50Н(В) Ду-50 с низким или высоким выходным давлением и диаметром седла 35 мм - РДУК-50Н(В)/35;

РДУК-100Н(В) Ду-100 с низким или высоким выходным давлением и диаметром седла 50, 70 мм - РДУК-100Н(В)/50(70);

РДУК-200Н(В) Ду-200 с низким или высоким выходным давлением и диаметром седла 105, 140 мм - РДУК-200Н(В)/105(140).

Регуляторы давления газа РДУК-200 выпускаются в четырех исполнениях:

С низким выходным давлением и диаметром седла 105 мм - РДУК 200 МН/105;
- с низким выходным давлением и диаметром седла 140 мм - РДУК 200 МН/140;
- с высоким выходным давлением и диаметром седла 105 мм – РДУК 200 МВ/105;
- с высоким выходным давлением и диаметром седла 140 мм – РДУК 200 МВ/140.

Пропускная способность РДУК:

- РДУК 50 6500 м3/ч

- РДУК 100 12000/24500 м3/ч

- РДУК 200 47000/70000 м3/ч


Климатическое исполнение соответствует УЗ ГОСТ 15150 (от –45о С до +40о С).

Регулятор давления газа РДУК 200 соответствует требованиям ГОСТ 11881, ГОСТ 12820 и комплекта документации согласно спецификации РДУК 200М.00.00.00.

Технические и эксплуатационные характеристики регуляторов РДУК-50/100/200

Наименование параметра или размера

Значения для типа или исполнения

РДУК-2Н-50

РДУК-2Н-100

РДУК-2Н-200

РДУК-2В-50

РДУК-2В-100

РДУК-2В-200

Диаметр условного прохода входного фланца, Ду

Диаметр седла, мм

Максимальное входное давление, МПа (кгс/см2)

1,2 (12)

1,2 (12)

1,2 (12)

0,6 (6)

Диапазон настройки выходного давления, МПа (кгс/см2)

для регулятора низкого давления

0,005-0,06 (0,05-0,6)

для регулятора высокого давления

0,06-0,6 (0,6-6,0)

Максимальная пропускная способность, м3/ч, не менее

6000

12000

24500

37500

47000

Габаритные размеры, мм

строительная длина

ширина

высота

Фланцы (конструкция и размеры) по ГОСТ 12820-80 на условное давление МПа

Масса, кг, не более

Газовый регулятор РДУК. Габаритные размеры и технические характеристики:

Тип регулятора Рабочее давление Габаритные размеры, мм Масса, кг
Вход Р 1 , МПа Выход Р 2 , кПа
РДУК2Н-50/35 0,6 0,6–60 230×320×300 45
РДУК2В-50/35, 1,2 60–600 230×320×300 45
РДУК2Н-100/50 1,2 0,5–60 350×560×450 80
РДУК2В-100/50, 1,2 60–600 350×560×450 80
РДУК2Н-100/70 1,2 0,5–60 350×560×450 80
РДУК2В-100/70 1,2 60–600 350×560×450 80
РДУК-200МН/105 1,2 0,5–60 610×710×680 300
РДУК-200МВ/105 1,2 60–600 610×710×680 300
РДУК-200МН/140 1,2 0,5–60 610×710×680 300
РДУК-200МВ/140 1,2 60–600 610×710×680 300
РДУК2Н-200/105 1,2 0,5–60 600×650×690 300
РДУК2В-200/105 1,2 60–600 600×650×690 300
РДУК2Н-200/140 0,6 0,5–60 600×650×690 300
РДУК2В-200/140 1,2 60–600 600×650×690 300

Регулятор давления РДУК расшифровывается как регулятор давления универсальный Казанцева.

Регулятор давления такого типа устанавливается для того, чтобы осуществить редуцирование давления природного газа. А также осуществить на автоматическом уровне удержание выходного давления в строго заданных пределах. При всем при этом, на уровень этого поддержания никакого влияния не должно оказывать колебания ни уровень входного давления, ни количество расхода газа.

Регуляторы давления газа РДУК используются в самых разнообразных областях, где может потребоваться снабжение газом. Такими объектами могут стать и промышленные, такие как заводы, и другие крупные промышленные предприятия, или сельскохозяйственные, а также непосредственно коммунально-бытовые предприятия и объекты.

Все три модели объединены общим принципом работы, однако имеются у них и конкретные отличия, которые следует учитывать при выборе регулятора, опираясь на задачи, которые необходимо решить с помощью его установки.

Основной отличительной особенностью каждой из моделей регулятора давления РДУК является размер седла. РДУК 2 50 выпускается с размером седла в 35 мм. В свою очередь, РДУК 2 100 выпускается с размером седла в двух вариациях – 50 и 70 мм. А РДУК 2 200 располагает седлом в 105 или же 140 мм.

Размер седла является крайне важной характеристикой для подбора правильного типа и вида регулятора давления газа. Потому, как именно размер седла, его диаметр оказывает огромное влияние на способность пропускания регулятора. Чем меньше седло, тем и такая пропускная способность меньше. Соответственно, больший размер обеспечит такой регулятор большей пропускной способностью.

Общее контрольное управление режимом работы всей системы газораспределения осуществляется с помощью регулятора давления газа , который автоматически поддерживает постоянное давление независимо от интенсивности общего потребления газа. Достигается это по средствам того, что изначально высокое давление снижается на конечное для поддержания постоянного давления в трубопроводе в целом.

Регулятор давления газа в основном состоит из:

  • исполнительного механизма, который при помощи определенного элемента, сопоставляющего значения давления на входе и текущего и дающего сигнал о несоответствии показателей, преобразует этот сигнал в воздействие на передвижные составляющие регулирующего органа
  • регулирующего органа

Если импульса от чувствительного элемента достаточно для воздействия на регулирующий орган, то такие регуляторы называют регуляторами давления газа прямого действия.

Для усиления импульса и точности измерения между основными составляющими регулятора устанавливают усилитель (пилот).

Регуляторы давления газа разделяют на:

  • астатические, в которых на чувствительный элемент регулятора давления воздействует постоянная сила от груза и сила от выходного давления, при изменении давления баланс сил нарушается, что даст импульс на чувствительный элемент, который пойдет вниз, давление будет снижаться за счет открытия регулирующего органа. Регуляторы данного типа приводят давление в норму не зависимо от нагрузки и в любом положении регулирующего органа. Их широко применяют в сетях с низком давлением газа, но при этом значительной емкости.
  • статические: под воздействием трения процесс регулирования станет неустойчивым, во избежание чего в регулятор устанавливают твердую обратную связь, эти регуляторы получили название статическими. В регуляторах этого типа груз заменен на пружину, которая является стабилизирующим устройством, развиваемое ею усилие прямо пропорционально ее деформации. Когда чувствительный элемент находится в верхнем положении, при этом регулирующий орган находится в закрытом положении.
  • изодромные регуляторы при отклонении значения давления газа перемещают регулирующий орган на величину отклонения, и если после этого давление не приходит в норму будут перемещать регулирующий орган до момента конечной нормализации давления.

Самыми распространенными на сегодняшний день являются астатические и статические.

В целом регулятор давления газа необходим для поддержания стабильного давления в газовой сети, то следует рассматривать систему в целом: регулятор давления и газовая сеть. Правильный выбор регулятора обеспечит стабильную работу газовой системы в целом.

Первоначально система оснащалась лишь одним регулятором. А если тот выходил из строя, то пользовались ручной задвижкой. При поиске более безлопастного варианта стало решение о применении спаренных регуляторов, минусом которой являлась возможность упустить из вида переход на запасной регулятор, при этом в целом работа строилась на старом принципе применения одного регулятора. Следующим шагом стало применение регулятора в тандеме с предохранительно-запорным клапаном (ПЗК) - данный вариант и дешевле и легче. При этом развитие продолжается и по сей день и время предъявляет новые требования к устройству и функциональности регуляторов давления, ассортимент которых настолько широк, что стало непросто выбрать подходящий вариант. Регуляторы давления газа на сегодняшний день - это сложные агрегаты, которые полноценно совместимы с системой, в свою очередь построенной на IT-технологии.

Предприятие-изготовитель: ООО ЭПО «Сигнал»

Конструкция выполнена в комбинированном исполнении со встроенным предохранительным клапаном. Условия эксплуатации регуляторов должны соответствовать климатическому исполнению УХЛ 2 по ГОСТ 15150-69 для работы при температуре окружающей среды от -40 ˚С до + 60 ˚С.

Устройство и принцип работы

Регулятор изготавливается в 2-х исполнениях:

  • с выходным низким давлением (Н);
  • с выходным высоким давлением (В).

Регуляторы давления газа РДГ-Н, РДГ-В имеют в своем составе: исполнительное устройство 2, регулятор управления 9 (далее пилот), механизм контроля 17, дроссели 10, 19 в соответствии с рис. 4.20. Исполнительное устройство 2 (см. рис. 4.20) автоматически при помощи пилота 9 поддерживает заданное выходное давление на всех режимах расхода газа посредством изменения величины зазора между клапаном 4 и седлом 3.

Исполнительное устройство 2 состоит из корпуса с седлом 3, мембраны с жестким центром 6, зажатой по периметру между крышками верхней и нижней; жесткий центр через толкатель и стержень 5 передает движение мембраны клапану 4, тем самым изменяя расход и выходное давление регулятора.

Рис. 4.20. Схема регулятора давления газа РДГ-Н (РДГ-В) : 1 — клапан отсечной; 2 — исполнительное устройство; 3 — седло; 4 — клапан рабочий; 5 — стержень; 6 — мембрана исполнительного устройства; 7 — штуцер исполнительного устройства; 8 — трубопровод входного давления; 9 — регулятор управления (низкого или высокого давления); 10 — дроссель регулятора управления; 11 — трубопровод давления управления; 12 — пружина отсечного клапана; 13 — рычаг отсечного клапана; 14 — шток механизма контроля; 15 — регулировочный винт большой пружины; 16 — регулировочный винт малой пружины; 17 — механизм контроля; 18 — штуцер механизма контроля; 19 — дроссель исполнительного устройства; 20 — штуцер регулятора управления; 21 — скоба; 22 — пружина большая; 23 — пружина малая; 24 — кронштейн; 25 — кронштейн; 26 — винт; 27 — кронштейн

Исполнительное устройство 2 состоит из корпуса с седлом 3, мембраны с жестким центром 6, защемленной по периметру между крышками верхней и нижней; жесткий центр через толкатель и стержень 5 передает движение мембраны клапану 4, тем самым изменяя расход и выходное давление регулятора.

Пилот низкого давления 9 (см. рис. 4.21) состоит из трех функциональных блоков: фильтра, стабилизатора и непосредственно пилота, смонтированных в одном корпусе. В пилоте высокого давления стабилизатор не применяется.

Фильтр смонтирован на корпусе пилота и обеспечивает тонкую очистку рабочей среды посредством фильтрующей сетки 5. Предназначен для обеспечения продолжительной работы пилота. Стабилизатор смонтирован на корпусе и обеспечивает снижение входного давления, поступающего по входному трубопроводу, до величины, необходимой для стабильной работы пилота и исполнительного механизма. Стабилизатор состоит из клапана 6 с седлом, мембранного узла 7 и пружины 8. Непосредственно пилот смонтирован в корпусе и служит для управления исполнительным механизмом регулятора. Управление осуществляется путем создания пилотом управляющего давления, которое поступает через соединительный трубопровод 11 в управляющую полость исполнительного механизма. Пилот состоит из клапана 1, мембранного узла 2 с мембраной 10, регулировочной пружины 3, тарелки 4, регулировочного винта 9 и дросселя пилота 11.

Рис. 4.21. Схема устройства регулятора управления : 1 — клапан пилота; 2 — узел мембранный пилота; 3 — пружина регулировочная; 5 — фильтрующая сетка; 6 — клапан стабилизатора; 7 — узел мембранный стабилизатора; 8 — пружина стабилизатора; 9 — регулировочный винт; 10 — мембрана пилота; 11, 12 — дроссель

Регулируемые дроссели 10, 28 и 19 (см. рис. 4.20) служат для настройки на спокойную (без автоколебаний) работу регулятора. Дроссель состоит из штуцера и ввернутой в него иглы. Вворачиванием-выворачиванием иглы меняется пропускное сечение штуцера, тем самым изменяется расход газа через дроссель и перепад давления на нем. За счет увеличения перепада давления на дросселе происходит устранение автоколебаний выходного давления.

Механизм контроля 17 отсечного клапана предназначен для непрерывного контроля выходного давления и выдачи сигнала на срабатывание отсечного клапана в исполнительном устройстве при аварийных повышении и понижении выходного давления сверх допустимых заданных значений.

Механизм контроля состоит из двух разъемных крышек, узла мембраны, защемленной по периметру крышками, штока механизма контроля 14, большой 22 и малой 23 пружин, уравновешивающих действие на мембрану импульса выходного давления.

Регулятор работает следующим образом.

Газ поступает на вход исполнительного устройства 2 и в регулятор управления 9 (см. рис. 4.20).

Регулятор управления вырабатывает управляющее давление, которое по трубопроводу 11 подается через дроссель 19 в подмембранную полость исполнительного устройства.

В установившемся режиме, когда расход газа постоянен, регулятор управления поддерживает в подмембранной полости постоянное давление управления. Вследствие этого клапан 4 устанавливается в соответствующее неизменное положение, что и определяет постоянство величины выходного давления регулятора. Диапазон выходных давлений задается регулировочным винтом 9 (см. рис. 4.21).

Работа регулятора при изменении расхода.

Перед запуском регулятора, когда расход равен нулю, клапан 4 закрыт, так как перепад давления между подмембранной и надмембранной полостями равен нулю. В момент открытия регулятора, давление в надмембранной полости исполнительного устройства упадет, вследствие чего появится перепад давления межу подмембранной и надмембранной полостями. В результате мембрана со стержнем 5 и клапаном 4 придут в движение, и клапан 4 откроет проход газу через образующийся зазор между клапаном и седлом, при этом установится заданное ранее выходное давление.

При дальнейшем увеличении расхода увеличивается перепад давления между указанными выше полостями исполнительного устройства, клапан откроется еще больше, при этом выходное давление будет поддерживаться не заданном ранее значении.

При уменьшении расхода газа уменьшается перепад давления между полостями исполнительного устройства, вследствие чего уменьшится проход газа через уменьшающийся зазор между клапаном и седлом. При этом регулятор будет поддерживать ранее установленное выходное давление.

В случае аварийного повышения или понижения выходного давления мембрана механизма контроля 17 перемещается влево или вправо, рычаг отсечного клапана выходит из соприкосновения со штоком 14 механизма контроля, отсечной клапан под действием пружины 12 перекрывает ход газа в регулятор.

Рис. 4.22. Схема подключения импульсных трубок к регулятору : 1, 2, 3 — импульсные трубки (трубопровод ДУ 8, длина — по месту, материал — труба ДКРНМ8x1 ГОСТ617-2006); 4 — гайка накидная М14x1-7Н с ниппелем; 5, 6 — штуцер приварной М14x1 — 6е, разделка конца штуцера (см. рис. 4.20); 7 — распределитель (труба 1/4",3/4")

Технические характеристики

РДГ-50Н РДГ-50В РДГ-80Н РДГ-80В РДГ-150Н РДГ-150В
Рабочая среда природный газ по ГОСТ 5542-87
Диапазон входного давления, МПа 0,05-1,2 0,1-1,2 0,05-1,2 0,1-1,2 0,05-1,2 0,1-1,2
Диапазон настройки выходного давления, кПа 1,5-60 60-600 1,5-60 60-600 1,5-60 60-600
Максимальная пропускная способность, м3/ч, не менее 7100 7100 14600 14600 32000 32000
Неравномерность регулирования, % ±20 ±20 ±20 ±20 ±20 ±20
Давление срабатывания механизма контроля, МПа:
при понижении выходного давления
при повышении выходного давления
при Р вых. = 0,003 МПа

(0,15-0,5)Рвых.
(1,25-1,5)Рвых.
0,0045-0,0075
Диаметр седла, мм 30, 35, 40, 45 30, 35, 40, 45 65 65 98 98
Диаметр присоединительного патрубка входа и выхода, мм 50 50 80 80 150 150
Присоединение фланцевое по ГОСТ 12820-80
Габаритные размеры, мм 670 x 530 x 400 670 x 530 x 400 700 x 600 x 460 700 x 600 x 460 800 x 800 x 650 800 x 800 x 650
Строительная длина, мм 365 365 502 502 570 570
Масса, кг 42 42 85 85 153 150