Проверка на содержание отработавших газов. Предупреждение и проверка токсичности отработавших газов. Нормы и методы измерений. Требования безопасности

Лабораторная работа №7

Проверка токсичности отработавших газов

Цель работы: провести замер уровня содержания вредных веществ в отработавших газах автомобильных двигателей.

Краткие сведения:

Отработавшие газы, выбрасываемые в окружающую среду, содержат до 280 различных веществ. Среди них азот и его окислы, углекислый и сернистый газы, окись углерода, альдегиды, углеводороды, свинец, марганец и их соединения, различные соединения углерода и водорода, сажа и ряд других веществ. Все вещества входящие в состав отработавших газов находятся в различных состояниях, большинство из них являются токсичными. В составе отработавших газов автомобилей наибольший удельный вес по объему имеет окись углерода (до 10%), окислы азота (до 0,8%), несгоревшие углеводороды (до 3%), альдегиды (0,2%) и сажа. Таким образом, при сжигании 1000 л топлива бензиновые двигатели выбрасывают в окружающую среду с отработавшими и картерными газами 200 кг окиси углерода, 25 кг углеводородов, 20 кг окислов азота, 1кг сажи и 1 кг сернистых соединений.

Как правило, при очередном ТО-2, ремонте двигателя, системы питания и системы выпуска выполняется проверка отработавших газов двигателя, для этого применяются специальные приборы – газоанализаторы, работающие на основе использования инфракрасного излечения. В таких газоанализаторах анализ содержания оксида, диоксида углерода и углеводородов производится с помощью недисперсионных инфракрасных лучей. Физический смысл процесса заключается в том, что эти газы поглощают инфракрасные лучи с длиной волны 4,7 мкм, углеводороды – 3,4, а диоксид углерода -4,25 мкм. Следовательно, с помощью детектора, чувствительного к инфракрасным лучам с определенной длиной волны, можно определить степень их поглощения при прохождении анализируемой пробы, в результате чего можно установить концентрации того или иного компонента. Схема газоанализатора, работающего по принципу инфракрасного излучения, показана на рисунке 4.1.

Отработавшие газы с помощью мембранного насоса через газоотборный зонд, отделитель конденсата (оседает вода) и фильтры (очистка от твердых примесей) закачиваются в измерительную камеру. Сравнительная камера при этом заполнена инертным газом и закрыта. Источниками инфракрасного излечения являются нихромные нагреватели, которые нагреваются до температуры 700°C. Отражаясь от параболических зеркал, поток инфракрасного излечения, периодический прерываемый обтюратором, приводимым во вращение от синхронного электродвигателя, проходит через измерительную и сравнительную камеры. (Обтюратор необходим для обеспечения ритмичного прерывания инфракрасного излучения.) В измерительной камере определяемые компоненты, взаимодействуют с излучением, вызывают его поглощение в соответствующих спектральных диапазонах. В сравнительной же камере этого не происходит (камера заполнена инертным газом – N ). Как следствие возникает разница температур и давлений в обеих камерах. Вследствие этого изменяется емкость мембранного конденсатора, расположенного между камерами лучеприемника. Сигнал с конденсатора подается на усилитель и далее на регистрирующий прибор.

По такому принципу работают газоанализаторы типа ГАИ, ИНФРАЛИТ, ГИАМ 27-01, ЕТТ фирмы «BOSH» и др.

Рисунок 4.1 – Схема газоанализатора: 1 – газоотборный зонд; 2 – отделитель конденсата; 3 – фильтр тонкой очистки; 4 – защитный фильтр; 5 – мембранный насос; 6 – источники инфракрасного излечения; 7 – синхронный электродвигатель; 8 – вращающийся диск обтюратора; 9 – сравнительная камера; 10 – лучеприемник инфракрасного излучения; 11 – усилитель; 12 – мембранный конденсатор; 13 – измерительная камера; 14 – индикаторные приборы.

В современных много компонентных газоанализаторах кроме измерения содержания оксида (СО) и диоксида углерода (СО 2), углеводородов (СН) может определяться содержимое кислорода (О 2) и оксидов азота (NO), а также коэффициенты избытка воздуха λ.

Выполнение работы

Измерения следует проводить в следующей последовательности:

Установить рычаг переключения передач (избиратель скорости для автомобилей с автоматической коробкой передач) в нейтральное положение;

Затормозить автомобиль стояночным тормозом;

Заглушить двигатель (при его работе);

Открыть капот двигателя;

Подключить тахометр;

Установить пробоотборный зонд газоанализатора в выпускную трубу автомобиля на глубину не менее 300 мм от среза (при косом срезе выпускной трубы глубина отсчитывается от короткой кромки среза);

Полностью открыть воздушную заслонку карбюратора (при его наличии

Полностью исключить наличие токсичности в отработавших газах двигателя внутреннего сгорания нельзя. Предупредить излишнее относительно нормы количество токсичных веществ можно путем соблюдения режимов технического обслуживания, периодичности проведения регулировок и качественного их выполнения; снижения расхода топлива; повышения качества ремонта. Следует отметить, что повышение токсичности отработавших газов при большом расходе топлива происходит из-за неправильной регулировки карбюратора, засорения воздушных фильтров, повышения уровня топлива в поплавковой камере карбюратора. На расход топлива и на токсичность влияет также техническое состояние газораспределительного механизма - изменение тепловых зазоров и подгорание выпускных клапанов, а также система зажигания - изменение зазоров в прерывателе-распределителе и свечах зажигания.

У некоторых автомобилей при обслуживании больниц, курортов двигатели оборудуют системами нейтрализации выпускных газов. Снижение концентрации токсичных веществ здесь достигается воздействием на рабочий процесс и применением устройств для нейтрализации и очистки газов в выпускном трубопроводе - нейтрализаторов и очистителей.

Нейтрализаторы бывают термические и каталитические. В них происходят химические реакции, в результате которых уменьшается количество газовых компонентов токсичных веществ. Механические и водяные очистители применяют для очистки газов от сажи и капелек масла.

Термический нейтрализатор представляет собой камеру сгорания, которая размещается в выпускном тракте двигателя для дожигания продуктов неполного сгорания топлива. Такой нейтрализатор устанавливают на месте выпускного трубопровода. Однако термические нейтрализаторы на режимах холостого хода и малых нагрузках малоэффективны, так как температура выпускных газов недостаточна для быстрого протекания реакции.

Каталитические нейтрализаторы более эффективны, в них применены катализаторы из благородных металлов - платины и палладия, родия. Эти катализаторы обеспечивают более высокую скорость окисления СО и СН при невысоких температурах. У выпускных газов при этом почти исчезает неприятный запах, сгорает сажа. Катализаторы на базе обычных металлов уступают предыдущим по активизации процессов окисления при невысоких температурах. В каталитическом нейтрализаторе выпускные газы поступают в камеру и в контактную зону коробки катализатора, очищенные газы поступают в атмосферу. Коробка сменная, рассчитана на 1500-2000 ч работы и обеспечивает очистку газов почти на 75 %. При втором ТО коробку очищают. Для этого газовой горелкой ее нагревают до температуры 800-900° С и выжигают сажу.

Предусмотрено оборудование всех современных автомобильных карбюраторных двигателей, автомобильных дизелей системами нейтрализации отработавших газов при работе в карьерах, на рудниках, где недостаточен воздухообмен.

Снизить токсичность отработавших газов позволяет применение форкамерно-факельного зажигания карбюраторных двигателей, а также работающих на газе автомобилей, электромобилей, двигателей с двухстадийным сгоранием топлива; разработка и применение малотоксичных антидетонаторов, противодымных присадок к топливу.

Закон об охране атмосферного воздуха устанавливает, что выбросы загрязняющих веществ в атмосферу автомобилями, самолётами и другими передвижными средствами и установками должны контролироваться с целью сокращения содержания вредных веществ. Производство и эксплуатация машин, в выбросах двигателей которых содержание загрязняющих и токсичных веществ превышает установленные нормативы, не допускается. Нарушение этих правил влечет за собой административную, материальную и уголовную ответственность. Действует ГОСТ 25478-82 «Допустимые нормы содержания окиси углерода и дым-ности отработавших газов», который содержит необходимые для контроля токсичности данные (табл. 7).

Проверку содержания окиси углерода в отработавших газах выполняют на прогретом двигателе в режиме холостого хода и при частоте вращения коленчатого вала, равной 0,8 номинальной. Полученные данные сравнивают со значениями табл. 7. Для проверки применяют газоанализаторы моделей И-СО НИИАТ, ГАИ-1, НИИАТ-651 и другие. Увеличенное содержание окиси углерода на малой частоте вращения коленчатого вала двигателя свидетельствует о неправильной регулировке системы холостого хода карбюратора, а на большой частоте вращения - о неисправности главной дозирующей системы или неплотности прилегания клапанов экономайзера и ускорительного насоса.

На двигателях автомобилей ИЖ-2715, ВАЗ-2121, ВАЗ-2109, УАЗ-31512 устанавливают карбюраторы, имеющие системы снижения токсичности отработавших газов. Снижение токсичности обеспечивается уменьшением расхода топлива. Электронный блок 13 (рис. 1) такой системы управляет электромагнитным клапаном 12, который на режимах принудительного холостого хода (ПХХ) закрывает топливный жиклер, прерывая подачу топливной смеси. Регулировки карбюраторов таких автомобилей выполняют одновременно с регулированием содержания окиси углерода в отработавших газах.

Рис. 1. Система снижения токсичности отработавших газов автомобиля ВАЗ-2109:

1 - карбюратор; 2 - воздушная заслонка; 3 - пусковое устройство; 4 - прокладка; 5 - тепловой экран; 6 - впускная труба; 7 - подогрев системы холостого хода; 8 - винт качества смеси; 9 - рычаг привода дроссельных заслонок; 10 - упорный винт; 11 - канал системы холостого хода; 12 - электромагнитный клапан; 13 - блок управления; 14 - выключатель зажигания; 15 - аккумуляторная батарея; 16 - электронный коммутатор; 17 - катушка зажигания; 18 - провода высокого напряжения; 19 - датчик-распределитель

Cookies – это небольшие текстовые файлы, хранящиеся на Вашем компьютере при посещении вебсайта. При желании Вы можете удалить cookies, но это может препятствовать использованию полного функционала вебсайта. Для удаления cookies смотрите меню Вашего браузера. Для дополнительной информации о используемых cookies, пожалуйста, выберите «узнать больше о наших cookies» внизу данного окна. С помощью слайдера внизу Вы можете включать или отключать различные типы cookies. Примечание: это диалоговое окно не управляет сторонними cookies, к примеру, плагинами социальных медиа.

Переместите слайдер для изменения настроек:

    Required

    Comfort

    Statistic

    Targeting


To ensure that your cookie settings to take effect, the page is to click "Save and Close" to reload.

Cookies that are used for this website:

Name plPosLatitude
Category Comfort
Type Session
Function
Name plPosLongitude
Category Comfort
Type Session
This cookie exists for the duration of your online visit. The visit is terminated by closing the browser window or the browser is closed.
Function This cookie contains information about your address or address input in the workshop search. It is used to redo the last search if required. The information is only send to the Bosch workshop search server. This server is located in Germany.
Name plSearchLatitude
Category Comfort
Type Session
This cookie exists for the duration of your online visit. The visit is terminated by closing the browser window or the browser is closed.
Function
Name plSearchLongitude
Category Comfort
Type Session
This cookie exists for the duration of your online visit. The visit is terminated by closing the browser window or the browser is closed.
Function This cookie contains information about the search address in the workshop search. It is used to redo the last search if required. The information is only send to the Bosch workshop search server. This server is located in Germany.
Name plSearchRadius
Category Comfort
Type Session
This cookie exists for the duration of your online visit. The visit is terminated by closing the browser window or the browser is closed.
Function This cookie contains information about the search radius of the workshop search. It is used to redo the last search if required. The information is only send to the Bosch workshop search server. This server is located in Germany.
Name plZoom
Category Comfort
Type Session
This cookie exists for the duration of your online visit. The visit is terminated by closing the browser window or the browser is closed.
Function This cookie contains information about the zoom of the workshop search. It is used to redo the last search if required. The information is only send to the Bosch workshop search server. This server is located in Germany.
Name plServices
Category Comfort
Type Session
This cookie exists for the duration of your online visit. The visit is terminated by closing the browser window or the browser is closed.
Function This cookie contains information about selected filters of the workshop search. It is used to redo the last search if required. The information is only send to the Bosch workshop search server. This server is located in Germany.

Состав выхлопных газов машин с карбюраторным двигателем обуславливается качеством поступающей в цилиндры двигателя топливо - воздушной смеси, которая характеризуется коэффициентом избытка воздуха. Коэффициент избытка воздуха  представляет собой отношение воздуха, участвующего в сгорании топлива, к теоретически необходимому его количеству.

Если в горючей смеси на 1 кг топлива приходится 15 кг воздуха, то смесь называют нормальной. В этом случае =1, смесь сгорает полностью с образованием двух компонентов: углекислого газа СО 2 и водяного пара Н 2 О.

Если в горючей смеси на 1 кг. топлива приходится свыше 15 кг, но не более 17 кг воздуха, то ее называют обедненной (=1,05…1,15), при содержании же воздуха свыше 17 кг - бедной (=1,2…1,25).

Горючую смесь, содержащую меньше 15 кг, но не менее 12 кг воздуха на 1 кг топлива, называют обогащенной (=0,8…0,95), а при содержании воздуха менее 12 кг - богатой (=0,4…0,7)

Оптимальное значение  находится в интервале 0,9 -1,1 наиболее экономичная работа двигателя достигается на обедненной смеси. При 0,9 или 1,1 образуются продукты неполного сгорания топлива: окись углерода СО и углеводороды СН.

ГОСТ 17.2.2.03 обязывает проводить проверку концентрации СО и СН в отработавших газах на двух режимах холостого хода: при минимальной и максимальной частоте вращения коленчатого вала. На практике регулируют подачу топлива в двигатель в этих пределах в зависимости от частоты вращения коленчатого вала и режимов нагрузки двигателя.

4.7.2. Назначение и технические данные газоанализатора

102 Фа -01м.

Газоанализатор предназначен для контроля технического состояния карбюраторного двигателя: для отбора,транспортирования и подготовки отработавших газов двигателя с последующим измерением объемной доли окиси углерода СО и углеводородов СН в подготовленной газовой пробе и измерения частоты вращения коленчатого вала двигателя.

Табл.12.3. Технические данные газоанализатора

4.7.3. Устройство и работа газоанализатора

В основу принципа действия газоанализатора положен оптико-абсорбционный метод, основанный на измерении поглощения инфракрасной (ИК) энергии излучения анализируемым компонентом. Степень поглощения ИК-энергии излучения зависит от концентрации анализируемого компонента в газовой смеси. Каждому газу присуща своя область длин волн поглощения. Это обуславливает возможность избирательного анализа газов.

Сущность метода заключается в следующем: если поочередно пропускать поток монохроматического ИК - излучения, полученный за счет прохождения им интерференционного фильтра, через кювету с анализируемой газовой смесью и без нее, то на приемнике излучения будет регистрироваться переменный сигнал, который несет информацию о количестве ИК-энергии, поглощенной анализируемым компонентом и, следовательно, о концентрации анализируемого компонента.

Для одновременного анализа двух компонентов (СО и СН) оптическая схема содержит два интерференционных фильтра.

На рис. 12.4 представлена блок - схема газоанализатора. Он состоит из двух излучателей 16, создающих два несущих информацию о концентрации потока энергии (потоки энергии попадают в кюветы 12 и 13, имеющие измерительный и сравнительный каналы); обтюратора 8, вращающегося от электродвигателя 11; интерференционных фильтров 9 и 10 определенной длины волны; фоконов 7 с приемниками ИК излучения 6, предварительного усилителя 5; блока вторичной обработки информации 4, сигнал с которого поступает на блок коррекции 3 и далее на плату индикации и управления 2; блока питания 14; датчиков положения обтюратора 15; датчика тахометра, сигнал с которого поступает на плату измерения тахометра 3.

В одном из положений обтюраторов поток ИК излучения от излучателей 16, пройдя измерительные каналы кювет, интерференционные фильтры 9 и10, фоконы 7, попадает на приемники ИК -излучения 6, где преобразуется в электрические сигналы, поступающие на предварительные усилители 5, а затем в блок вторичной обработки информации 4.

В другом положении обтюратора поток ИК излучения от излучателей проделывает тот же путь, только проходит сравнительные каналы кювет 12,13. Положение обтюратора 8 регистрируется датчиком положения 15.

Электрические сигналы с выхода приемников ИК излучения, представляющих собой пироэлектрические приемники, усиливаются в предварительных усилителях и преобразуются блоком вторичной обработки информации в сигналы, поступающие на блок коррекции 3, и в заключение на плату индикации и управления.

Рис.12.4. Блок-схема газоанализатора 102 ФА-01М

1-датчик тахометра; 2-плата индикации и управления; 3-блок коррекции СО, СН и плата измерения тахометра; 4-блок ВОИ; 5-предварительный усилитель; 6-приемник ИК излучения (2шт); 7-фокон (2шт); 8-обтюратор; 9-интерференционный фильтр канала СО; 10-интерференционный фильтр канала СН; 11-электодвигатель;12-кювета канала СО; 13-кювета канала СН; 14-блок питания; 15-датчик положения обтюратора; 16-излучатель (2 шт.)

Для исключения влияния дестабилизирующих факторов, изменяющих чувствительность газоанализатора, применено устройство стабилизации этого сигнала путем воздействия на коэффициент усиления измерительного тракта.

МИНИСТЕРСТВО АВТОМОБИЛЬНОГО ТРАНСПОРТА РСФСР
НИИАТ

СОГЛАСОВАНО:

Заместитель начальника Технического

управления

А.И. Газин

ИНСТРУКЦИЯ ПО ПРОВЕРКЕ И РЕГУЛИРОВКЕ
БЕНЗИНОВЫХ ДВИГАТЕЛЕЙ АВТОМОБИЛЕЙ
НА МИНИМАЛЬНУЮ ТОКСИЧНОСТЬ ОТРАБОТАВШИХ ГАЗОВ

Взамен РТМ-200-РСФСР-12-0092-79

Срок введения

с 01.08.88 г.

Москва 1988

Инструкция разработана в Государственном научно-исследовательском институте автомобильного транспорта (НИИАТ). Инструкция является нормативно-техническим документом по выполнению предписаний государственного стандарта, устанавливающего нормы и методы измерения содержания окиси углерода и углеводородов в отработавших газах автомобилей с бензиновыми двигателями.

Работу выполняли: Доброхотов B.C., Манусаджянц Ж.Г., Парфенов Е.В. (руководитель темы), Шестухин В.И.

1. ОБЩИЕ СВЕДЕНИЯ

1.1. В крупных городах и промышленных центрах, особенно на улицах с интенсивным движением, наблюдается значительное загрязнение воздушного бассейна.

Известно, что при работе автомобильных двигателей в воздух выделяются отработавшие газы, которые содержат большое количество различных токсичных веществ, в том числе окись углерода и углеводороды.

1.2. Окись углерода (СО) - сильнодействующий токсичный газ без цвета и запаха - образуется в результате неполного сгорания топлива в цилиндрах двигателя. Находясь в воздухе и попадая через дыхательные пути в кровь, окись углерода нарушает нормальную деятельность организма и при больших концентрациях может привести к тяжелому отравлению. Даже малые дозы окиси углерода, систематически воздействующие на человека, приводят к ее накоплению в организме, что оказывает вредное влияние на здоровье.

Решающим условием, обеспечивающим минимальное содержание окиси углерода в отработавших газах, является исправное техническое состояние и правильная регулировка карбюратора.

1.3. Углеводороды (СН) являются исходными продуктами образования фотохимических туманов (смогов) в атмосфере городов, а также представляют концерогенную опасность для организма человека.

Содержание углеводородов в отработавших газах измеряется в «частях на миллион» (млн-1). Одна часть соответствует 0,0001 объемного процента выбросов. В отработавших газах автомобилей с бензиновыми двигателями содержание углеводородов в большой степени зависит от числа цилиндров двигателя автомобилей. Так, для двигателей с числом цилиндров до 4-х содержание углеводородов находится в диапазоне от 100 до 1500 и более млн-1 , а для многоцилиндровых двигателей - от 500 до 5000 и более млн-1. Концентрация углеводородов, в основном, зависит от технического состояния системы питания и зажигания особенности свечей зажигания, прерывателя-распределителя.

1.4. Регулировка системы холостого хода карбюратора на минимальное содержание окиси углерода в отработавших газах обычно приводит к значительному повышению содержания углеводородов и наоборот. Поэтому регулировку следует осуществлять так, чтобы соблюдались обе нормы, указанные в действующем стандарте, при этом суммарное количество токсичных веществ, выбрасываемых автомобилей в атмосферу будет минимальным. Такая регулировка обеспечит и снижение расхода топлива при движении автомобиля.

1.5. Для обеспечения снижения загрязнения атмосферного воздуха необходимо систематически контролировать автомобили на содержание токсичных веществ в отработавших газах, это позволит своевременно выявлять технически неисправные автомобили с повышенным содержанием токсичных веществ и принимать оперативные меры по устранению неисправностей.

2. ПРОВЕРКА ТОКСИЧНОСТИ ОТРАБОТАВШИХ ГАЗОВ АВТОМОБИЛЕЙ

2.1. Проверка автомобилей на содержание токсичных веществ в отработавших газах должна осуществляться в соответствии с ГОСТ 17.2.2.03-87 «Охрана природы. Атмосфера. Нормы и методы измерения содержания окиси углерода и углеводородов в отработавших газах автомобилей с бензиновыми двигателями. Требования безопасности».

минимальной (Пмин.);

повышенной (Ппов.), в диапазоне 2000 мин-1 - 0,8 П М Мном.

Значения Пмин. и Ппов. определяются из технических условий и инструкций по эксплуатации автомобилей. Для основных моделей автомобилей значения Пмин. и Ппов. приведены в приложении .

2.3. При проверке и регулировке двигателей автомобилей содержание токсичных веществ в отработавших газах не должно превышать значений, указанных в таблице.

2.4. В автотранспортных предприятиях и других предприятиях эксплуатирующих автомобильный транспорт, проверка и регулировка двигателей на токсичность проводится не реже чем при техническом обслуживании № 2, после ремонта агрегатов, систем и узлов, влияющих на токсичность, а также по. заявкам водителей автомобилей.

2.5. На станциях технического обслуживания проверка и регулировка двигателей на токсичность осуществляется при проведении технического обслуживания, ремонта агрегатов и систем, влияющих на токсичность, а также по заявкам владельцев автомобилей.

Таблица 1

(приведены данные по ГОСТ 17.2.2.03-87)

2.6. На авторемонтных предприятиях проверка токсичности и регулировка производится после обкатки отремонтированных автомобилей пробегом, а двигателей - на стенде при отсоединенном тормозном устройстве, после их обкатки.

2.7. Для проверки содержания токсичных веществ в отработавших газах автомобилей и двигателей следует применять приборы, удовлетворяющие требованиям действующих стандартов.

2.8. Проверку и регулировку автомобилей в соответствии с действующими нормами рекомендуется производить на контрольно-регулировочном пункте (КРП).

2.9. Проверка производится на предварительно прогретом двигателе до температуры охлаждающей жидкости, рекомендованной заводом-изготовителем (но не менее 60 °С).

2.10. Перед проверкой необходимо:

Включить вентиляционные устройства в помещении, где производится проверка;

Установить автомобиль, поставить рычаг переключения передач (избиратель скорости для автомобилей с автоматической коробкой передач) в нейтральное положение;

Затормозить автомобиль стояночным тормозом;

Подложить упоры («башмаки») под колеса ведущих мостов;

Проверить исправность системы выпуска отработавших газов внешним осмотром. Система не должна иметь дефектов, приводящих к утечкам отработавших газов, подсосу воздуха.

Остановить двигатель (при его работе);

Открыть капот двигателя и подсоединить тахометр;

Установить пробоотборный зонд газоанализатора (при наличии двух газоанализаторов на СО и СН - два зонда) в выпускную трубу автомобиля на глубину не менее 300 мм от ее среза. При использовании газоотвода, надеваемого на выпускную трубу, зонд вводится в отверстие газоотвода;

Подготовить газоанализаторы и тахометр для проведения намерений согласно инструкции предприятий - изготовителей приборов;

Запустить двигатель и полностью открыть воздушную заслонку карбюратора;

При ненажатой педали управления дроссельной заслонкой проверить и при необходимости установить по тахометру требуемую минимальную частоту вращения вала двигателя (Пмин.);

Увеличить частоту вращения путем открытия дроссельной заслонки до Ппов. и проработать на этом режиме не менее 15 с.

2.11. Для проверки токсичности необходимо:

Снизить частоту вращения до минимальной (Пмин.) и не ранее чем через 20 с измерить токсичность, записав показания приборов в журнал;

Открытием дроссельной заслонки установить повышенную частоту вращения вала двигателя (Ппов.) и не ранее чем через 30 с измерить токсичность, записав показания приборов в журнал.

2.12. При наличии у автомобиля раздельных выпускных труб измерения следует проводить в каждой из них отдельно. Для измерения с нормами берутся максимальные значения полученные при измерении.

2.13. Если хотя бы один результат превысит установленные нормы, то необходимо произвести проверку и регулировку системы зажигания и карбюратора без снятия его с автомобиля в соответствии с приложением .

2.14. При соответствии результатов измерения токсичности установленным нормам выдается «Талон токсичности» с отметкой «Норма».

2.15. На автомобилях где предусмотрена возможность пломбирования регулировочных устройств карбюраторов, после регулировки и соответствия токсичности установленным нормам, они должны вновь пломбироваться.

2.16. В случае отсутствия возможности снизить токсичность регулировочными воздействиями, автомобиль направляется в ремонтную зону для выполнения необходимых работ. Перечень вероятных неисправностей и причин повышенной токсичности - в приложении : данные по топливным насосам - в приложении . Основные рекомендации по ремонту и техническому обслуживанию карбюратора изложены в приложениях , , , .

2.17. После выполнения ремонтных работ производится проверка и регулировка двигателя на соответствие нормам и только при положительном результате выдается водителю автомобиля «Талон токсичности» с отметкой в нем «Норма».

Приложение 1

Значение минимальной и повышенной частоты вращения коленчатого вала на холостом ходу для карбюраторных двигателей

Двигатель

Автомобиль

Минимально устойчивая частота вращения, мин-1

Частота вращения при номинальной (или максимальной) мощности, мин-1

Повышенная частота вращения (ориентировочно 0,8 Пном.), мин-1

ЗАЗ-968, А, М «Запорожец»

«Москвич-412»

«Москвич-2138 2136» и их модификации

«Москвич-2137 -2140»

ВАЗ-2101-202 «Жигули»

ВАЗ-21011 «Жигули»

ВАЗ-2103 «Жигули»

ВАЗ-2103 «Жигули» 21072, 2104

ВАЗ-2106 «Жигули»

ВАЗ-2121 «Нива»

ВАЗ-2108 - 2109

ГАЗ-21 «Волга»

РАФ-2203 «Латвия»

ГАЗ-24-10; 24-12; 24-13; Автобус РАФ 2203

ГАЗ-24-10; 24-11; 24-12; 24-13; ЕрАЗ-3730

ЗМЗ-451, -451М

УАЗ-451ДМ; -452Д; -469Б

ГАЗ-24 «Волга»

ГАЗ-13 «Чайка»

ЗИЛ-138, -138Д2, -138В1, - ММЗ-45023

ЛАЗ-695Н, 697Р, -697М, 697Н, - 699Н, ЗИЛ-130, КАЗ-608В

130В, -131, ЗИЛ-ММЗ-655, ЗИЛ-157, -157К

ЗИЛ-50В 1000400

ЗИЛ-431410 и модиф.

ЗИЛ-508 1000401

Автобусы ЛАЗ-695Н, -697Н

ЗИЛ-508 1000402

Автомобиль-тягач КАЗ-608В

ЗИЛ-5081 1000401

ЗИЛ-131Н и модиф.

ЗИЛ-5081 1000402

ЗИЛ-131 и модификации

ЗИЛ-5081 1000402

ЗИЛ-131 и модификации

ЗИЛ-5085 1000400

ЗИЛ-431810 и модификации

ЗИЛ-5085 1000407

Автобус ЛАЗ-695

ЗИЛ-5086 1000400

ЗИЛ-5097 1000407

Урал-375 СИМ

ЗИЛ-509 1000400

Автобус ЛАЗ-699Р

ЗИЛ-509 1000401

Автобус ЛАЗ-677М

ЗИЛ-117, -114

ЗИЛ-4104 и модификации

ЗИЛ-4104 и модификации

ГАЗ-51А, -63

ГАЗ-53А, -66

КавЗ-651А, -685, ПАЗ-672, -3201