Проехав от старта по прямолинейному. Теория движения автомобиля: основные элементы. Безопасная дистанция между автомобилями

Одним из важнейших показателей динамических качеств автомобиля является интенсивность разгона - ускорение .

При изменении скорости движения возникают силы инерции, которые автомобилю необходимо преодолеть для обеспечения заданного ускорения. Эти силы вызваны как поступательно движущимися массами автомобиля m , так и моментами инерции вращающихся деталей двигателя, трансмиссии и колес.

Для удобства проведения расчетов пользуются комплексным показателем - приведенными силами инерции :

где δ вр - коэффициент учета вращающихся масс.

Величина ускорения j = dv/dt , которое может развить автомобиль при движении по горизонтальному участку дороги на заданной передаче и с заданной скоростью, находится в результате преобразования формулы для определения запаса мощности, которая расходуется на разгон:

,

или по динамической характеристике:

D = f +
.

Отсюда: j =
.

Для определения ускорения на подъеме или спуске пользуются формулой:

Способность автомобиля к быстрому разгону особенно важна в условиях городской езды. Увеличенные ускорения для автомобиля могут быть получены за счет увеличения передаточного числа u 0 главной передачи и соответствующего выбора характеристики изменения крутящего момента двигателя.

Максимальное ускорение при разгоне находится в пределах:

Для легковых автомобилей на первой передаче 2,0…3,5 м/с 2 ;

Для легковых автомобилей на прямой передаче 0,8…2,0 м/с 2 ;

Для грузовых автомобилей на второй передаче 1,8…2,8 м/с 2 ;

Для грузовых автомобилей на прямой передаче 0,4…0,8 м/с 2 .

Время и путь разгона автомобиля

Величина ускорения в ряде случаев не является достаточно наглядным показателем способности автомобиля к разгону. Для этой цели удобно применять такие показатели, как время и путь разгона до заданной скорости и графики, отображающие зависимость скорости от времени и пути разгона.

Так как j = , тоdt = .

Отсюда путем интегрирования полученного уравнения находим время разгона t в заданном интервале изменения скоростей отv 1 доv 2 :

.

Определение пути разгона S в заданном интервале изменения скоростей осуществляют следующим образом. Так как скорость является первой производной пути по времени, то дифференциал путиdS=v·dt , или путь разгона в интервале изменения скоростей отv 1 доv 2 равен:

.

В условиях реальной эксплуатации автомобиля затраты времени на операции переключения передач и буксование сцепления увеличивают время разгона по сравнению с теоретическим (расчетным) его значением. Время, затрачиваемое на переключение передач, зависит от конструкции коробки передач. При применении автоматической коробки передач это время практически равно нулю.

Кроме того, разгон не все время происходит при полной подаче топлива , как это предполагается в изложенном методе. Это также увеличивает реальное время разгона.

При применении механической коробки передач важным моментом является правильный выбор наиболее выгодных скоростей переключения передач v 1-2 , v 2-3 и т.д. (см. раздел «Тяговый расчет автомобиля»).

Для оценки способности автомобиля к разгону в качестве показателя используют также время разгона после трогания с места на пути в 100 и 500 м .

Построение графиков ускорений

В практических расчетах принимают, что разгон происходит на горизонтальной дороге с твердым покрытием. Сцепление включено и не пробуксовывает. Орган управления режимом работы двигателя находится в положении полной подачи топлива. При этом обеспечено сцепление колес с дорогой без пробуксовывания. Предполагается также, что изменение параметров двигателя происходит по внешней скоростной характеристике.

Полагают, что разгон для легковых автомобилей начинается с минимально устойчивой скорости на низшей передаче порядка v 0 = 1,5…2,0м/с до значенийv т = 27,8м/с (100км/ч ). Для грузовых автомобилей принимают:v т = 16,7м/с (60км/ч ).

Последовательно, начиная со скорости v 0 = 1,5…2,0м/с на первой передачи и последующих передачах, на динамической характеристике (рис.1) для выбранных по оси абсциссv расчетных точек (не менее пяти) определяют запас динамического фактора при разгоне как разность ординат (D – f) на различных передачах. Коэффициент учета вращающихся масс (δ вр ) для каждой передачи подсчитывают по формуле:

δ вр = 1,04 + 0,05·i кп 2 .

Ускорения автомобиля определяют по формуле:

j =
.

По полученным данным строят графики ускорений j=f(v) (рис.2).

Рис.2. Характеристика ускорений автомобиля.

При правильном расчете и построении кривая ускорений на высшей передаче пересечет абсциссу в точке максимальной скорости. Достижение максимальной скорости происходит при полном использовании запаса динамического фактора: D – f = 0 .

Построение графика времени разгона t = f(v)

Этот график строят, используя график ускорения автомобиля j=f(v) (рис.2). Шкалу скоростей графика разгона разбивают на равные участки, например, через каждый 1м/с , и из начала каждого участка проводят перпендикуляры до пересечения с кривыми ускорения (рис.3).

Площадь каждой из полученных элементарных трапеций в принятом масштабе равна времени разгона для данного участка скорости, если считать, что на каждом участке скорости разгон происходит с постоянным (средним) ускорением:

j ср = (j 1 + j 2 )/2 ,

где j 1 , j 2 - ускорения соответственно в начале и в конце рассматриваемого участка скоростей,м/с 2 .

В данном расчете не учитывается время на переключение передач и другие факторы, приводящие к завышению времени разгона. Поэтому вместо среднего ускорения принимают ускорение j i в начале произвольно взятого участка (определяют по шкале).

С учетом сделанного допущения время разгона на каждом участке приращения скоростиΔv определится как:

t i =Δv/j i ,с .

Рис. 3. Построение графика времени разгона

По полученным данным строят график времени разгона t = f(v) . Полное время разгона отv 0 до значенийv т определяют как сумму времени разгона (с нарастающим итогом) по всем участкам:

t 1 =Δv/j 1 , t 2 =t 1 +(Δv/j 2 ) ,t 3 = t 2 +(Δv/j 3 ) и так далее доt т конечного времени разгона:

.

При построении графика времени разгона удобно пользоваться таблицей и принять Δv = 1м/с .

Участки скорости v i , м/с

№ участков

j i , м/с 2

t i , с

Врем разгона с нарастающим итогом

Напомним, что построенный (теоретический) график разгона (рис.4) отличается от действительного тем, что не учтено реальное время на переключение передач. На рис.4 время (1,0 с ) на переключение передач отображено условно для иллюстрации момента переключения.

При использовании механической (ступенчатой) трансмиссии на автомобиле действительный график времени разгона характеризуется потерей скорости в моменты переключения передач. Это также увеличивает время на разгон. У автомобиля с коробкой передач с синхронизаторами интенсивность разгона выше. Наибольшая интенсивность у автомобиля с автоматической бесступенчатой трансмиссией.

Время разгона отечественных легковых автомобилей малого класса с места до скорости 100 км/ч (28м/с ) составляет порядка 13…20с . Для автомобилей среднего и большого класса оно не превышает 8…10с .

Рис. 4. Характеристика разгона автомобиля по времени.

Время разгона грузовых автомобилей до скорости 60 км/ч (17м/с ) составляет 35…45с и выше, что свидетельствует о недостаточной их динамичности.

км/ч составляет 500…800м .

Сравнительные данные по времени разгона автомобилей отечественного и зарубежного производства приведены в табл. 3.4.

Таблица 3.4.

Время разгона легковых автомобилей до скорости 100км/ч (28 м/с)

Автомобиль

Время, с

Автомобиль

Время, с

ВАЗ-2106 1,6 (74)

Alfa Romeo-156 2,0 (155)

ВАЗ-2121 1,6 (74)

Audi A6 Tdi 2,5 (150)

Москвич 2,0 (113)

BMW-320i 2,0 (150)

Cadillac Sevilie 4,6 (395)

ГАЗель-3302 D 2,1 (95)

Mercedes S 220 CD (125)

ЗАЗ-1102 1,1 (51)

Peugeot-406 3.0 (191)

ВАЗ-2110 1,5 (94)

Porsche-911 3,4 (300)

Ford Focus 2,0 (130)

VW Polo Sdi 1,7 (60)

Fiat Marea 2,0 (147)

Honda Civic 1,6 (160)

Примечание: Рядом с типом автомобиля указан рабочий объем (л ) и мощность (в скобках) двигателя (л.с. ).

Построение графика пути разгона автомобиля S = f(v)

Аналогичным образом проводится графическое интегрирование раннее построенной зави­симости t = f (V ) для получения зависимости пути разгона S от скорости автомобиля. В данном случае кривая графика времени разгона автомобиля (рис. 5) разбивается на интервалы по вре­мени, для каждого из которых находятся соответствующие значения V c р k .

Рис.5. Схема, поясняющая использование графика времени разгона автомобиля t = f ( V ) для построения графика пути разгона S = f( V ) .

Площадь элементарного прямоугольника, например, в интервале Δ t 5 есть путь, который проходит автомобиль от отметки t 4 до отметки t 5 , двигаясь с постоянной скоростью V c р 5 .

Величина площади элементарного прямоугольника определяется сле­дующим образом:

Δ S k = V c р k (t k - t k -1 ) = V c р k · Δ t k .

где k = l…m - порядковый номер интервала, m выбирается произвольно, но считается удобным для расчета, когда m = n .

Например (рис. 5), если V ср5 =12,5 м/с ; t 4 =10 с ; t 5 =14 с , то Δ S 5 = 12,5(14 - 10) = 5 м .

Путь разгона от скорости V 0 до скорости V 1 : S 1 = Δ S 1 ;

до скорости V 2 : S 2 = Δ S 1 + Δ S 2 ;

до скорости V n : S n = Δ S 1 + Δ S 2 + ... + Δ S n =
.

Результаты расчета заносятся в таблицу и представляются в виде гра­фика (рис. 6).

Путь разгона для легковых автомобилей до скорости 100 км/ч составляет 300…600м . Для грузовых автомобилей путь разгона до скорости 50км/ч равен 150…300м .

Рис.6. Графика пути разгона автомобиля.

На автомобиль, независимо от того, движется он или неподвижен, действует сила тяжести (вес), направленная отвесно вниз.

Сила тяжести прижимает колеса автомобиля к дороге. Равнодействующая этой силы, размещена в центре тяжести. Распределение веса автомобиля по осям зависит от расположения центра тяжести. Чем ближе к одной из осей расположен центр тяжести, тем больше будет нагрузка на эту ось. На легковых автомобилях нагрузка на оси распределяется примерно поровну.

Большое значение на устойчивость и управляемость автомобиля имеет расположение центра тяжести не только в отношении продольной оси, но и по высоте. Чем выше центр тяжести, тем менее устойчивым будет автомобиль. Если автомобиль находится на горизонтальной поверхности, то сила тяжести направлена отвесно вниз. На наклонной поверхности она раскладывается на две силы (см. рисунок): одна из них прижимает колеса к поверхности дороги, а другая стремится опрокинуть автомобиль. Чем выше центр тяжести и чем больше угол наклона автомобиля, тем скорее нарушится устойчивость и автомобиль может опрокинуться.

Во время движения, кроме силы тяжести, на автомобиль действует и ряд других сил, на преодоление которых затрачивается мощность двигателя.


На рисунке показана схема сил, действующих на автомобиль во время движения. К ним относятся:

  • сила сопротивления качению, затрачиваемая на деформирование шины и дороги, на трение шины о дорогу, трение в подшипниках ведущих колес и др.;
  • сила сопротивления подъему (на рисунке не показана), зависящая от веса автомобиля и угла подъема;
  • сила сопротивления воздуха, величина которой зависит от формы (обтекаемости) автомобиля, относительной скорости его движения и плотности воздуха;
  • центробежная сила, возникающая во время движения автомобиля на повороте и направленная в противоположную от поворота сторону;
  • сила инерции движения, величина которой состоит из силы, необходимой для ускорения массы автомобиля в его поступательном движении, и силы, необходимой для углового ускорения вращающихся частей автомобиля.

Движение автомобиля возможно только при условии, что его колеса будут иметь достаточное сцепление с поверхностью дороги.

Если сила сцепления будет недостаточной (меньше величины силы тяги на ведущих колесах), то колеса пробуксовывают.

Сила сцепления с дорогой зависит от веса, приходящегося на колесо, от состояния покрытия дороги, давления воздуха в шинах и рисунка протектора.

Для определения влияния состояния дороги на силу сцепления служит коэффициент сцепления, который определяют делением силы сцепления ведущих колес автомобиля на вес автомобиля, приходящийся на эти колеса.


Коэффициент сцепления зависит от вида покрытия дороги и от его состояния (наличия влаги, грязи, снега, льда); величина его приведена в таблице (см. рисунок).

На дорогах с асфальтобетонным покрытием коэффициент сцепления резко уменьшается, если на поверхности имеется влажная грязь и пыль. В этом случае грязь образует пленку, резко уменьшающую коэффициент сцепления.

На дорогах с асфальтобетонным покрытием в жаркую погоду появляется на поверхности маслянистая пленка из выступающего битума, снижающая коэффициент сцепления.

Уменьшение коэффициента сцепления колес с дорогой наблюдается также при увеличении скорости движения. Так, при возрастании скорости движения на сухой дороге с асфальтобетонным покрытием с 30 до 60 км/ч коэффициент сцепления уменьшается на 0,15.

Разгон, ускорение, накат

Мощность двигателя затрачивается на приведение во вращение ведущих колес автомобиля и преодоление сил трения в механизмах трансмиссии.

Если величина усилия, с которым вращаются ведущие колеса, создавая тяговую силу, будет больше чем суммарная сила сопротивления движению, то автомобиль будет двигаться с ускорением, т.е. с разгоном.

Ускорением называется прирост скорости за единицу времени. Если тяговое усилие равно силам сопротивления движению, то автомобиль будет двигаться без ускорения с равномерной скоростью. Чем выше максимальная мощность двигателя и меньше величина суммарных сил сопротивления, тем быстрее автомобиль достигнет заданной скорости.

Кроме того, на величину ускорения влияет вес автомобиля, передаточное число коробки передач, главной передачи, количество передач и обтекаемость автомобиля.

Во время движения накапливается определенный запас кинетической энергии, и автомобиль приобретает инерцию. Благодаря инерции автомобиль может двигаться некоторое время с отключенным двигателем – накатом. Движение накатом используют для экономии топлива.

Торможение автомобиля

Торможение автомобиля имеет большое значение для безопасности движения и зависит от его тормозных качеств. Чем лучше и надежнее тормоза, тем быстрее можно остановить движущийся автомобиль и тем с большей скоростью можно двигаться, а следовательно, и больше будет его средняя скорость.

Во время движения автомобиля накопленная кинетическая энергия поглощается при торможении. Торможению помогают силы сопротивления воздуха, сопротивления качению и сопротивления подъему. На уклоне силы сопротивления подъему отсутствуют, а к инерции автомобиля добавляется составляющая сила тяжести, которая затрудняет торможение.

При торможении между колесами и дорогой возникает тормозная сила, противоположная направлению силы тяги. Торможение зависит от соотношения между тормозной силой и силой сцепления. Если сила сцепления колес с дорогой будет больше тормозной силы, то автомобиль затормаживается. Если тормозная сила будет больше силы сцепления, то при заторможенных колесах произойдет их скольжение относительно дороги. В первом случае при торможении колеса катятся, постепенно замедляя вращение, а кинетическая энергия автомобиля превращается в тепловую энергию, нагревающую тормозные колодки и диски (барабаны). Во втором случае колеса перестают вращаться и будут скользить по дороге, поэтому большая часть кинетической энергии будет превращаться в тепло трения шин о дорогу. Торможение с остановившимися колесами ухудшает управляемость автомобиля, особенно на скользкой дороге, и приводит к ускоренному износу шин.

Наибольшую тормозную силу можно получить только тогда, когда тормозные моменты на колесах будут пропорциональны нагрузкам, приходящимся на них. Если такая пропорциональность не будет соблюдена, то тормозная сила на одном из колес не будет полностью использована.

Эффективность торможения оценивается по тормозному пути и величине замедления.

Тормозной путь – это расстояние, которое проходит автомобиль от начала торможения до полной остановки. Замедление автомобиля – это величина, на которую уменьшается скорость автомобиля за единицу времени.

Управляемость автомобиля

Под управляемостью автомобиля понимают его способность изменять направление движения.


Во время движения автомобиля по прямой очень важно, чтобы управляемые колеса не поворачивались произвольно и водителю не нужно было бы затрачивать усилия для удержания колес в нужном направлении. На автомобиле предусмотрена стабилизация управляемых колес в положении движения в прямом направлении, которая достигается продольным углом наклона оси поворота и углом между плоскостью вращения колеса и вертикалью. Благодаря продольному наклону колесо устанавливается так, что его точка опоры по отношению оси поворота снесена назад на величину а и его работа подобна ролику (см. рисунок).

При поперечном наклоне повернуть колесо всегда труднее, чем вернуть его в исходное положение – движения по прямой. Это объясняется тем, что при повороте колеса передняя часть автомобиля приподнимается на величину б (водитель прилагает сравнительно большее усилие к рулевому колесу).

Для возвращения управляемых колес в положение, соответствующее движению по прямой, вес автомобиля помогает поворачиванию колес и водитель прикладывает к рулевому колесу небольшое усилие.


На автомобилях, особенно у тех, где давление воздуха в шинах невелико, возникает боковой увод. Боковой увод возникает в основном под действием поперечной силы, вызывающей боковой прогиб шины; при этом колеса катятся не по прямой, а смещаются в сторону под действием поперечной силы (см. рисунок).

Оба колеса передней оси имеют одинаковый угол увода. При уводе колес меняется радиус поворота, который увеличивается, уменьшая поворачиваемость автомобиля, а устойчивость движения при этом не изменяется.

При уводе колес задней оси радиус поворота уменьшается, особенно это заметно, если угол увода задних колес больше, чем у передних, стабильность движения нарушается, автомобиль начинает «рыскать» и водителю все время приходится подправлять направление движения. Для уменьшения влияния увода на управляемость автомобиля давление воздуха в шинах передних колес должно быть несколько меньше, чем у задних. Увод колес будет тем больше, чем большей будет боковая сила, действующая на автомобиль, например, на крутом повороте, где возникают большие центробежные силы.

Занос автомобиля

Заносом называется боковое скольжение задних колес при продолжающемся поступательном движении автомобиля. Иногда занос может привести к повороту автомобиля вокруг своей вертикальной оси.

Занос может возникать в результате ряда причин. Если резко повернуть управляемые колеса, то может оказаться, что инерционные силы станут больше, чем сила сцепления колес с дорогой, особенно часто это случается на скользких дорогах.


При неодинаковых тяговых или тормозных силах, приложенных на колеса правой и левой сторон, действующих в продольном направлении, возникает поворачивающий момент, приводящий к заносу. Непосредственной причиной заноса при торможении являются неодинаковые тормозные силы на колесах одной оси, неодинаковое сцепление колес правой или левой стороны с дорогой или неправильное размещение груза относительно продольной оси автомобиля. Причиной заноса автомобиля на повороте может быть также торможение его, так как при этом к поперечной силе добавляется продольная сила и их сумма может превысить силу сцепления, препятствующую заносу (см. рисунок).

Чтобы предотвратить начавшийся занос автомобиля, необходимо: прекратить торможение, не выключая сцепление (на автомобилях с МКПП); повернуть колеса в сторону заноса.

Эти приемы выполняют сразу же, как только начался занос. После прекращения заноса нужно выровнять колеса, чтобы занос не начался в другом направлении.

Чаще всего занос получается при резком торможении на мокрой или обледенелой дороге, особенно быстро нарастает занос на большой скорости, поэтому при скользкой или обледенелой дороге и на поворотах нужно уменьшать скорость, не применяя торможение.

Проходимость автомобиля

Проходимостью автомобиля называется его способность двигаться по плохим дорогам и в условиях бездорожья, а также преодолевать различные препятствия, встречающиеся на пути. Проходимость определяется:

  • способностью преодолевать сопротивление качению, используя тяговые силы на колесах;
  • габаритными размерами транспортного средства;
  • способностью автомобиля преодолевать препятствия, встречающиеся на дороге.

Основным фактором, характеризующим проходимость, является соотношение между наибольшей тяговой силой, используемой на ведущих колесах, и силой сопротивления движению. В большинстве случаев проходимость автомобиля ограничивается недостаточной силой сцепления колес с дорогой и в связи с этим невозможностью использовать максимальную тяговую силу. Для оценки проходимости автомобиля по грунту пользуются коэффициентом сцепного веса, определяемым делением веса, приходящегося на ведущие колеса, на общий вес автомобиля. Наибольшую проходимость имеют автомобили, у которых все колеса являются ведущими. В случае применения прицепов, увеличивающих общий вес, но не изменяющих сцепной вес, проходимость резко снижается.

На величину сцепления ведущих колес с дорогой значительное влияние оказывает удельное давление шин на дорогу и рисунок протектора. Удельное давление определяется давлением веса, приходящегося на колесо, на площадь отпечатка шины. На рыхлых грунтах проходимость автомобиля будет лучше, если удельное давление будет меньше. На твердых и скользких дорогах проходимость улучшается при большем удельном давлении. Шина с крупным рисунком протектора на мягких грунтах будет иметь отпечаток большей площади и имеет меньшее удельное давление, а на твердых грунтах отпечаток этой шины будет меньшей площади и удельное давление увеличивается.

Проходимость автомобиля по габаритным размерам определяется по:

  • продольному радиусу проходимости;
  • поперечному радиусу проходимости;
  • наименьшему расстоянию между низшими точками автомобиля и дорогой;
  • переднему и заднему углу проходимости (углы въезда и съезда);
  • радиусу поворотов горизонтальной проходимости;
  • габаритным размерам автомобиля;
  • высоте центра тяжести автомобиля.

По какой-то особой причине в мире большое внимание уделяется именно скорости разгона автомобиля с 0 до 100 км/час (в США с 0 до 60 миль в час). Эксперты, инженеры, любители спортивных автомобилей а также и простые автолюбители с какой-то одержимостью постоянно следят за технической характеристикой автомобилей, которая как правило раскрывает динамику разгона автомобиля с 0 до 100 км/час. Причем весь этот интерес наблюдается не только к спортивным автомобилям для которых динамика разгона с места является очень важным значением, но и к совсем обычным автомобилям эконом-класса.

В наши дни наибольший интерес к динамике разгона направлен на электрические современные автомобили, которые начали потихоньку вытеснять из авто ниши спортивные суперкары с их невероятной скоростью разгона. Вот например, еще несколько лет назад казалось просто фантастикой, что автомобиль может разгоняться до 100 км/час чуть-более чем за 2 секунды. Но сегодня некоторые современные уже вплотную приблизились к этому показателю.

Это естественно заставляет задуматься: А какая скорость разгона автомобиля с 0 до 100 км/час опасна для здоровья самого человека? Ведь чем быстрее разгоняется автомобиль, тем больше нагрузки испытывает водитель, что находится (сидит) за рулем.

Согласитесь с нами, что человеческий организм имеет свои определенные пределы и не может выдержать бесконечные нарастающие нагрузки, которые действуют и оказывают на него при быстром разгоне транспортного средства, определенное воздействие. Давайте вместе с нами узнаем, а какой предельный разгон автомобиля может теоретически ну и практически выдержать человек.


Ускорение, как все мы наверно знаем, это простое изменение скорости движения тела за единицу взятого времени. Ускорение любого объекта находящегося на земле зависит, как правило, от силы тяжести. Сила тяжести - это сила, действующая на любое материальное тело, которое находится вблизи к поверхности земли. Сила тяжести на поверхности земли складывается из гравитации и центробежной силы инерции, которая возникает из-за вращения нашей планеты.

Если мы хотим быть совсем уж точными, то перегрузка человека в 1g сидящего за рулем автомобиля образуется при ускорении машины с 0 до 100 км/час за 2,83254504 секунды.


И так, мы знаем, что при перегрузке в 1g человек не испытывает на себе ни каких проблем. Например, серийный автомобиль Tesla Model S (дорогая спецверсия) с 0 до 100 км/час может разгоняться за 2,5 секунды (согласно спецификации). Соответственно, водитель находящийся за рулем этого автомобиля при разгоне будет испытывать перегрузку в 1.13g .

Это уже как мы видим, больше чем перегрузка, которая испытывается человеком в обычной жизни и которая возникает из-за гравитации а также из-за движения планеты в пространстве. Но это совсем немного и перегрузка не представляет для человека никакой опасности. Но, если мы сядем за руль мощного драгстера (спортивного автомобиля), то картина здесь уже получается совершенно иная, так как мы с вами наблюдаем уже иные цифры перегрузки.

Например, самый быстрый может разгоняться с 0 до 100 км/час всего за 0,4 секунды. В итоге получается, что это ускорение вызывает перегрузку внутри машины в 7.08g . Это уже, как вы видите, немало. За рулем такого сумасшедшего транспорта вы будете чувствовать себя не очень-то комфортно, и все из-за того, что ваш вес увеличится по сравнению с прежним почти в семь раз. Но не смотря на такое не очень-то комфортное состояние при такой динамике разгона, эта (данная) перегрузка не способна вас убить.

Так как же тогда автомобиль должен разогнаться, чтобы убить человека (водителя)? На самом деле ответить однозначно на такой вопрос нельзя. Дело тут в следующем. Каждый организм у любого человека сугубо индивидуален и естественно, что последствия воздействия на человека определенных сил будут тоже совершенно разными. Для кого-то перегрузка в 4-6g даже на несколько секунд уже будет (является) критичной. Такая перегрузка может привести к потере сознания и даже к гибели этого человека. Но обычно подобная перегрузка для многих категорий людей не опасна. Известны случаи, когда перегрузка в 100g позволяла человеку выжить. Но правда, это очень большая редкость.

  • Изучая различные движения, можно выделить один сравнительно простой и распространенный вид движения - движение с постоянным ускорением. Дадим определение и точное описание этого движения. Впервые движение с постоянным ускорением открыл Галилей.

Простой случай неравномерного движения - это движение с постоянным ускорением, при котором модуль и направление ускорения не меняются со временем. Оно может быть прямолинейным и криволинейным. Приблизительно с постоянным ускорением движется автобус или поезд при отправлении в путь или при торможении, скользящая по льду шайба и т. д. Все тела под влиянием притяжения к Земле падают вблизи ее поверхности с постоянным ускорением, если сопротивлением воздуха можно пренебречь. Об этом пойдет речь в дальнейшем. Мы будем изучать в основном именно движение с постоянным ускорением.

При движении с постоянным ускорением вектор скорости за любые равные интервалы времени изменяется одинаково. Если уменьшить интервал времени в два раза, то и модуль вектора изменения скорости также уменьшится в два раза. Ведь за первую половину интервала скорость изменяется точно так же, как и за вторую. При этом направление вектора изменения скорости остается неизменным. Отношение изменения скорости к интервалу времени будет одним и тем же для любого промежутка времени. Поэтому выражение для ускорения можно записать так:

Поясним сказанное рисунком. Пусть траектория криволинейна, ускорение постоянно и направлено вниз. Тогда и векторы изменения скорости за равные интервалы времени, например за каждую секунду, будут направлены вниз. Найдем изменения скорости за последовательные интервалы времени, равные 1 с. Для этого отложим из одной точки А скорости 0 , 1 , 2 , 3 и т. д., которые приобретает тело через 1 с, и произведем вычитания начальной скорости из конечной. Так как = const, то все векторы приращения скорости за каждую секунду лежат на одной вертикали и имеют одинаковые модули (рис 1.48), т. е. модуль вектора изменения скорости A возрастает равномерно.

Рис. 1.48

Если ускорение постоянно, то его можно понимать как изменение скорости в единицу времени. Это позволяет установить единицы для модуля ускорения и его проекций. Запишем выражение для модуля ускорения:

Отсюда следует, что

Следовательно, за единицу ускорения принимается постоянное ускорение движения тела (точки), при котором за единицу времени модуль скорости изменяется на единицу скорости:

Эти единицы ускорения читаются так: один метр на секунду в квадрате и один сантиметр на секунду в квадрате.

Единица ускорения 1 м/с 2 - это такое постоянное ускорение, при котором модуль изменения скорости за каждую секунду равен 1 м/с.

Если ускорение точки непостоянно и в какое-либо мгновение становится равным 1 м/с 2 , то это не означает, что за секунду модуль приращения скорости равен 1 м/с. В данном случае значение 1 м/с 2 надо понимать так: если бы начиная с данного мгновения ускорение стало постоянным, то за каждую секунду модуль изменения скорости был бы равен 1 м/с.

Автомобиль «Жигули» при разгоне с места приобретает ускорение 1,5 м/с 2 , а поезд - около 0,7 м/с 2 . Падающий на землю камень движется с ускорением 9,8 м/с 2 .

Из всевозможных видов неравномерного движения мы выделили наиболее простое - движение с постоянным ускорением. Однако не существует движения со строго постоянным ускорением, как и не существует движения со строго постоянной скоростью. Все это простейшие модели реальных движений.

Выполните упражнения

  1. Точка движется по криволинейной траектории с ускорением, модуль которого постоянен и равен 2 м/с 2 . Означает ли это, что за 1 с модуль скорости точки изменяется на 2 м/с?
  2. Точка движется с переменным ускорением, модуль которого в некоторый момент времени равен 3 м/с 2 . Как истолковать это значение ускорения движущейся точки?

Красный свет светофора сменился желтым, затем зеленым. С напряженным ревом срываются с места машины, затем звук двигателей на мгновение стихает - это водители отпустили педаль подачи топлива и переключают передачи, снова разгон, снова момент затишья и опять разгон. Только метров через 100 после перекрестка поток машин как бы успокаивается и плавно катит до следующего светофора. Лишь один старый автомобиль «Москвич» прошел перекресток ровно и бесшумно. На рисунке видно, как он обогнал все автомобили и вырвался далеко вперед. Этот автомобиль подъехал к перекрестку как раз в тот момент, когда зажегся зеленый сигнал светофора, водителю не пришлось тормозить и останавливать машину, не пришлось после этого снова брать разгон. Как же получается, что один автомобиль (да еще маломощный «Москвич» старого выпуска) легко, без напряжения движется со скоростью около 50 км/час, в то время как другие с явным напряжением постепенно набирают скорость и достигают скорости 50 км/час далеко после перекрестка, когда «Москвич» уже приближается к следующему светофору? Очевидно, что для равномерного движения требуется значительно меньше усилий и расхода мощности, чем при разгоне или, как говорят, при ускоренном движении.

Рис. Сравнительно слабый автомобиль может обогнать более мощные, если он подходит к перекрестку в момент включения зеленого света и не затрачивает усилий на трогание с места и разгон.

Но прежде чем изучать разгон автомобиля, нужно вспомнить некоторые понятия.

Ускорение автомобиля

Если автомобиль проходит в каждую секунду одинаковое число метров, движение называется равномерным или установившимся. Если пройденный автомобилем путь в каждую секунду (скорость) изменяется, движение называется:

  • при увеличении скорости - ускоренным
  • при уменьшении скорости - замедленным

Приращение скорости в единицу времени называют ускорением , уменьшение скорости в единицу времени - отрицательным ускорением , или замедлением.

Ускорение измеряют приростом или убыванием скорости (в метрах в секунду) за 1 сек. Если за секунду скорость увеличивается на 3 м/сек, ускорение равно 3 м/сек в секунду или 3 м/сек/сек или 3 м/сек2.

Ускорение обозначают буквой j.

Ускорение, равное 9,81 м/сек2 (или округленно, 10 м/сек2), соответствует ускорению, которое, как известно из опыта, имеет свободно падающее тело (без учета сопротивления воздуха), и называется ускорением силы тяжести. Его обозначают буквой g.

Разгон автомобиля

Разгон автомобиля обычно изображают графически. На горизонтальной оси графика откладывают путь, а на вертикальной - скорость и наносят точки, соответствующие каждому пройденному отрезку пути. Вместо скорости на вертикальной шкале можно откладывать время разгона, как это показано на графике разгона отечественных автомобилей.

Рис. График пути разгона.

График разгона представляет собой кривую с постепенно убывающим углом наклона. Уступы кривой соответствуют моментам переключения передач, когда ускорение на какой-то момент падает, однако их часто не показывают.

Инерция

Автомобиль не может с места развить сразу большую скорость, потому что ему приходится преодолевать не только силы сопротивления движению, но и инерцию.

Инерция - это свойство тела сохранять состояние покоя или состояние равномерного движения. Из механики известно, что неподвижное тело может быть приведено в движение (или скорость движущегося тела изменена) только под действием внешней силы. Преодолевая действие инерции, внешняя сила изменяет скорость тела, иначе говоря, придает ему ускорение. Величина ускорения пропорциональна величине силы. Чем больше масса тела, тем большей должна быть сила для придания этому телу нужного ускорения. Масса - это величина, пропорциональная количеству вещества в теле; масса т равна весу тела G, деленному на ускорение силы тяжести g (9,81 м/сек2):

m = G / 9,81, кг/(м/сек2)

Масса автомобиля сопротивляется разгону с силой Pj, эту силу называют силой инерции. Чтобы разгон мог произойти, на ведущих колесах нужно создать дополнительно силу тяги, равную силе инерции. Значит, сила, необходимая для преодоления инерции тела и для придания телу определенного ускорения j, оказывается пропорциональной массе тела и ускорению. Эта сила равна:

Pj = mj = Gj / 9,81, кг

Для ускоренного движения автомобиля требуется дополнительная затрата мощности:

Nj = Pj*Va / 75 = Gj*Va / 270*9,81 = Gj*Va / 2650, л.с.

Для точности расчетов в уравнения (31) и (32) следует включить множитель б («дельта») - коэффициент вращающихся масс, учитывающий влияние вращающихся масс автомобиля (особенно маховика двигателя и колес) на разгон. Тогда:

Nj = Gj*Va*б / 2650, л.с.

Рис. Графики времени разгона отечественных автомобилей.

Влияние вращающихся масс заключается в том, что, кроме преодоления инерции массы автомобиля, необходимо «раскрутить» маховик, колеса и другие вращающиеся части машины, затратив на это часть мощности двигателя. Величину коэффициента б можно считать приблизительно равной:

б = 1,03 + 0,05*ik^2

где ik - передаточное число в коробке передач.

Теперь, взяв для примера автомобиль с полным весом 2000 кг, нетрудно сравнить силы, необходимые для поддержания движения этого автомобиля по асфальту со скоростью 50 км/час (пока без учета сопротивления воздуха) и для трогания его с места с ускорением около 2,5 м/сек2, обычным для современных легковых автомобилей.

Согласно уравнению:

Pf = 2000*0,015 = 30, кг

Для преодоления сопротивления инерции на высшей передаче (ik = 1) потребуется сила:

Pj = 2000*2,5*1,1 / 9,81 = 560, кг

Такой силы на высшей передаче автомобиль не может развить, нужно включить первую передачу (с передаточным числом ik = 3).

Тогда получим:

Pj = 2000*2,5*1,5 / 9,81 = 760, кг

что для современных легковых автомобилей вполне возможно.

Итак, сила, необходимая для трогания с места, оказывается в 25 раз больше силы, необходимой для поддержания движения с постоянной скоростью 50 км/час.

Чтобы обеспечить быстрый разгон автомобиля, требуется устанавливать двигатель большой мощности. При движении с постоянной скоростью (кроме максимальной) двигатель работает не в полную мощность.

Из сказанного выше понятно, почему при трогании с места нужно включать низшую передачу. Попутно отметим, что на грузовых автомобилях обычно следует начинать разгон на второй передаче. Дело в том, что на первой передаче (ik примерно равно 7.) очень велико влияние вращающихся масс и тяговой силы не хватит, чтобы сообщить автомобилю большое ускорение; разгон получится очень медленным.

На сухой дороге при коэффициенте сцепления ф, равном около 0,7, трогание с места на низшей передаче не вызывает никаких затруднений, так как сила сцепления все еще превышает тяговую силу. Но на скользкой дороге может часто оказаться, что тяговая сила на низшей передаче больше силы сцепления (особенно при ненагруженном автомобиле), и колеса начинают буксовать. Из этого положения есть два выхода:

  1. уменьшить силу тяги троганием с места при малой подаче топлива или на второй передаче (для грузовых автомобилей - на третьей);
  2. увеличить коэффициент сцепления, т. е. подсыпать под ведущие колеса песок, подложить ветки, доски, тряпки, надеть на колеса цепи и т. д.

При разгоне особенно сказывается разгрузка передних колес и дополнительная нагрузка задних. Можно наблюдать, как в момент трогания с места автомобиль заметно, а иногда и очень резко «приседает» на задние колеса. Это перераспределение нагрузки происходит и при равномерном движении автомобиля. Оно объясняется противодействием вращающему моменту. Зубья ведущей шестерни главной передачи давят на зубья ведомой (коронной) и как бы прижимают заднюю ось к земле; при этом возникает реакция, отталкивающая ведущую шестерню вверх; происходит небольшое поворачивание всего заднего моста в направлении, обратном направлению вращения колес. Закрепленные на картере моста рессоры своими концами приподнимают переднюю часть рамы или кузова и опускают заднюю. Между прочим отметим, что именно вследствие разгрузки передних колес их легче повернуть во время движения автомобиля с включенной передачей, чем во время движения накатом, а тем более чем на стоянке. Это знает каждый водитель. Однако вернемся к дополнительно нагруженным задним колесам.

Дополнительная, прибавочная нагрузка на задние колеса Zd от передаваемого момента тем больше, чем больше момент Мк, подведенный к колесу и чем короче колесная база автомобиля L (в м):

Естественно, что эта нагрузка особенно велика при движении на низших передачах, так как подводимый к колесам момент увеличен. Так, на автомобиле ГАЗ-51 дополнительная нагрузка на первой передаче равна:

Zd = 316/3,3 = 96, кг

Во время трогания с места и разгона на автомобиль действует сила инерции Pj, приложенная в центре тяжести автомобиля и направленная назад, т. е. в сторону, обратную ускорению. Так как сила Pj приложена на высоте hg от плоскости дороги, она будет стремиться как бы опрокинуть автомобиль вокруг задних колес. При этом нагрузка на задние колеса увеличится, а на передние - уменьшится на величину:

Рис. При передаче усилий от двигателя нагрузка на задние колеса увеличивается, а на передние - уменьшается.

Таким образом, при трогании с места на задние колеса и шины приходится нагрузка от веса автомобиля, от передаваемого увеличенного вращающего момента и от силы инерции. Эта нагрузка действует на подшипники заднего моста и главным образом на шины задних колес. Чтобы сберечь их, нужно троганье с места осуществлять как можно более плавно. Следует напомнить, что на подъеме задние колеса еще более нагружены. На крутом подъеме при трогании с места, да еще при высоком расположении центра тяжести автомобиля, может создаться такая разгрузка передних колес и перегрузка задних, которая приведет к повреждению шин и даже к опрокидыванию автомобиля назад.

Рис. Кроме нагрузки от тягового усилия, при разгоне на задние колеса действует дополнительная сила от инерции массы автомобиля.

Автомобиль двигается с ускорением, и скорость движения его увеличивается, пока тяговая сила больше силы сопротивления движению. С увеличением скорости сопротивление движению возрастает; когда установится равенство тяговой силы и сопротивления, автомобиль приобретает равномерное движение, скорость которого зависит от величины нажима на педаль подачи топлива. Если водитель до отказа нажимает на педаль подачи топлива, эта скорость равномерного движения является одновременно и наибольшей скоростью автомобиля.

Работа по преодолению сил сопротивления качению и воздуха не создает запаса энергии - энергия расходуется на борьбу с этими силами. Работа по преодолению сил инерции при разгоне автомобиля переходит в энергию движения. Эту энергию называют кинетической энергией. Создающийся при этом запас энергии можно использовать, если после некоторого разгона отсоединить ведущие колеса от двигателя, установить рычаг переключения коробки передач в нейтральное положение, т. е. дать возможность автомобилю двигаться по инерции, накатом. Движение накатом происходит до тех пор, пока запас энергии не израсходуется на преодоление сил сопротивления движению. Уместно напомнить, что на одном и том же отрезке пути расход энергии на разгон гораздо больше расхода на преодоление сил сопротивления движению. Поэтому за счет накопленной энергии путь наката может быть в несколько раз больше пути разгона. Так, путь наката со скорости 50 км/час равен для автомобиля «Победа» около 450 м, для автомобиля ГАЗ-51 - около 720 м, в то время как путь разгона до этой скорости равен соответственно 150-200 м и 250-300 м Если водитель не стремится ехать на автомобиле с очень большой скоростью, он может значительную часть пути вести автомобиль «накатом» и экономить таким образом энергию и, тем самым, топливо.