Проецирование бортовой и дорожной информации на лобовом стекле автомобиля. Проекционный дисплей Голографические информационные дисплеи в автомобиле

22-дюймовый сенсорный дисплей высокого разрешения

Как Вы думаете, Как будут развиваться электронные технологии в автопромышленности? Предлагаем Вам взгляд в будущее автомобильных развлекательных систем. Что-то нам подсказывает, что будущее уже наступило.

Последние несколько лет автомобильные развлекательные системы революционно изменились. С каждым годом цифровые полностью завоюют власть в автопромышленности. Технологии будут развиваться в геометрической прогрессии. Наше интернет издание начинает публиковать серию статей, которые будут раскрывать все самые передовые электронные технологии в автомобилестроение.


Подумайте, как изменились автомобили за 10 лет? Сегодня практически во всех новых автомобилях присутствуют различные информационно-развлекательные . Многие автопроизводители начали, ставить на свои новинки . Но пока что многие они не могут похвастаться своими возможностями на уровне смартфона и планшета. Как Вы думаете почему?

Все дело в том, что пока автомобильный компьютер не может сравниться с ресурсами смартфона и планшета. Но совсем скоро автомобильная компьютерная техника сможет соперничать по производительности с современными ноутбуками.

Технические характеристики блока управления автомобилем, ни чем не уступают современным мощным планшетам

Но ресурсы оборудования это еще не значит, что все будет работать идеально, и слажено. Главное это программное обеспечение. Один из лидеров программного обеспечения автомобилей является компания QNX, являясь дочерним предприятием BlackBerry.

Стоит отметить, что компания только начала развиваться на рынке автопромышленности. Но с ней уже работают такие бренды, как , и даже , которые применяют технологии QNX.

Большие технологии в маленьком Mercedes


Дебют новой информационно-развлекательной системы QNX на выставке 2014 Consumer Electronics Show на Mercedes CLA 45 AMG

Даже при наличии технологий и возможности пока компания QNX пока что не балует большим количеством новых инноваций. Так из последних разработок это новая информационно-развлекательная система, установленная на . Этот автомобиль имеет огромный дисплей с высоким разрешением, мощный многоядерный процессор, элегантную цифровую панель и большое количество функций и приложений.

Матовый серый CLA 45 AMG вызывает трепет в душе. Но реально эта модель удивляет внутри. При первом взгляде в глаза бросается 22-дюймовый ЖК экран HD качества. Большая часть экрана занята различными приложениями. Справа отображается информация о температуре воздуха, часы, навигация аудио проигрывателя.


Экран сенсорный с идеальным откликом. Как на iPhone. Управление пальцами на экране точно такое же, как в привычных всем современных смартфонах. Также система предоставляет возможность управлять многими функциями не только с помощью экрана, но и с помощью традиционных кнопок. Начальный экран представлен пятью большими кнопками, которые при нажатии увеличиваются, предлагая Вам выбрать дальнейшие действия.

QNX разработала большое количество приложений для многих марок автомобилей. Так компания создала три разных приложения спутниковой навигации, которые при демонстрации показывают отличную работу без задержек и системных сбоев.

Всем этим управляет четырехядерный процессор и специальный графический чипсет, который в работе ни чем не уступает последним моделям планшетов. Стоит отметить, что этот чипсет был выпущен в этом году, в отличие от , где видеокарта для ЖК монитора была выпущен еще в 2012 году.


Визуализация и качество изображения дисплея заставляет по новому взглянуть на автомобильные технологии

Даже в используется чипсет 2011 года, что по нынешним меркам устаревания компьютерной техники уже является древним.

Еще одна особенность мультимедиа на большом экране в CLA 45 AMG, это при включении музыки экран делиться пополам на две части, где с одной стороны отображается данные о проигрываемой музыке, а с другой стороны отображается общий список доступных аудио треков.

Связь


Передовая инновационная функция передачи изображения со смартфонов и планшетов на экран автомобиля

Автомобиль также имеет новую функцию MirrorLink, которая пока редко встречается в серийных автомашинах. Эта система имитирует на экране автомобиля дисплей Вашего гаджета ( , сотового телефона или планшета). Это позволяет на экране автомобиля пользоваться всеми функциями телефона. Правда, некоторые функции все-таки отключены, чтобы не отвлекать водителя. Так для отображения на дисплеи в автомобиле не доступны игры и некоторые другие развлекательные приложения.


Система самодиагностики транспортного средства

Еще одна красивая и нужная функция это система диагностики, которая в визуализированном виде отображает на большом дисплее, что происходит под капотом.

Так доступны следующие данные: уровень, охлаждающий жидкости, уровень масла, давление в шинах, количество топлива и многое другое. И все это отображается в очень красивом виде. , данные обо всех системах автомобиля в реальном времени могут передаваться через интернет на удаленный компьютер (к примеру, к мастеру в автосервис).


В панели приборов также встроен ЖК-экран, который отображает спидометр и другие цифровые данные

Специалисты QNX не просто обновили информационно-развлекательную систему. Они создали новое поколение цифровых технологий в автопромышленности. Этот дисплей в салоне может отображать прогноз погоды, маршрут, информацию, распространяемую СМИ и многое другое.

Управление голосом


Новый шаг в технологиях распознавания речи

Еще один особенный элемент это новая система распознавания речи. Подобно Siri от система не нуждается в определенных голосовых командах, которые Вы должны помнить. Вы просто говорите, а система определяет, что Вы хотите. Но, к сожалению пока люди не привыкли разговаривать со своими . Поэтому наверняка эта функция будет востребована, чтобы просто ускорить доступ, какой-либо функции, когда это действительно надо.

Также новая система от QNX улучшает качество звучания сотовой громкой связи.

Еще не закончена


QNX возможно совсем скоро появиться на многих новых автомобилях

Эта система на автомобиле Mercedes CLA 45 AMG была впервые продемонстрирована на выставке 2014 Consumer Electronics Show. Но пока, что она находится в завершающей стадии разработки. Главное чтобы эта технология пришла на серийные автомобили. После окончания разработки, многие производители наверняка захотят оснастить свои такой технологией.

По нашему мнению, в наши дни эта технология может существенно сделать любой серийный автомобиль очень дорогим. Но в перспективе себестоимость технологии будет падать, а это значит что массового появления системы от QNX на многих машинах неизбежно.

Благодаря высококачественному дисплею, многоядерному процессору с видеокартой, интуитивно понятному убавлению, эта технология обречена на успех. Это огромный шаг вперед в развитии информационно-развлекательных технологий.

И скорее всего, что мы сейчас видим в современных автомобилях, уже через несколько лет будет выглядеть не актуально.

АСУТС – автоматизированные системы управления транспортными средствами состоят из технических средств, обеспечивающих работу информационных систем (персональные компьютеры, принтеры и локальные сети) и операционных систем (набор программных средств, который начинает работать сразу после того, как включена кнопка электрического питания компьютера).

Автомобили меняются, и скорость внедрения новых технологий с каждым годом будет только увеличиваться. Многие полагают, что такая тесная интеграция интернета и автомобиля будет только усугублять и так непростое положение с безопасностью (усилится отвлекающий водителя от дороги фактор). Так же как растет скорость передачи данных в сотовых сетях, в той же пропорции скорость интернета будет расти и в автомобиле. Правда, есть в этом и свои плюсы. Можно ожидать таких услуг, как напоминание об обслуживании автомобилей с разнообразным информационным сопровождением, возможностью автоматической записи и направлением в ближайшие сервисные центры, подключение автомобиля к различным базам данных, чтобы можно было заказать номер в гостинице, и так далее. Пассажиры в перспективе могут получить больше возможностей для развлечений в дороге и т.д.

Помимо возможности доступа в сеть, автомобили имеют возможность более тесной интеграции (в более полном объеме синхронизироваться) с компьютерами и мобильными устройствами. Это наличие USB-портов в автомобиле, возможность дистанционно обновлять программное обеспечение различных систем автомобиля, не прибегая к услугам специально обученных для этого людей. Или, например, при возникновении какой-либо неисправности в автомобиле дилер может дистанционно найти причину и указать на возможные пути выхода из сложившейся ситуации или же исправить поломку, если сбой был в компьютерной системе. Данные наработки существуют реализованы в таких системах, как OnStar компании General Motors или в системе аварийного вызова Tele Aid от Mercedes-Benz.

Рисунок 2.1 – Синхронизация с устройствами автомобиля

С помощью системы OnStar есть возможность удаленно замедлять транспорт, мешая угонщикам скрыться от полиции при погоне. Данная система может вернуть украденные машины за часы, если не за минуты. Новая технология называется Remote Ignition Block (удаленная блокировка зажигания). У оператора OnStar есть возможность послать сигнал компьютеру в угнанной машине, который вызовет блокировку системы зажигания и не позволит перезапустить её. Эта возможность не только поможет властям возвратить украденные автомобили, но также и предотвратит «опасные» погони.

Голографические информационные дисплеи. Подобные системы можно увидеть у BMW или Audi. Суть в том, чтобы выводить информацию непосредственно на лобовое стекло. Например, компания General Motors уже сделала первые шаги в направлении создания и внедрения моделей, способных выводить информацию о скорости, направлении движения и другую.

Сейчас General Motors в сотрудничестве с рядом университетов приступила к разработке так называемого «умного стекла». GM рассчитывает превратить стекло в прозрачный дисплей, на который может быть выведена такая информация, как дорожная разметка, дорожные знаки или различные объекты, такие как пешеходы, которых в туман или дождь распознать на дороге бывает весьма проблематично.

Частично такая технология была показана на Light Car, где с помощью светодиодной технологией LED, автомобиль использует прозрачную заднюю дверь как проекционный экран, для видимой связи между машинами, что очень полезно для всех автомобилистов. Например, с какой силой жмет на тормоза водитель можно показать автомобилю, который едет сзади при освещении масштаба картинки на дисплее.

Система, с помощью которой автомобили будут связаны между собой и дорожной структурой в единое целое, в единую сеть, уже сейчас имеет свое название – «car-to-X communication». Сегодня несколько компаний, в числе которых Audi, приступили к ее созданию. Суть разработки в том, чтобы сделать возможным «общение» автомобиля не только с другими машинами, но и с инфраструктурой, например с веб-камерами на перекрестках, светофорами или дорожными знаками.

Зная о состоянии светофоров, загруженности улиц и дорожных условиях, автомобиль может экономить энергию, предостерегая водителя от ненужных разгонов/торможений. Автомобиль даже сможет самостоятельно резервировать место на парковке. Если автомобиль попал в экстренную ситуацию, он сможет сообщить об этом окружающим авто, чтобы другие водители могли вовремя сбавить скорость и избежать столкновения. Audi показала часть этих инноваций на примере E-tron. Говоря о технологиях, способных улучшить ситуацию с безопасностью, одну из основных задач разработчики видят в том, чтобы «удержать» нас на одной полосе или вообще на дороге в особо тяжелых случаях.

Улучшенная система запуска двигателя. Эти системы являются одним из элементов той самой эффективности использования ресурсов. Речь идет о системе автоматического запуска или остановки двигателя.

Такие решения уже сейчас можно наблюдать практически на всех гибридных автомобилях: когда он останавливается – двигатели выключаются; чтобы тронуться с места, не надо снова заводить мотор, а достаточно лишь нажать на педаль газа. А если говорить о будущем данной технологии, то она со временем может быть тесно интегрирована с системой car-to-X, дабы еще больше снизить расход топлива. Например, получив информацию о том, что на перекрестке светофор загорелся красным, автомобиль может выключить основной двигатель и продолжить движение только на электродвигателе, тем самым сэкономив немного энергии.

Автопилот или четкий круиз-контроль. Системы помощи при торможении посредством установленных на автомобиль эхолокаторов/лазеров или радаров уже стали стандартной опцией, устанавливаемой в дорогие автомобили. Но, как и другие разработки, вначале появившиеся в автомобилях верхнего ценового диапазона, эта так же скоро перекочует и в более дешевый сегмент. Этот вид технологии, который способен предотвратить столкновение с впереди идущим транспортом, может помочь в безопасности движения и пригодится в основном начинающим водителям. Если производители и дальше будут продолжать совершенствование данной технологии, а это именно так и будет, вскоре мы сможем увидеть нечто похожее на автопилот.

Мониторинг движения или «Мертвые зоны». Еще две, несомненно, нужные технологии, объединенные в одну информационную технологию, которая может помочь в улучшении ситуации с безопасностью, – это мониторинг так называемых «мертвых зон» и система предупреждения пересечения дорожной разметки. Система будет не только способна предупреждать водителя, если он без поворотника начнет перестроение на соседнюю полосу, но и воспрепятствует перестроению, если ряд будет занят другим транспортным средством.

Так называемая «слепая зона». Такие компании, как BMW, Ford, GM, Mazda и Volvo, предлагают специальные системы, которые используют встроенные в зеркала камеры или датчики, контролирующие мертвые зоны. Небольшие лампочки аварийной сигнализации, устанавливаемые рядом с зеркалами заднего вида, предупреждают водителя о нахождении автомобиля в мертвой зоне, а если никакой реакции от водителя не последовало и он начал перестроение, система принимается более активно предупреждать о помехе, издавая звуки, или, в зависимости от марки, начинается вибрация рулевого колеса. Минусом является тем, что подобные системы работают только на небольших скоростях.

Система Cross Traffic Alert: это радар, который работает на базе системы мониторинга «мертвых зон». Система способна определять движение автомобилей в перекрестном направлении во время езды задним ходом. Cross Traffic Alert умеет определять приближение авто на расстоянии 19,8 метра как с левого, так и правого бока, где установлены специальные радары. В данный момент эта функция доступна на автомобилях Ford и Lincoln.

Пересечение дорожной разметки. Несколько компаний, в числе которых Audi, BMW, Ford, Infiniti, Lexus, Mercedes-Benz, Nissan и Volvo, предлагают похожие друг на друга решения. Для работы системы используются маленькие камеры, считывающие дорожную разметку, и если водитель ее пересекает, не включив при этом поворотник, система подает предупредительный знак. В зависимости от системы это может быть звуковой или световой сигналы, вибрация руля либо небольшое натяжение ремня. Например, в Infiniti применяется автоматическое торможение с одной из сторон автомобиля, чтобы предотвратить выезд автомобиля из полосы движения.

Парковка. Многие компании уже сегодня устанавливают автоматизированные системы помощи при парковке. Действуют такие системы следующим образом: автомобиль при помощи радаров определяет, достаточно ли места, чтобы припарковаться. Далее помогает водителю выбрать правильный угол поворота руля и практически сам ставит автомобиль на парковочное место. Конечно, без помощи человека пока что не обходится, но в скором времени появятся такие системы, в которых участие человека будет совсем необязательно. Можно будет выйти из автомобиля и понаблюдать весь процесс со стороны.

Отслеживание состояния водителя: утомленный водитель может быть столь же опасен, как и водитель, севший за руль в нетрезвом состоянии (а пить та нужно в норму закона). Интегрированные в автомобиль системы слежения, которые распознают признаки усталости в движениях и реакциях водителя и предупреждают о необходимости передохнуть, доступны у нескольких автопроизводителей. Это Lexus, Mercedes-Benz, Saab и Volvo. Например, в Mercedes такая система называется Attention Assist: она сначала изучает манеру езды, в частности вращение обода рулевого колеса, включение указателей поворота и нажатия на педали, а также следит за некоторыми управляющими действиями водителя и такими внешними факторами, как боковой ветер и неровности дорожного полотна. Если Attention Assist распознает утомление водителя, она информирует его о необходимости сделать остановку, чтобы немного передохнуть. Делает Attention Assist это с помощью звукового сигнала и предупреждающего сообщения на дисплее комбинации приборов.

В автомобилях Volvo тоже присутствует похожая система, но работает она несколько по-другому. Система не контролирует поведение водителя, а оценивает перемещение автомобиля на дороге. Если что-то происходит не так, как должно, система оповещает водителя, прежде чем ситуация станет критической.

Камеры ночного видения. Благодаря системам ночного видения можно сократить случаи дорожно-транспортных происшествий в ночное время суток. В настоящее время предлагается такими компаниями, как Mercedes-Benz, BMW и Audi в модели A8. Такие системы способны помочь водителю разглядеть в темное время суток пешеходов, животных или лучше видеть дорожные знаки. В BMW для этого используется инфракрасная камера, которая передает изображение на монитор в черно-белом формате. Камера различает объекты на удалении до 300 метров. Инфракрасная система Mercedes-Benz имеет более короткий диапазон, но способна выдавать более четкое изображение, однако ее минусом является плохая работа при низких температурах.

А инженеры компании Toyota последнее время трудятся над улучшением систем ночного видения, которые могут помочь водителям увереннее ориентироваться в ночное время суток. Они представили прототип камеры, работа которой основана на алгоритмах и принципах построения изображений, открытых в ходе изучения функционирования глаз ночных жуков, пчел и моли, которые могут видеть в более широком диапазоне цветов, а также приспособлены к более полному улавливанию света, которого не так уж много в ночном мраке. Новый цифровой алгоритм обработки изображения может захватывать качественные полноцветные изображения в условиях недостаточной освещенности из перемещающегося на высоких скоростях автомобиля. Плюс к этому камера способна в автоматическом режиме адаптироваться к изменениям уровня освещенности.

Так же актуальны тепловизоры – камеры ночного видения для автомобиля.

Ford представил первые в мире ремни безопасности с надувными подушками. По словам разработчиков, данная система позволит значительно увеличить защиту пассажиров задних сидений, и в первую очередь маленьких детей, которые чаще взрослых подвержены травматизму в ДТП. Встроенная в ремень подушка безопасности надувается за 40 миллисекунд.

В последнее время практически все автопроизводители, и большие и маленькие, пытаются добиться большей эффективности, или коэффициента полезного действия, от силовых агрегатов, при этом делая ставку на новые виды топлива и двигатели, пытаясь снизить расход и увеличить средний показатель пробега на одном заряде/заправке. Уже сегодня мы можем наблюдать большое количество серийно выпускаемых электрокаров, и практически каждый автопроизводитель имеет в своем портфолио гибридный автомобиль.

Беспроводная зарядка аккумуляторов. В связи с распространением автомобилей на аккумуляторных батареях остро встает вопрос об их беспроблемной, а главное, быстрой перезарядке. Конечно, можно раскрутить удлинитель со штепселем из автомобиля и подсоединить его к обычной розетке. Но это не каждому доступно. Другой вариант, который кажется не столь фантастичным, – это индукционные зарядные устройства. К тому же технология уже проходит обкатку на более мелких устройствах, таких как плееры и мобильные телефоны. Такого рода зарядные устройства можно было бы встраивать в места для паркинга в больших магазинах, например.

Активная аэродинамика. Несмотря на то что все автопроизводители давно уже используют аэродинамические трубы, и в этом аспекте есть куда стремиться. Например, компания BMW, в своем концепт каре BMW Vision Efficient Dynamics уже успешно использует системы управления воздухозаборниками. В зависимости от условий движения и температуры наружного воздуха заслонки перед радиатором по сигналу системы открываются или закрываются. Если они закрыты, это улучшает аэродинамику и сокращает время прогрева двигателя, уменьшая тем самым расход топлива. Естественно, BMW не единственная компания, использующая данную технологию.

KERS – рекуперативное торможение. Это вид электрического торможения, при котором электроэнергия, вырабатываемая тяговыми электродвигателями, работающими в генераторном режиме, возвращается в электрическую сеть. Только в сезоне 2009 года в «Формуле-1» на некоторых болидах использовалась система рекуперации кинетической энергии (KERS). Рассчитывалось, что это подстегнёт разработки в области гибридных автомобилей и дальнейшие совершенствования данной системы.

Мир автоэлектроники развивается стремительными темпами. Каждый год появляются новые устройства, призванные повысить мощность двигателя, оптимизировать работу подвески, улучшить топливную экономичность или находящихся в салоне людей.

Некоторые электронные новинки очень быстро доказывают уместность своего присутствия в автомобиле, после чего в короткие сроки становятся стандартным атрибутом комплектации сходящих с конвейеров моделей. К таким устройствам относятся , беспроводная связь, системы круиз-контроля, и пр. Вместе с тем существуют целый класс других электронных приспособлений, которые долгие годы после изобретения продолжают считаться перспективными. Они подвергаются бесконечным совершенствованиям, отстаивают свое "место под солнцем" с помощью мнений авторитетных специалистов, даже устанавливаются на конвейерах отдельных брендов, но так и не могут похвастаться настоящей народной «любовью». В среде автомобилистов подобные устройства принято называть «автоэкзотикой». Ярким представителем группы являются системы проецирования информации на лобовом стекле.

История разработки

Первые системы проецирования данных на лобовом стекле появились в военной авиации. Практически одновременно технологию отображения информации на остеклении кабины применили советские и американские авиаконструкторы в 70-х годах прошлого столетия. В СССР система получила название ИЛС (индикация на лобовом стекле), в США - HUD (Head-Up-Display - дисплей для поднятой головы).

(кликните для увеличения картинки)

Разработка преследовала цель максимальной концентрации внимания летчика на воздушной обстановке путем устранения необходимости отвлечения взгляда на показания приборов. Инженеры General Motors "подсмотрели" идею и перенесли ее на автомобильную ниву, результатом чего в 1988 году стало появление первого проектора HUD на Oldsmobile Cutlass Supreme. Только через 14 лет аналогичное устройство появилось на другом автомобиле GM - престижном Chevrolet Corvette. В Европе пионером применения проекционных систем стала компания BMW. Работы по расширению функционала HUD сегодня проводят инженеры Volvo и Audi. Самую высокую активность в разработке нового направления проявили японцы: с 1989 года компания Nissan начала комплектовать проекционными системами отдельные модели на конвейере. Со временем и другие японские производители признали необходимость оснащения автомобилей системой HUD, поэтому сегодня почти все машины, выпускаемые ими для внутреннего рынка, имеют такую опцию.

Принцип действия и выводимая информация

Исполнительное устройство (или проектор) формирует на своем экране информационную картинку и передает ее на прозрачную пленку, расположенную на лобовом стекле. Служебную информацию проектор может получать от бортового компьютера, навигатора, формировать самостоятельно по данным GPS и пр. Большинство моделей обладают способностью воспроизводить речевую информацию или выдавать звуковые предупреждения.

(кликните, что бы увеличить)

В отличии от авиационных систем, где в поле зрения летчику может выводиться большой объем информации, автомобильные проекторы на сегодня обладают достаточно скудным набором отображаемых параметров. К их числу относятся:

  • скорость автомобиля;
  • обороты двигателя;
  • температура охлаждающей жидкости;
  • номер выбранной передачи трансмиссии;
  • напряжение бортовой сети и уровень зарядки аккумуляторной батареи;
  • показания системы контроля парковки;
  • пиктограммы контрольных ламп и данные навигатора.
Возможностью отображения всех вышеперечисленных параметров обладают только самые дорогие профессиональные устройства, которые разрабатываются непосредственно под конкретную модель автомобиля и имеют аппаратное сопряжение с бортовым компьютером. Простые съемные проекторы, обладающие слабым функционалом, в последнее время все чаще оснащаются функцией беспроводного обмена данными с мобильными устройствами (смартфонами, планшетами) и могут отображать на лобовом стекле полезную информацию, сформированную в гаджетах с помощью специальных приложений.

Актуальность разработки. Перспективы и проблемы

Определенное новаторство и рациональное зерно в попытках производителей приучить автомобилистов к простому восприятию бортовой информации с лобового стекла есть. Основная идея аналогична той, что решалась и в авиации: внимание водителя не должно отвлекаться от дорожной обстановки, и это реально повышает безопасность всех участников дорожного движения. Разработчики систем стараются повысить функционал и возможности ИЛС, обещают, что скоро изображение будет перемещаться по лобовому стеклу, следуя за направлением взгляда водителя. Для этого планируют применять портативные камеры и лазеры. А поголовная компьютеризация бортового оборудования позволяет строить достаточно сложные алгоритмы вывода большого объема информации с учетом потребностей конкретного водителя.
Но у системы проецирования есть и серьезные минусы, которые не дают ей пока приобрести статус стандартного оборудования для каждой серийной модели.
К таким недостаткам относятся высокая стоимость оригинального устройства, ограниченность выводимых параметров и зависимость качества изображения от состояния лобового стекла. Проведенные в некоторых странах исследования показали также значительное снижение внимательности у водителей старших возрастных групп при появлении на лобовом стекле информации от проектора. То есть существует большая группа водителей, которые в силу возрастного консерватизма не могут и не хотят привыкать к появлению на лобовом стекле каких-либо изображений. Если же Вы по каким то причинам не хотите или в силу обстоятельств не можете самостоятельно перегнать свой автомобиль, обратитесь в

Плазменные панели и LCD-экраны давно никого не удивляют, заняв свое место в повседневной жизни. Привычной стала и появившаяся в последние годы технология создания стереоскопического изображения с использованием 3D-очков, занявшая свою нишу и активно развивающаяся. Большинство экспертов придерживаются мнения, что дальнейшим этапом развития дисплейных технологий станет появление голографического проекционного экрана, что вполне логично, поскольку современное 3D-телевидение является промежуточным этапом на пути формирования объемного изображения, поскольку трехмерное изображение на таких экранах видно только при определенном положении головы. Голографические дисплеи можно рассматривать как следующую ступень развития 3D-технологий.

Принцип 3D-технологий

В современных кинотеатрах и TV используется 3D-технология, основывающаяся на обмане человеческого зрения посредством представления глазам незначительно отличающихся друг от друга картинок, что в итоге и создает трехмерный эффект. Оптический фокус широко применяется в 3D-технике: к примеру, иллюзия глубины и объема изображения создается при помощи поляризационных очков, которые фильтруют часть изображения для левого и правого глаза.

Недостаток технологии 3D

Минусом данной технологии является то, что объемное изображение видно только под определенным углом. Несмотря на то что в продаже имеются домашние телевизоры с эффектом 3D и без очков, смотреть их зритель может, только если будет находиться точно напротив дисплея. Объемное изображение начинает пропадать при небольшом смещении вправо или влево относительно центра экрана, что является основным недостатком всех 3D-дисплеев. Решить данную проблему должны в ближайшем будущем голографические экраны.

Псевдоголографические дисплеи

На сегодняшний день большой популярностью пользуются псевдоголографические экраны, созданные на базе полупрозрачной сетки или пленки. Панели крепятся к потолку или торговой витрине. При грамотном освещении панели незаметны для человека, и если на них проецируется изображение, то создается впечатление голограммы, сквозь которую зритель может смотреть. В сравнении с и плазмой псевдоголографические экраны обладают рядом преимуществ: ярким изображением, оригинальностью, возможностью установки в любом помещении.

Проектор, который проецирует изображение, может быть скрыт от зрителя. Преимуществами подобного оборудования являются широкие углы обзора, высокая контрастность изображения и возможность создавать голографические экраны определенного размера и формы. Дисплеи на полупрозрачной пленке используются для придания необычного эффекта и шарма помещению, оформления телевизионных студий и торговых пространств. Прозрачные панели выпускаются многими компаниями и используются в рекламных и маркетинговых целях.

Экраны Sax3D

Одними из самых популярных считаются голографические экраны Sax3D от немецкой компании, созданные с использованием технологии избирательного преломления света, благодаря чему система игнорирует любой свет в помещении за исключением луча проектора. Сам дисплей выполнен из прочного прозрачного стекла, поверх которого наносится тонкая пленка, превращающая экран в голограмму и отображающая проецируемое проектором контрастное изображение. Подобный голографический экран позволяет просматривать как цифровые снимки, так и видеоролики. По аналогичному принципу работают дисплеи Transscreen, созданные из полиэфирной пленки со специальными слоями, задерживающими идущий со стороны проектора свет.

Голографические телевизоры

Обывателей в большей степени интересуют не специализированные экраны, а решения, которые могут быть использованы в планшетных компьютерах, телевизорах и смартфонах с голографическим экраном. Стоит отметить, что в данной области за последние годы появилось большое количество оригинальных решений, несмотря на то что основная часть из них работает на усовершенствованном эффекте 3D.

Компания InnoVision на выставке CES 2011 представила публике прототип телевизора с голографическим экраном под названием HoloAd Diamond. При создании TV используется призма, преломляющая идущий от нескольких проекторов свет и создающая полноценную голограмму, которую зритель может рассматривать под разными углами. Посетители выставки и журналисты во время демонстрации смогли убедиться в том, что подобная голограмма значительно превосходит изображения, создаваемые классическими 3D-устройствами, по насыщенности и глубине цветов.

Телевизор HoloAd может воспроизводить изображения, фотографии и видеоролики в формате FLV в виде голограммы. На выставке компания представила две модели TV, основанные на аналогичном принципе: разрешение первой составляет 1280х1024 точки, вес - 95 килограмм, разрешение второй - 640х480 точек. Несмотря на то что телевизоры довольно габаритные, пользоваться ими удобно и комфортно.

Разработка технологии

Специалисты лаборатории HP, расположенной в Пало-Альто, предприняли попытки устранить извечную проблему экранов с 3D-эффектом. Для воспроизведения объемного изображения, видимого с любой точки обзора, исследователями было предложено показывать изображение с разных сторон, посылая для каждого глаза зрителя отдельную картинку. Подобная технология подразумевает использование системы с лазерными установками и вращающимися зеркалами, однако калифорнийские ученые прибегли к комплектующим обычной жидкокристаллической панели, нанеся на внутреннюю поверхность стекла экрана большое количество канавок круглой формы. В результате это позволило преломить свет таким образом, чтобы создать перед зрителем трехмерную голограмму. Экран, созданный специалистами HP, демонстрирует зрителям статическое трехмерное изображение, проецируемое с двухсот точек, а динамичную картинку - с шестидесяти четырех.

Телефон с голографическим экраном

Сравнительно недавно наконец-то состоялось ожидаемое многими событие - был официально представлен смартфон с голографическим дисплеем. Используемая в телефоне Red Hydrogen One технология отображения отличается дороговизной, однако в ближайшем будущем будет использоваться на многих мобильных устройствах.

Компания Red в основном специализируется на производстве профессиональных цифровых кинокамер, однако теперь она обратила внимание на новую отрасль, разработав и представив смартфон с голографическим экраном Red Hydrogen One.

Дисплей телефона

Специалисты компании Red заявили, что экран, установленный на смартфон, представляет собой водородный голографический дисплей, позволяющий мгновенно переключаться между 2D-контентом, 3D-контентом и голографическим содержимым приложения Red Hydrogen 4-View. Несмотря на то что точных сведений о принципе данной технологии так и не было опубликовано, смартфон позволяет просматривать все голограммы без использования специальных очков или дополнительных аксессуаров.

Демонстрация смартфона Red с голографическим экраном прошла в июне 2017 года, однако никаких подробностей производителем до сих пор не было разглашено. Впрочем, есть несколько счастливчиков-блогеров, которым удалось подержать в руках два прототипа смартфона: один - нефункциональный макет, демонстрирующий отделку и внешний вид телефона, второй - рабочий аппарат, который компания все еще держит в секрете.

Запустить софт для моделирования и вывести полноразмерную модель для редактирования в пространстве. Включить коммуникатор и побеседовать не с плоским изображением собеседника на видеозвонке, а с его объемной проекцией, через которую просвечивает любимый ковер. Отодвинуть штору и увидеть на оконном стекле прогноз погоды, ситуацию с пробками, и вообще - как оно там. Завести двигатель автомобиля и получать на участке лобового стекла дополнительные оповещения о дорожной разметке, возможных опасностях и иных важных сведениях.

Если раньше все это было уделом научных фантастов, то сейчас подобное перешло из разряда “Фантастика” в разряд “Ближайшее будущее”. О том, как современные ученые приближают век голографии, с чего все начиналось и какие трудности развития голографические технологии испытывают на данный момент, мы постараемся рассказать в этом посте.

Как создаются голографические изображения

Человеческий глаз видит физические объекты, так как от них отражается свет. Построение голографического изображения основано именно на этом принципе – создается пучок отраженного света, полностью идентичный тому, который отражался бы от физического объекта. Человек, смотря на этот пучок, видит тот же самый объект (даже если смотрит на него под разными углами).

Голограммы же более высокого разрешения - это статические рисунки, “холст” которых - фотополимер, а “кисть” - лазерный луч, который разово меняет структуру фотополимерных материалов. В итоге обработанный таким образом фотополимер создает голографическое изображение (на плоскость голограммы падает свет, фотополимер создает его тонкую интерференционную картину).

К слову, про саму интерференцию. Она возникает в случае, если в определенном пространстве складывается ряд электромагнитных волн, у которых совпадают частоты, причем с довольно высокой степенью. Уже в процессе записи голограммы в конкретной области складывают две волны – первая, опорная, исходит непосредственно от источника, вторая, объектная – отражается от объекта. Фотопластину с чувствительным материалом размещают в этой же области, и на ней возникает картина полос потемнения, соответствующих распределению электромагнитной энергии (интерференционная картина). Затем пластину освещают волной, близкой по характеристикам к опорной, и пластина преобразует эту волну в близкую к объектной.

В итоге получается, что наблюдатель видит примерно такой же свет, который отражался бы от изначального объекта записи.

Краткая историческая справка

Шел 1947-й год. Индия получила независимость от Британии, Аргентина предоставила избирательные права женщинам, Михаил Тимофеевич Калашников создал свой знаменитый автомат, Джон Бардин и Уолтер Браттейномиз проводят эксперимент, позволивший создать первый в мире действующий биполярный транзистор, начинается производство фотоаппаратов Polaroid.

А Деннис Габор получает первую в мире голограмму.

Вообще, Деннис пытался повысить разрешающую способность электронных микроскопов той эпохи, но в ходе направленного на это эксперимента получил голограмму.

Увы, Габор, как и многие умы, немного опередил свое время, и у него просто не было нужных технологий, чтобы получать голограммы хорошего качества (без когерентного источника света этого сделать невозможно, а первый лазер на кристалле искусственного рубина Теодор Мейман продемонстрирует лишь 13 лет спустя).

А вот после 1960-го (красный рубиновый лазер с длиной волны 694 нм, импульсный, и гелий-неоновый, 633 нм, непрерывный) дело пошло куда бодрее.

1962 . Эммет Лейт и Юрис Упатниекс, Мичиганский Технологический Институт. Создание классической схемы записи голограмм. Записывались пропускающие голограммы – в процессе восстановления голограммы свет пропускали через фотопластину, но некоторая часть света отражается от пластины и тоже создает изображение, которое видно с противоположной стороны.

1967 . Первый голографический портрет записывают при помощи рубинового лазера.

1968 . Совершенствуются и сами фотоматериалы, благодаря чему Юрий Николаевич Денисюк разрабатывает собственную схему записи и получает высококачественные голограммы (восстанавливали изображение путем отражения белого света). Все проходит вполне неплохо, настолько, что схема записи получает название “Схема Денисюка”, а голограммы - “Голограммы Денисюка”.

1977 . Мультиплексная голограмма Ллойда Кросса, состоящая из нескольких десятков ракурсов, каждый из которых можно увидеть только под одним углом.

Плюсы - размеры объекта, которые требуется записать, не ограничиваются длиной волны лазера или размером фотопластины. Можно создать голограмму предмета, которого не существует (то есть просто нарисовав придуманный предмет в сразу нескольких ракурсах).

Минусы - отсутствие вертикального параллакса, рассмотреть такую голограмму можно только по горизонтальной оси, но не сверху или снизу.

1986 . Абрахам Секе осознает, что нет предела совершенству, и предлагает создать источник когерентного излучения в приповерхностной области с помощью рентгеновского излучения. Пространственное разрешение в голографии всегда зависит от размеров источника излучения и его удаленности от предмета – это дало возможность восстановить в реальном пространстве атомы, которые окружали эмиттер.

Сейчас

Сегодня некоторые прототипы голографических видеодисплеев работают примерно так же, как и современные ЖК-мониторы: особым образом рассеивают свет, формируя псевдо-3D, а не создают интерференционную картину. С чем связан и главный минус такого подхода - нормально оценить такую картинку сможет только один человек, сидящих под правильным углом к монитору. Все остальные зрители будут не так впечатлены.

Конечно же, любители научной фантастики и новых технологий спят и видят, как голографические дисплеи станут такой же привычной вещью, как wifi дома или фотокамера в смартфоне, сравнимая с не самой плохой мыльницей. И хотя идеальная голограмма в понимании большинства - это на самом деле не сегодня и не завтра, разработки на эту тему уже активно ведутся.

Институт науки и передовых исследований, Корея. Рабочий прототип нового 3D-голографического дисплея, ТТХ которого примерно в пару тысяч раз лучше , чем у существующих аналогов.

Слабое звено таких дисплеев - матрица. Пока матрицы состоят из двухмерных пикселей. Корейцы же использовали обычный (но хороший) дисплей вкупе со специальным модулятором для фронта оптического импульса. Результатом стала высококачественная голограмма, правда, небольшая - 1 кубический сантиметр.

Было время, когда считалось, что рассеивание света - это серьезное препятствие для нормального распознавания проецируемых объектов. Но как показывает наша практика, современные 3D-дисплеи можно существенно улучшить, научившись контролировать это рассеивание. Правильное рассеивание позволило увеличить и угол обзора, и общую разрешающую способность,
- отмечает профессор Йонкен Парк .

Университет Гриффита, Технологический университет Суинберна, Австралия. Голографический дисплей на основе графена.

Ученые вооружились методом Габора, упоминавшимся в самом начале этого поста, и сделали 3D-голографический дисплей высокого разрешения на основе цифрового голографического экрана, состоящего из мелких точек, отражающих свет.

Плюсы – угол обзор в 52 градуса. Для нормального восприятия картинки не нужны никакие дополнительные приблуды в виде 3D-очков и прочего.

К слову, о 52 градусах. Угол обзора тем больше, чем меньше будет использоваться пикселей. Оксид графена обрабатывают путем фоторедукции, что создает пиксель, которому под силу изгибать цвет для голокартинки.

Разработчики полагают, что подобный подход в свое время сможет положить начало революции в разработке дисплеев, особенно - на мобильных устройствах.

Бристольский университет, Великобритания. Ультразвуковая голография.

Объект создается в воздухе с помощью множества ультразвуковых излучателей, направленных на облако водяного пара, которое также создается системой. Реализация, конечно, сложнее, чем в случае с привычными экрана, но все же.

  • туман создается не просто каплями воды, а каплями специального вещества.
  • это вещество освещается специальной лампой.
  • лампа модулирует специальный свет.

В итоге получается проекция объекта, который можно не только рассмотреть со всех сторон, но и потрогать.

Частота колебаний такой интерференционной картины - от 0.4 до 500 Гц.

Одно из главных направлений деятельности, в котором разработчики предполагают полезное использование технологии - медицина. Врач сможет на основе данных медкарты и смоделированного органа “почувствовать” его. Также можно будет создавать объемные проекции каких-либо товаров на презентациях. Положительный эффект предрекают и при замене подобной технологией сенсорных дисплеев в местах массового пользования (электронные меню, терминалы, банкоматы). Как сложно и дорого будет это внедрить - само собой, уже второй вопрос.

А уж до чего могут дойти развлекательные сервисы определенной направленности - страшно (но интересно) подумать.

Ванкувер, Канада. Интерактивный голографический дисплей.

Что нужно:

  • мобильное устройство
  • HDMI или wifi
  • пожертвовать 550$ на Кикстартере вот