Разновидности полноприводных автомобилей. Какой тип полного привода выбрать Системы полного привода автомобилей сравнение

Чтобы передвигаться по бездорожью и уверенно чувствовать себя в поворотах, нужно "грести" всеми четырьмя колёсами – это общеизвестно. Но как передать крутящий момент на них? Стоит ли это делать постоянно или только когда нужно и где кроются подводные камни?

Главное и неизменное «действующее лицо» всех систем полного привода - это раздаточная коробка: специальный агрегат, который получает крутящий момент от коробки передач и распределяет его на переднюю и заднюю оси. А вот методик распределения, равно как и схем компоновки, есть несколько.

Системы полного привода принято делить на три типа:

Постоянный полный привод (Full-time)

Плюсы:

  • надёжная «неубиваемая» конструкция;
  • возможность езды с полным приводом как по бездорожью, так и по асфальту.

Система постоянного полного привода 4Matic (Mercedes-Benz)

Минусы:

  • сложность по сравнению с жестко подключаемым приводом;
  • большая масса;
  • сложность настройки управляемости;
  • повышенный расход топлива.

Первое, что приходит в голову, когда есть задача передать крутящий момент на две оси, - это жестко подсоединить их к раздатке железными трубами. Но вот незадача: при прохождении поворотов колеса автомобиля проходят разные пути.

Если жестко соединить оси, то какие-то колеса будут ехать, а какие-то - пробуксовывать. В грязи, когда покрытие мягкое, это нестрашно. Во времена Второй мировой, скажем, легендарные «Виллисы» спокойно ездили с жестко соединенными осями, потому как эксплуатировались исключительно на бездорожье. А вот если покрытие твердое, то эти пробуксовки будут порождать крутильные колебания и медленно, но верно разрушать трансмиссию.

Поэтому в раздаточной коробке автомобилей с постоянным полным приводом располагается межосевой дифференциал - механизм, который распределяет мощность между осями и позволяет им вращаться с разной скоростью. И если какое-то колесо замедляется, то обороты другого увеличиваются, но настолько же падает и крутящий момент на нем.

Все это здорово, пока мы едем по асфальту, а что делать, если задней осью мы застряли в луже? На передних колесах, которые будут стоять на твердой поверхности, будет момент но не будет оборотов, зато задние будут вращаться очень быстро, но момент на них будет маленьким. Маленькой будет и мощность на заднем колесе и ровно такую же мощность дифференциал подаст на передок. Буксовать в таком случае можно хоть целую вечность - все равно не сдвинешься.

Для таких случаев дифференциал снабжают блокировкой - когда она включена, обороты на всех колесах одинаковые, а момент зависит только от сцепления колес с дорогой.

За счет наличия дополнительных узлов (дифференциала и блокировки) вся система получается достаточно тяжелой и сложной. Кроме того, постоянная передача момента на все колеса увеличивает потери энергии, а значит, ухудшает динамику и увеличивает расход топлива.

Постоянный полный привод в автомобилестроении до сих пор используется, хотя в последнее время эту систему постепенно вытесняет полный привод по требованию, о котором речь пойдет дальше.

Жестко подключаемый (Part-time)


Плюсы:

  • надежная механика;
  • максимальная простота при высокой проходимости.

Минусы:

  • по асфальту с полным приводом ездить нельзя.

От дифференциала и блокировок можно и отказаться, при условии, что одна из осей будет временно отключаться. По такой логике работает система жестко подключаемого полного привода.

Оси между собой соединяются без дифференциала, и момент распределяется в строгом соотношении. Как следствие, высокая проходимость и минимум затрат.

Парт-тайм на сегодняшний день практически вымер и используется только на сугубо внедорожных автомобилях. Современному водителю пользоваться этой системой неудобно. Подключать ось можно только в неподвижном состоянии, чтобы не повредить механизмы. Ну а если после покатушек в лесу выехать на шоссе и забыть отключить полный привод, то есть риск загубить всю трансмиссию.

Полный привод с муфтой

Плюсы:

  • дешевизна и простота устройства;
  • малая масса;
  • возможность тонкой настройки системы.

Минусы:

  • слабая надежность и стойкость к перегрузкам;
  • нестабильность характеристик.

Жесткая блокировка дифференциала - это неплохо на бездорожье, но как заставить систему полного привода дозировать момент в динамике? Степень пробуксовки ведь всегда разная… Решение было найдено в середине 50-х годов.


Система Active Torque Split AWD для Mazda CX-7 с многодисковой муфтой вместо межосевого дифференциала

Обычный механический дифференциал дополнили вязкостной муфтой (вискомуфтой). Вискомуфта - это деталь, в которой ряды лопаток, связанных с входным и выходным валами, вращаются в специальной жидкости. Входной и выходной валы свободно вращаются относительно друг друга, но секрет муфты именно в наполнителе, который при повышении температуры увеличивает свою вязкость.

При обычном движении, легких поворотах или проскальзывании колес муфта не препятствует взаимному перемещению лопаток, но как только разница в скорости вращения передних и задних колес вырастает, жидкость начинает интенсивно перемешиваться и нагреваться. При этом она становится вязкой и блокирует перемещения лопаток относительно друг друга. Чем больше разница, тем выше вязкость и степень блокировки.

Сегодня муфты используются как на схемах с постоянным полным приводом совместно с механическими дифференциалами, так и самостоятельно. Ведущим валом они соединены с раздаткой, а ведомым - с дополнительной осью. При необходимости, когда одна из осей буксовала, часть момента через муфту уходит на нее.

В поздних конструкциях муфт от жидкости отказались в пользу трущихся дисков, которые работают по такому же принципу, как фрикционное сцепление. При необходимости электроника «поджимает» их и начинает передачу момента. Управлять дозировкой момента автомобиль может самостоятельно, без участия водителя.

При всем удобстве муфты имеют ряд недостатков, основной из которых - слабая выносливость на серьезном бездорожье. Трущиеся диски от нагрузки перегреваются, и муфта уходит в аварийный режим. Поэтому эта система применяется в основном на компромиссных кроссоверах и легковых автомобилях, где полный привод нужен не для преодоления буераков, а для лучшей управляемости.


Что дальше?

Дальнейшая эволюция систем полного привода, по всей видимости, будет связана с электромоторами. Первый электромобиль с двигателем на каждом колесе показал еще на Всемирной выставке в Париже 1900 года Фердинанд Порше. Тогда это был, как бы сейчас сказали, «нежизнеспособный концепт-кар». Моторы были слишком тяжелые, а конструкция - дорогой. Сейчас у такой схемы перспектив явно больше.

Есть потенциал и у гибридной схемы, где одна ось приводится в движение двигателем внутреннего сгорания, а вторая - элекродвигателем. Впрочем, если говорить о настоящих внедорожниках, то никакие электроинновации и фрикционные муфты пока не заменят дешевой, простой и выносливой механики.


Удивительно, но факт - очень многие автовладельцы совершенно не разбираются в типах полноприводных трансмиссий. А ситуацию усугубляют автомобильные журналисты, которые сами с трудом разбираются в типах приводов и том, как они работают.

Самое серьезное заблуждение заключается в том, что многие до сих пор считают, что правильный полный привод должен быть обязательно постоянным, и категорически отвергают системы автоматически подключаемого полного привода. При этом автоматически подключаемый полный привод бывает двух типов, разделяемый по характеру работы: реактивные системы (включающиеся по факту пробуксовки ведущей оси) и превентивные (в которых передача момента на обе оси активируется по сигналу от педали газа).

Я расскажу про основные варианты полноприводных трансмиссий и покажу, что за электронно-управляемыми полноприводными трансмиссиями будущее.


Все примерно представляют как устроена трансмиссия автомобиля. Она предназначена для передачи крутящего момента от коленчатого вала двигателя на ведущие колёса. В трансмиссию входит сцепление, коробка передач, главная передача, дифференциал и приводные валы (кардан и полуоси). Важнейшим устройством в трансмиссии является дифференциал. Он распределяет подводимый к нему крутящий момент между приводными валами (полуосями) ведущих колёс и позволяет им вращаться с разной скоростью.

Для чего это нужно? При движении, в частности при поворотах, каждое колесо автомобиля движется по индивидуальной траектории. Следовательно все колёса автомобиля в поворотах вращаются с разной скоростью и проходят разные расстояния. Отсутствие дифференциала и жёсткая связь между колёсами одной оси приведёт к повышенной нагрузке на трансмиссию, неспособности автомобиля поворачивать, не говоря о таких мелочах, как износ шин.

Следовательно, для эксплуатации на дорогах с твёрдым покрытием любой автомобиль должен быть оснащен одним или несколькими дифференциалами. Для автомобиля с приводом на одну ось устанавливается один межколёсный дифференциал. А в случае полноприводного автомобиля необходимо уже три дифференциала. По одному на каждой оси, и одного центрального, межосевого дифференциала.

Чтобы подробнее понять принцип работы дифференциала, крайне рекомендую к просмотру документальное короткометражное кино Around the Corner снятое в 1937 году. За 70 лет в мире не смогли сделать более простое и понятное видео про работу дифференциала. Даже не обязательно знать английский язык.

Главный недостаток, а скорее особенность, работы свободного дифференциала известна всем - если на одном из ведущих колёс автомобиля будет отсутствовать сцепление (например, на льду или вывешенное на подьемнике), то автомобиль даже не сдвинется с места. Это колесо будет свободно вращаться с удвоенной скоростью, в то время как другое останется неподвижным. Таким образом, любой моноприводный автомобиль можно обездвижить если одно колёс ведущей оси потеряет сцепление с дорогой.

Если же взять полноприводный автомобиль с тремя обычными (свободными) дифференциалами, то его потенциальная способность передвигаться в пространстве может быть ограничена даже если ЛЮБОЕ из четырёх колёс потеряет сцепление с дорогой. То есть, если полноприводный автомобиль с тремя свободными дифференциалами поставить всего одним колесом на ролики/лёд/вывесить в воздухе - он не сможет сдвинуться с места.

Как сделать так, чтобы автомобиль смог передвигаться в этом случае? Очень просто - необходимо заблокировать один или несколько дифференциалов. Но мы помним, что жёсткая блокировка дифференциала (а по сути такой режим приравнивается к его отсутствию) неприменима к эксплуатации автомобиля на дорогах с твёрдым покрытием ввиду повышенных нагрузок на трансмиссию и неспособности поворачивать.

Поэтому при эксплуатации на дорогах с твёрдым покрытием необходима изменяемая степень блокировки дифференциала (речь сейчас в одновном про межосевой дифференциал) в зависимости от условий движения. А вот на бездорожье можно передвигаться хоть с полностью заблокированными всеми тремя дифференциалами.

Итак, в мире существует три основных типа решения полного привода:

Классическая полноприводная трансмиссия (в терминологии автопроизводителей обозначается как full-time) имеет три полноценных дифференциала, поэтому такой автомобиль в любых режимах движения имеет привод на все 4 колеса. Но как я уже писал выше, если хоть одно из колёс потеряет сцепление с дорогой - автомобиль потеряет способность передвигаться. Следовательно такому автомобилю обязательно нужна блокировка дифференциала (полная или частичная). Самое популярное решение, практикуемое на классических внедорожниках - механическая жесткая блокировка межосевого дифференциала с распределением момента по осям в пропорции 50:50. Это позволяет существенно повысить проходимость автомобиля, но с жестко заблокированным межосевым дифференциалом нельзя ездить по дорогам с твёрдым покрытием. Опционально внедорожные автомобили могут иметь дополнительную блокировку заднего межколёсного дифференциала.

В трансмиссии Full-time присутствует три дифференциала A,B и С. А в part-time межосевой дифференциал A отсутствует и его заменяет механизм жесткого подключения второй оси вручную.

Одновременно с этим появилось отдельное направление механически подключаемого полного привода (Part-time). У такой схемы полностью отсутствует межосевой дифференциал, а на его месте находится механизм подключения второй оси. Такая трансмиссия обычно применяется на недорогих внедорожниках и пикапах. В результате, на дорогах с твёрдым покрытием такой автомобиль может эксплуатироваться только с приводом на одну ось (обычно заднюю). А для преодоления сложных участков на бездорожье водитель вручную включает полный привод путём жесткой блокировки передней и задней оси между собой. В результате момент передаётся на обе оси, но не стоит забывать о том, что на каждой из осей продолжает оставаться свободный дифференциал. Это значит, что при диагональном вывешивании колёс, автомобиль никуда не поедет. Решить эту проблему можно только с помощью блокировки одного из межколёсных дифференциалов (в первую очередь заднего), поэтому некоторые модели внедорожников имеют самоблокирующийся дифференциал на задней оси.

И самое универсальное и популярное в настоящее время решение - автоматически подключаемый полный привод (A-AWD - Automatic all-wheel drive, часто обозначаемый просто как AWD). Конструктивно такая трансмиссия очень похожа на подключаемый полный привод (part-time), у которой отсутствует межосевой дифференциал, а для подключения второй оси используется гидравлическая или электромагнитная муфта. Степень блокировки муфты обычно управляется электроникой и существует два механизма работы: превентивный и реактивный. О них чуть ниже в подробностях.

В трансмиссии межосевой дифференциал отсутствует, из коробки передач выходит два вала, один на переднюю ось (со своим дифференциалом), другой - на заднюю, к муфте.

Важно понимать, что для максимально эффективной полноприводной трансмиссии (независимо от того, full-time это или a-awd) требуется наличие переменной блокировки межосевого дифференциала (муфты) в зависимости от дорожных условий (про межколёсные дифференциалы отдельный разговор, не в рамках этой статьи). Для этого существует несколько способов. Самые популярные из них: вязкостная муфта, шестерёнчатый самоблокирующийся дифференциал, электронное управление блокировкой.

1. Вязкостная муфта (дифференциал с такой муфтой называется VLSD - Viscous Limited-slip differential) самый простой, но при этом малоэффективный способ блокировки. Это простейшее механическое устройство, которое передаёт вращающий момент посредством вязкой жидкости. В случае, когда скорость вращения входящего и выходящего вала муфты начинает различаться, вязкость жидкости внутри муфты начинает увеличиваться вплоть до полного затвердевания. Таким образом происходит блокировка муфты и распределение крутящего момента поровну между осями. Недостатком вязкостной муфты является слишком большая инерционность в работе, это не критично на дорогах с твёрдым покрытием, но практически исключает возможность её применения для эксплуатации на бездорожье. Также существенным недостатком является ограниченный срок службы, и как следствие к пробегу в 100 тысяч километров вязкостная муфта обычео перестаёт выполнять свои функции и межосевой дифференциал становится постоянно свободным.

Вязкостные муфты в настоящее время иногда применяют для блокировки заднего межколёсного дифференциала на внедорожниках, а также в качестве блокировки межосевого дифференциала на автомобилях Subaru с механической коробкой передач. Раньше были случаи применения вязкостной муфты для подключения второй оси в системах с автоматически подключаемым полным приводом (автомобили Toyota), но от них отказались ввиду крайне низкой эффективности.

2. К шестерёнчатым самоблокирующимся дифференциалам относится известный дифференциал Torsen. Его принцип основан на свойстве червячной или косозубой передачи «заклинивать» при определённом соотношении крутящих моментов на осях. Это дорогостоящий и технически сложный механический дифференциал. Применяется на очень большом количестве полноприводных автомобилей (практически все модели Audi с полным приводом) и не имеет ограничений по использованию на дорогах с твердым покрытием или на бездорожье. Из недостатков следует иметь ввиду, что при полном отсутствии сопротивления вращению на одной из осей - дифференциал остаётся в разблокированном состоянии и автомобиль не в состоянии сдвинуться с места. Именно поэтому автомобили с дифференциалом Torsen имеют серьезную «уязвимость» - при полном отсутствии сцепления на ОБОИХ колёсах одной оси автомобиль не в состоянии сдвинуться с места. Именно этот эффект можно увидеть в этом видео . Поэтому, на новых моделях Audi в настоящее время применяется дифференциал на коронных шестернях с дополнительным пакетом фрикционов.

3. К электронному управлению блокировкой относятся как простые способы притормаживания буксующих колёс с помощью штатной тормозной системы, так и сложные электронные устройства управляющие степенью блокировки дифференциала в зависимости от дорожной обстановки. Их преимущество заключается в том, что вязкостная муфта и самоблокирующийся дифференциал Torsen являются полностью механическими устройствами, без возможности вмешательства электроники в их работу. А именно электроника способна моментально определять на каком из колёс автомобиля требуется крутящий момент и в каком количестве. Для этих целей используется комплекс электронных датчиков - датчики вращения на каждом колесе, датчик положения руля и педали газа, а также акселерометр, фиксующий продольные и поперечные ускорения автомобиля.

При этом хочу заметить, что система имитации блокировки дифференциала на основе штатной тормозной системы зачастую оказывается не настолько эффективной, чем непосредственная блокировка дифференциала. Обычно имитация блокировки с помощью тормозной системы применяется вместо межколёсной блокировки и в настоящее время применяется даже на автомобилях с приводом на одну ось. Примером электронно-управляемой блокировки межосевого дифференциала может быть полноприводная трансмиссия VTD, применяемая на автомобилях Subaru с пятиступенчатой автоматической коробкой передач, или же система DCCD, применяемая на Subaru Impreza WRX STI, а также Mitsubishi Lancer Evolition с активным центральным дифференциалом ACD. Это самые совершенные полноприводные трансмиссии в мире!

Теперь перейдём к главному предмету обсуждения - трансмиссии с автоматически подключаемым полным приводом (a-awd) . Технически наиболее простой и недорогой способ реализации полного привода. В том числе его преимущество заключается в возможности использования поперечной компоновки двигателя в моторном отсеке, но существуют варианты его применения и при продольном расположении двигателя (например, BMW xDrive). В такой трансмиссии одна из осей является ведущей и на неё в обычных условиях обычно приходится большая часть крутящего момента. Для автомобилей с поперечным расположением двигателя это передняя ось, с продольным - соответственно задняя.

Главный недостаток такого типа трансмиссии заключается в том, что колёса на подключаемой оси физически не могут вращаться быстрее, чем колёса «основной» оси. То есть для автомобилей, где муфта подключает заднюю ось пропорция распределения момента по осям колеблется в диапазоне от 0:100 (в пользу передней оси) до 50:50. В случае, когда «основная» ось задняя (например, система xDrive), часто номинальное соотношение момента по осям устанавливают с небольшим смещением в пользу задней оси, для улучшения поворачиваемости автомобиля (например, 40:60).

Всего существует два механизма работы автоматически подключаемого полного привода: реактивный и превентивный.

1. Реактивный алгоритм работы подразумевает блокировку муфты, отвечающей за передачу момента на вторую ось, по факту пробуксовки колёс на ведущей оси. Это усугублялось огромными задержками в подключении второй оси (в частности по этой причине не прижились вязкостные муфты в таком типе трансмиссии) и приводило к неоднозначному поведению автомобиля на дороге. Такая схема стала массово применятся на изначально переднеприводных автомобилях с поперечным расположением двигателя.

В поворотах работа реактивной муфты выглядит так: В нормальных условиях практически весь крутящий момент передаётся на переднюю ось, и автомобиль по сути является переднеприводным. Как только наступает разность вращения колёс на передней и задней оси (например, в случае сноса передней оси) межосевая муфта блокируется. Это приводит к внезапному появлению тяги на задней оси и недостаточная поворачиваемость сменяется избыточной. В результате подключения задней оси происходит стабилизация скоростей вращения передней и задней оси (муфта же заблокировалась) - муфта снова разблокируется и автомобиль сновится переднеприводным!

На бездорожье ситуация лучше не становится, по сути это обыкновенный переднеприводный автомобиль, на котором момент включения задней оси определяется пробуксовкой передних колёс. Именно по этой причине многие кроссоверы с таким типом привода на бездорожье совершенно не способны двигаться задним ходом. И на такой трансмиссии особенно хорошо ощущается момент подключения задней оси. При этом на дорогах с твёрдым покрытием автомобиль всегда остаётся переднеприводным.

В настоящее время такой алгоритм работы автоматически подключаемого полного привода используется редко, в частности это кроссоверы Hyundai/Kia (кроме новой системы DynaMax AWD), а также автомобили Honda (система Dual Pump 4WD). На практике такой полный привод совершенно бесполезен.

2. Муфта с превентивной блокировкой работает иначе. Её блокировка происходит не по факту пробуксовки колёс на «основной» оси, а заранее, в тот момент когда требуется тяга на всех колёсах (скорость вращения колёс вторична). То есть блокировка муфты происходит в тот момент, когда вы нажимаете на газ. Также учитываются такие вещи, как угол поворота руля (при сильно вывернутых колёсах степень блокировки муфты снижается, чтобы не нагружать трансмиссию).

Запомните, для подключения задней оси не требуется пробуксовка передней! Блокировка муфты автоматически подключаемого полного привода в первую очередь определяется положением педали газа. В обычных условиях на заднюю ось передаётся около 5-10% крутящего момента, но как только вы нажимаете на газ - муфта блокируется (вплоть до полной блокировки).

Серьезная ошибка, которую уже не первый год допускают автомобильные журналисты - нельзя путать алгоритмы работы автоматически подключаемого полного привода. Система автоматически подключаемого полного привода с превентивной блокировкой постоянно передаёт момент на все 4 колеса! Для неё не существует такого понятия, как «внезапное подключение задней оси».

К муфтам с превентивной блокировкой относятся Haldex 4 (моя отдельная статья по теме ) и 5 поколения, муфты Nissan/Renault, Subaru, система BMW xDrive, Mercedes-Benz 4Matic (для поперечно установленных двигателей) и многие другие. У каждой марки свои алгоритмы работы и особенности управления, это следует иметь ввиду при сравнительном анализе.

Так выглядит муфта подключения передней оси в системе BMW xDrive

Также следует особое внимание обращать на навыки управления автомобилем. Если водитель не знаком с принципами управления автомобилем на дороге и в частности с тем, как нужно проходить повороты (я об этом совсем недавно), то с очень большой вероятностью он не сможет поставить автомобиль с системой автоматически подключаемого привода боком, в то время как у него это элементарно получится сделать на полноприводном автомобиле с тремя дифференциалами (отсюда ошибочные заключения, что только Subaru может ехать боком). Ну и конечно не стоит забывать, что количество тяги на осях регулируется педалью газа и углом поворота руля (в том числе, как я уже писал выше - при сильно вывернутых колёсах муфта полностью не заблокируется).

Схема работы муфты Haldex 5 поколения, полностью управляемая электроникой (напомню, Haldex 1,2 и 3 поколений имел в конструкции дифференциальный насос, который приводился в действие разницей во вращении входящего и выходящего вала). Сравните с безумно сложной конструкцией муфты Haldex 1 поколения.

Кроме этого, практически всегда такие системы дополнены электронной имитацией блокировки межколёсных дифференциалов с помощью тормозной системы. Но следует иметь ввиду, что она тоже имеет свои особенности работы. В частности она работает только в определённом диапазоне оборотов. На низких оборотах она не включается, чтобы не «задушить» двигатель, а на высоких - чтобы не сжечь колодки. Поэтому нет смысла загонять тахометр в красную зону и надеяться на помощь электроники, когда автомобиль застрял. Про применении на бездорожье системы с гидравлической муфтой имеют более высокую стойкость к перегреву, чем фрикционные электромагнитные муфты. В частности, Land Rover Freelander 2/Range Rover Evoque может быть примером автомобиля с автоматически подключаемым полным приводом на основе муфты Haldex 4 поколения и очень впечатляющими способностями на бездорожье.

Что в итоге? Не нужно бояться систем автоматически подключаемого полного привода с превентивной блокировкой. Это универсальное решение как для дорожной эксплуатации, так и эпизодической эксплуатации на бездорожье средней сложности. Автомобиль с такой системой полного привода адекватно управляется на дороге, имеет нейтральную поворачиваемость и всегда остаётся полноприводным. И не верьте рассказам про «внезапное подключение задней оси».

Дополнение: Очень важный для понимания вопрос, это распределение крутящего момента по осям. Рекламные материалы автопроизводителей часто вводят в заблуждение и ещё больше запутывают в понимании принципов работы полноприводной трансмиссии. Первое, что необходимо запомнить - крутящий момент существует только на тех колёсах, у которых есть сцепление с поверхностью. Если колесо висит в воздухе, то несмотря на тот факт, что оно свободно вращается двигателем, крутящий момент на нём равен НУЛЮ. Во-вторых, не путайте проценты передаваемого крутящего момента на ось и пропорцию распределения крутящего момента по осям. Это важно для систем автоматически подключаемого полного привода, т.к. отсутствие центрального дифференциала лимитирует максимально возможное распределение момента по осям в соотношении 50/50 (то есть физически невозможно, чтобы соотношение было больше в сторону подключаемой оси), но при этом на каждую ось может передаваться до 100% крутящего момента. В том числе и подключаемую. Это обьясняется тем, что в случае, если на одной оси нет сцепления, то и момент на ней равен нулю. Следовательно все 100% момента будут на подключаемой муфтой оси, при этом соотношение распределения момента по осям всё равно будет 50/50.

Автомобили повышенной проходимости пользуются довольно большим спросом у водителей. Далеко не все они являются внедорожниками, однако практически любая система полного привода (AWD или 4WD) позволит владельцу без особых проблем выбраться на загородный пикник или на дачу.

Разновидностей систем существует немало, практически каждый автопроизводитель дает им свои названия:

  • xDrive система полного привода BMW;
  • Quattro – Audi;
  • 4motion – Volkswagen;
  • TOD (ATT) – Ssang Yong и Hyundai;
  • Super Select (Easy Select) – Mitsubishi;
  • Active Select – Chevrolet и другие.

Между тем все они делятся на две основных категории: full-time и part-time AWD . К первой группе относятся системы, в которых полный привод задействован постоянно, деля крутящий момент между осями в равных пропорциях. Full-time полный привод имеют классические вездеходы, такие как Land Rover Defender, отечественная Нива и Шевроле-Нива, а также легковые автомобили, такие как Audi A6 Quattro, BMW X5 и многие другие, но устройство AWD-трансмиссии легковушек полностью отличается от автомобилей, предназначенных для бездорожья.

Внедорожники, имея постоянный полный привод, способны достаточно легко преодолевать труднопроходимые участки , а легковым машинам постоянный полный привод нужен для лучшей динамики и управляемости, т.к. значительно уменьшаются пробуксовки ведущих колес. Правда, и тем, и другим приходится расплачиваться высоким расходом горючего при езде по асфальтированным дорогам, кроме того, устройство системы постоянного полного привода намного сложнее.

Вторая группа систем полного привода автомобилей – part-time. Машина, оснащенная такой системой, в обычных условиях является моноприводной, а вторая ось подключается при необходимости вручную или автоматически в определенных условиях.
Типичные part-time-полноприводные автомобили:

  1. все модели УАЗ;
  2. Mitsubishi Pajero с системой Super Select;
  3. Nissan Patrol.

Эти машины прекрасно подходят для активного отдыха в условиях бездорожья. Водитель в них самостоятельно подключает вторую ось для преодоления труднопроходимых мест.

Схема part-time AWD имеет свои недостатки. Одним из главных является то, что неопытный водитель, не всегда может правильно оценить дорожную обстановку и вовремя перевести трансмиссию автомобиля в полноприводный режим. Вторым недостатком является то, что с включенным полным приводом можно передвигаться только с небольшой скоростью, а трансмиссия при этом усиленно изнашивается. Третий минус заключается в том, что классическая ручная part-time-система не имеет межосевого дифференциала, что сильно ухудшает управляемость таких автомобилей на сухих дорогах, особенно это заметно в поворотах.

Системами автоматического полного привода оснащают кроссоверы, а так же универсалы с повышенной проходимостью. Они не предназначены для езды по зимникам и летникам, однако возможностей этих автомобилей вполне достаточно, чтобы не ограничиваться ездой только по асфальтированным дорогам. AWD в них реализуется при помощи вискомуфты, самоблокирующегося дифференциала Torsen, или многодисковой фрикционной муфты.

4 motion

Одной из самых известных автоматических AWD-трансмиссий можно назвать 4motion от компании Фольксваген. Она состоит из следующих узлов:

  • сцепления;
  • коробки передач;
  • главных передач передней и задней оси;
  • межколесных дифференциалов передней и задней оси;
  • многодисковой фрикционной муфты Haldex;
  • полуосей.

В обычных условиях 90 % крутящего момента передается передней оси. При пробуксовке передних колес блок управления посылает соответствующий сигнал, муфта блокируется, и крутящий момент подается на заднюю ось. Его величина не является постоянной. Соотношение крутящего момента передней и задней осей в AWD-трансмиссии 4motion может изменяться от 90:10 до 60:40.

Система полного привода TOD

AWD-трансмиссия Torque-on-Demand, или TOD, относится к категории full-time AWD, применяющая распределение крутящего момента между осями по переменному принципу. Задний мост в системе TOD подключен постоянно, передний подключается через многодисковую фрикционную муфту автоматически или принудительно при помощи переключателя.

В автоматическом режиме, являющемся основным для TOD, крутящий момент перераспределяется между осями (передней и задней) в соотношениях от 0:100 до 50:50, все зависит от различных дорожных условий. До начала преодоления труднопроходимых участков, производитель рекомендует принудительно подключить переднюю ось, тем самым деля поровну крутящий момент между осями.

Аналогичным образом устроена интеллектуальная система xDrive у автомобилей BMW, однако работает она полностью в автоматическом режиме, а соотношение крутящего момента между осями составляет от 0:100 до 40:60.

Система полного привода Quattro

AWD-система Quattro, применяемая на автомобилях Audi, также относится к категории full-time AWD. Роль межосевого дифференциала в последнем, четвертом поколении трансмиссии Quattro, выполняет самоблокирующийся асимметричный дифференциал с коронными шестернями. В нормальных условиях, на переднюю ось, он направляет 40% мощности, а оставшиеся 60 – на заднюю. При пробуксовке колес основная доля момента перебрасывается на ту ось, которая имеет наилучшее сцепление с дорогой. При этом на передние колеса может быть передано до 70%, а на задние – до 85.

На чем остановить свой выбор?

Вопрос, какая система полного привода лучше, мучает многих автолюбителей. Многие будут удивлены, но ответить на него невозможно в силу некорректности самой формулировки. Можно сказать, что лучше подойдет в конкретной ситуации, но не в целом.

Ведь автомобиль Mitsubishi Pajero с part-time системой полного привода Super Select, будучи прекрасным внедорожником, на асфальтированной трассе показывает весьма посредственную управляемость, свойственную практически всем «джипам». Равно как и Audi Allroad с AWD-трансмиссией Quattro, прекрасно ведущая себя на шоссе и способная проехать по укатанной грунтовке, окажется полностью бессильной в условиях Карелии.

При выборе необходимо учитывать различия в системах полного привода и понимать, для чего приобретается автомобиль, и в этом случае покупатель получит именно то, что ему нужно – либо вместительную семейную машину, на которой можно отправиться хоть на море, хоть на дачу, либо внедорожник, способный покорить сибирскую тайгу.

«Честный полный привод» — не вполне четкий, но убедительный термин, священная мантра интернет-гуру. Однако сегодня подавляющее большинство производителей делает ставку на электронику и многодисковые муфты, автоматически подключающие задний мост…

Хорошо иметь на случай штурма снежного заноса машину с колесной формулой 4х4, а в остальное время - экономичный монопривод. И при трогании с места на мокром асфальте полезно быть во всеоружии. Но уже через мгновение, когда скорость набрана, лишняя ведущая ось - только перерасход горючего.

Это стопроцентный формат кроссовера, и для того чтобы стали возможными быстрые или кратковременные включения второй пары ведущих колес, появились разнообразные многодисковые муфты их подключения.

ЭКОНОМИЯ МЕТАЛЛА И ТОПЛИВА
Недорогая и компактная многодисковая муфта, не вызывающая дополнительных вибраций и крайне отзывчивая, вытеснила сегодня на 90% полноприводных машин все другие виды трансмиссии, сведя формулу нынешней постройки массового кроссовера к единому принципу: поперечно расположенный впереди мотор постоянно приводит передние колеса, а задние подключаются муфтой по потребности.

Полный привод, реализованный таким образом, намного проще настоящих внедорожных конструкций. Раздаточной коробки нет, возле переднего дифференциала остаются лишь дополнительная пара шестерен отбора мощности да выходной вал. Еще один плюс: благодаря малому весу и размерам стало возможным разгрузить от тяжести муфты и без того тяжелую переднюю часть автомобиля. Многодисковая муфта поселилась прямо на заднем редукторе.

РАЗНЫЕ
Но муфта муфте рознь. При одинаковом принципе подключения второго моста конструкции могут иметь значительные различия.

Изначально решено было каким-то образом заставить срабатывать муфту от проскальзывания передней половинки, связанной с мотором и передними колесами, относительно задней, соединенной с задними колесами. Забуксовал перед, пошла разница оборотов половинок, муфта заблокировалась, подключился зад. Логично?

Самые первые муфты применял Volkswagen Golf в своей трансмиссии Syncro. Пакет фрикционов в них не сжимался, а был залит силиконовой жидкостью, которая густела при больших нагрузках и сама передавала вращение. Управлять такой виско-муфтой было невозможно, характеристика ее работы оставляла желать лучшего, и 100% крутящего момента на задние колеса она передать не могла. К тому же при буксовании в грязи силикон вскипал, муфта быстро перегревалась и… сгорала.

Другая конструкция попала на ранние Ford Escape. Там диски муфты уже сжимались, но происходило это чисто механически, при помощи шариков и клиновидных прорезей, в момент проворачивания передней части относительно задней. Муфта работала четче, но резче, вызывая неожиданные удары в самой ответственной фазе скользкого поворота.

Представьте себе, что в вираже ваш автомобиль внезапно из переднеприводного превратится в «классику», а под сброс газа муфта также внезапно отключится. Последствия могут быть фатальными.

Эта проблема и дальше довольно долго преследовала производителей муфт. Чтобы адекватнее регулировать поток мощности к задним колесам, а заодно и оберегать диски муфты от перегрева, предприняли попытку использовать гидравлику.

ПРИШЕСТВИЕ HALDEX
Последней версией неуправляемой муфты стала первая генерация Haldex 1998 года. Здесь диски сжимал гидроцилиндр, давление масла для которого вырабатывал насос. Насос смонтировали на одной половинке муфты, а привод на него шел от другой. То есть теперь при разнице оборотов передних и задних колес нарастало давление сжатия и муфта блокировалась. Haldex работал мягко и оказался успешным.

Выигрышей получили сразу два: масло, теперь циркулирующее и через гидронасос, лучше охлаждалось, а гидропривод четче и, главное, быстрее срабатывал. Но все же оставалась неиспользуемой часть функционала привода - упреждение подключения заднего моста в самом начале развития опасной ситуации, частичное блокирование муфты для прохождения поворотов. С этим могла и должна была справиться электроника.

Так в 2004 году появилось второе поколение Haldex все с теми же дисками и насосом, но с электронным клапаном, а в «мозги» системы стабилизации машины внедрили отдел, заведующий полным приводом.

Компактный. Весь набор элементов муфты Haldex собран в плотный блок и по габаритам лишь немного больше стандартного дифференциала

Система стала управляемой, и передаваемый назад крутящий момент перестал напрямую зависеть от разницы скоростей передних и задних колес.

ПРЕДУПРЕЖДЕН - ЗНАЧИТ ВООРУЖЕН

Все бы хорошо, но оставались «незатронутыми» ситуации, при которых хорошо бы получить состоявшийся полный привод еще до пробуксовки передних колес. Иными словами, насос, работающий от разницы оборотов половинок муфты, больше не устраивал инженеров-трансмиссионщиков. Ведь его спасительное давление в некоторых режимах движения просто отсутствовало.

Решение оказалось простым и в общих чертах применяется до сего дня в большинстве реализованных посредством муфты приводов.

Очередное — четвертое — поколение Haldex получило прикрепленный снаружи электронасос и уже знакомые нам клапаны регулировки перед гидроцилиндрами. Теперь в любое время муфта могла быть полностью или частично замкнута лишь по сигналу электроники.

Такой принцип дал массу положительных эффектов. Появились режимы старта с места, при которых муфта на короткий период разгона полностью блокируется. Добавились режимы существенной блокировки в поворотах, когда хорошее сцепление на сухом асфальте позволяет на всю катушку использовать полный привод.

Как ни удивительно, возросли вездеходные качества. Ведь теперь стало возможно простым нажатием кнопки переключать алгоритм работы муфты с «асфальтового» на «внедорожный» или доверить это дело автоматике.

Узнаете три основных режима работы трансмиссии вашего кроссовера? Безусловно, у вас именно такая муфта в приводе задних колес!

Только миг. Две составляющие быстродействия системы - электронный мозг и сверхбыстрый электроклапан, время открытия которого менее 0.1 с

ДАЛЬШЕ - БОЛЬШЕ
Электронное управление муфты стало удобно совместить и с системой стабилизации, и с программой собственной безопасности фрикционов. Небольшой термодатчик внутри муфты отныне следил за рабочей температурой и отключал привод, если перегрев фрикционов был близок. Конечно, ставший минут на десять недоприводным автомобиль может вывести из равновесия, но это несравнимо лучше дыма из-под днища и поломки трансмиссии.

Кроме того, чем больше кроссоверов с электронно-управляемыми муфтами оказывалось в руках владельцев, тем шире и точнее становились программы систем полного привода. Сегодня лучшие из них уже не боятся перегрева не только в рыхлом снегу, но и при откровенном грязевом буксовании. А еще и химики с материаловедами не сидели сложа руки. Новые материалы дисков и накладок позволили вдвое поднять температуру аварийного отключения, а также повысить передаваемый фрикционами момент до величин заведомо больших, чем может выдать мотор.

Современные материалы фрикционов, высококачественные масла и продвинутые программы управления замыканием дисков дают возможность даже держать муфту частично подключенной, не боясь ее перегрева. Автомобиль при этом получает распределение крутящего момента по осям в пропорции 10:90, а то и 40:60, что для брендов, тяготеющих к заднеприводной компоновке, позволяет сочетать классические повадки на дороге с легкой полноприводностью, порой почти незаметной. И даже непрерывно варьировать степень подключения, улучшая управляемость машины и помогая системе стабилизации делать свое дело.

Учитывая гибкость алгоритмов работы и высокую степень доведенности конструкции многодисковых муфт, на сегодняшний день это самый массовый вариант организации полного привода и вряд ли в обозримом будущем нас здесь ждет что-то принципиально новое.

Полноприводный автомобиль всегда считался более мощным, достаточно вспомнить внедорожники компаний BMW, Mercedes и Toyota. Но со временем полный привод появился и на обычных машинах. На автомобили Volkswagen устанавливают систему 4Motion.

Что такое 4Motion


В приводе 4Motion крутящий момент, как правило, распределяется от агрегата автомобиля на оси колес зависимо от ситуации на дороге. Часто бывает такое, что дорога идет проходимая, а попадается участок с болотом или иным препятствием, чтоб проехать, тогда и нужен полный привод. Свою историю первой установки на автомобили Volkswagen системы 4Motion начинается с 1998 года. Такая система устанавливается как на автомобили класса седан, хэтчбек, так и на внедорожники и кроссоверы.

Среди таких автомобилей компании Volkswagen стоит вспомнить Golf IV, V поколений, микроавтобусы Volkswagen Transporter и кроссовер Volkswagen Tiguan. Теперь же рассмотрим подробнее о системе полного привода 4Motion.

С чего состоит полный привод 4Motion


Само название полный привод 4Motion, говорит о том, что система будет не простой. Каждая часть выполняет отведенную ей работу. Наглядная схема системы 4Motion показывает, что полный привод автомобилей Volkswagen состоит из: агрегат автомобиля (1), раздатка (2), карданная передача (3), кардан (4), межколесный дифференциал для задней оси (5), муфта включения задней оси (6), межколесный дифференциал для передней оси (7) и коробка передач автомобиля (8).

Рассмотрим принцип устройства отдельных компонентов и предназначение в системе 4Motion. Первый по списку работы пойдет дифференциал передней оси. Его назначением является передача крутящего момента на ведущие передние колеса от коробки передач. Сам же корпус соединен с раздаточной коробкой.

Далее по списку идет раздаточная коробка, из-за себя представляет коническую передачу. Благодаря ей крутящий момент передается под углом 90°. Фрикционная муфта и раздатка соединяются между собой карданной передачей от привода задней оси.

Карданная передача из себя представляет два вала, соединенных между шарнирами равных углов скоростей. Сами ж валы присоединены к фрикционной муфте и раздатке с помощью упругих муфт. Как видно на схеме выше, задний карданный вал имеет промежуточную опору.


В полном приводе компании Volkswagen системе 4Motion используется многодисковая фрикционная муфта под названием Haldex. За счет нее передается крутящий момент от передней оси машины. Степень и величина передачи крутящего момента зависит от степени замыкания муфты. Как правило, в системе 4Motion муфта встроена в картер дифференциала задней оси.

В системе 4Motion используется муфта четвертого поколения, чаще всего её можно встретить на кроссовере Volkswagen Tiguan. В сравнении с предыдущим поколением муфт, она имеет более простую конструкцию. Муфты первого и второго поколения можно встретить на автомобилях Volkswagen IV и V, а так же на Volkswagen Transporter.


Сама конструкция муфты Haldex состоит из нескольких фрикционных дисков, аккумулятора давления, насоса и системы управления. Пакет фрикционных дисков состоит из набора стальных и фрикционных дисков. Внутреннее зацепление со ступицей имеют только фрикционные диски, стальные ж диски имеют зацепление с барабаном. От количества дисков в системе 4Motion будет зависеть величина крутящего момента, который передается. Как говорится, чем больше дисков, тем больше будет крутящий момент. В свою очередь диски сжимаются поршнями.

Управление муфтой Haldex системы 4Motion происходит электронным путем, так же сюда включены входные датчики, блок управления электроникой и сами исполнительные устройства. В качестве входного датчика используется датчик температуры масла.

Задачей блока управления полного привода 4Motion, как и в других системах автомобиля, является преобразование входящей информации и передача сигналов на исполнительные устройства. Кроме информации, полученной от датчика температуры масла, блок управления тянет информацию от блока управления агрегатом автомобиля и системы ABS.


К исполнительным устройствам системы 4Motion относят клапан управления, он способен регулировать давление сжатие фрикционных дисков начиная от 0 и до 100% от возможной величины. За счет положения клапана определяется величина давления. Что касается аккумулятора давления и насоса, то они обеспечивают поддержку давления масла во всей системе 4Motion на уровне 3 МПа.

Как видим система полного привода 4Motion от компании Volkswagen достаточно не сложная в сравнении с другими производителями. Производитель Volkswagen стал чаще устанавливать на различные модели своих автомобилей, тем самым повышая комфорт, управляемость и надежность.

Как работает механизм системы 4Motion


Работы системы полного привода 4Motion зависит от построенного алгоритма блоком управления и муфты Haldex. Как правило, выделяют следующие алгоритмы работы:
  1. старт движения;
  2. пробуксовка при начале движения;
  3. движение на постоянной скорости;
  4. движение с частыми пробуксовками;
  5. резкое торможение.
Именно такие алгоритмы стандартом зашиты в блок управления системы 4Motion. При старте с места или разгоне, клапан, как правило, будет закрыт, а диски муфты сжимаются максимально. В результате на задние колеса будет подан крутящий момент максимальной силы.

Если же берется алгоритм 4Motion, когда при старте начинается пробуксовка передних колес, то клапан управления сразу закроется, а фрикционные диски муфты сожмутся. В таком случае крутящий момент полностью будет передаваться на заднюю ось. Относительно передних колес, то одно из колес в процессе будет подключаться или отключатся с помощью электронного блока дифференциалов системы 4Motion.

Взяв за основу ситуацию работы 4Motion, когда автомобиль движется с постоянной скоростью, то клапан будет открыт, а диски будут сжиматься в зависимости от условий движения и дорожного покрытия. Крутящий момент на заднюю ось будет передаваться только в самые необходимые моменты, а в основном вся нагрузка будет идти на переднюю ось.


Следующий алгоритм пробуксовки 4Motion, во время движения автомобиля высчитывается на основе сигналов полученных от блоков управления системы ABS. Клапан будет открываться зависимо от условий движения автомобиля. Блок управления будет смотреть, какая ось и какие колеса буксую, на те и передавать крутящий момент.

Последний вариант работы 4Motion, это когда автомобиль тормозит. В таком случае клапан управления будет открыт, а фрикционные муфты полностью разжаты. Не зависимо от ситуации, крутящий момент при торможении на заднюю ось передаваться не будет.

Видео принцип работы муфты Haldex на системе 4Motion: