Предпосылки для внедрения и преимущества атд - асинхронные тяговые двигатели

Трехфазный асинхронный двигатель изобретен в конце 80-х годов XIX в. в Германии в электротехнической компании AEG инженером
русского происхождения Михаилом Осиповичем Доливо-Добровольским. Эта электрическая машина была создана как составная часть системы трехфазных электрических цепей переменного тока, получивших очень широкое распространение в электроэнергетике. В настоящее время трехфазные цепи составляют основу большинства мировых систем производства и передачи электрической энергии.
Трехфазная электрическая система состоит из трех силовых проводов — трех фаз и так называемого нулевого провода (рис. 1.1). Каждый из проводов трех фаз вместе с нулевым проводником представляет собой двухпроводную однофазную электрическую цепь переменного тока. Но переменные напряжения в этих трех однофазных цепях не синхронны, а сдвинуты друг относительно друга во времени (по фазе) строго на 1/3 периода (рис. 1.2). При таком равномерном сдвиге по фазе трех одинаковых по амплитуде фазных переменных напряжений их алгебраическая сумма всегда равна нулю.
Режим работы трехфазной электрической цепи принято характеризовать следующими основными параметрами (см. рис. 1.1):
.фазный ток—ток, протекающий по фазам A, B, C;
.фазное напряжение — напряжение между фазами A, B, C и нулевым проводом ;

Рис. 1.2. Фазные напряжения трехфазной электрической цепи

Линейное напряжение—напряжение между парами фаз A—B, B—C, C—A.
.частота напряжения и тока.
Нагрузка трехфазной электрической цепи в общем случае может быть как трехфазной (например, промышленные электрические машины), так и однофазной (бытовые устройства, освещение).
Трехфазные нагрузки обычно потребляют равную мощность по каждой из фаз. Поэтому фазные токи, которые протекают по фазам под действием трех одинаковых по амплитуде фазных переменных напряжений, также в сумме всегда равны нулю. Это означает, что по нулевому проводу ток не протекает. И поэтому для подключения трехфазных нагрузок к питающей трехфазной цепи нулевой провод часто не используют.
Однофазные нагрузки обычно включают между фазами и нулевым проводом. При этом суммарные мощности нагрузок по каждой
из фаз могут различаться. В этом случае сумма фазных токов трехфазной цепи уже не будет равна нулю и по нулевому проводу будет протекать ток, который зависит от разности мощностей нагрузок фаз.
Физические основы образования вращающего момента у асинхронного двигателя аналогичны традиционным двигателям постоянного тока: если проводник с электрическим током поместить в магнитное поле, на этот проводник начинает действовать сила, направленная перпендикулярно проводнику и поперечно магнитному полю (рис. 1.3).

И у асинхронного двигателя, и у двигателя постоянного тока магнитное поле создают обмотки статора. А ток, образующий вращающий момент при взаимодействии с магнитным полем, протекает по проводникам обмотки ротора.

Асинхронный двигатель отличается от двигателя постоянного тока
двумя принципиальными особенностями:
.магнитное поле статора у асинхронного двигателя—вращающееся, а не неподвижное;
.в асинхронном двигателе в обмотку ротора электрический ток поступает из внешних цепей бесконтактным трансформаторным способом, а не через скользящий контакт между щетками и коллектором.
Отсутствие скользящего электрического контакта между цепями статора и ротора у асинхронных двигателей и является основной причиной широкой популярности таких электрических машин. В целом отсутствие коллектора дает следующие важные практические преимущества:
.упрощение конструкции двигателя;
.повышение надежности двигателя;
.повышение мощности двигателя при тех же габаритах (так как коллектор и щетки в двигателе постоянного тока занимают достаточно много места, в асинхронном двигателе с теми же внешними размерами этот объем можно использовать для увеличения активной электромагнитной части, повышая тем самым мощность и вращающий момент);
.снятие жестких ограничений по рабочему напряжению (так как именно коллектор в двигателе постоянного тока часто лимитирует уровень предельного рабочего напряжения, а соответственно, и мощность).
Вращающееся магнитное поле принципиально необходимо для работы асинхронного двигателя. Только в этом случае процесс трансформации электрической энергии из обмотки статора в обмотку ротора будет формировать вращающий момент на валу двигателя.
Стационарное переменное магнитное поле статора также будет наводить ЭДС в обмотке ротора асинхронного двигателя, как в обычном трансформаторе, и ток в обмотке ротора появится. Но электромагнитная сила, действующая при этом на проводники ротора, также переменная. Она будет создавать вибрации, а не устойчивый вращающий момент определенного направления.
Вращающееся магнитное поле в асинхронном двигателе индуцирует в проводниках обмотки ротора такие токи, которые образуют электромагнитные силы, действующие всегда в одном направлении. Эти силы в сумме и образуют вращающий момент на валу двигателя независимо от того, стоит ротор двигателя на месте или вращается.
Механизм формирования вращающего момента асинхронного двигателя под действием вращающегося магнитного поля имеет две важные особенности.

Первая особенность заключается в следующем. В соответствии с фундаментальными законами электротехники существуют два вида процессов, при которых в некоем проводнике наводится ЭДС индукции:
.изменение напряженности магнитного поля, пронизывающего проводник;
.движение проводника в стабильном магнитном поле.
Иными словами, если проводник просто держать неподвижно в стабильном магнитном поле, ЭДС в этом проводнике не появляется.
Именно такая ситуация возникает в асинхронном двигателе, когда
скорость вращения ротора равна скорости вращения магнитного поля.
При таком синхронном вращении ротора и магнитного поля перемещение проводников обмотки ротора относительно магнитного поля будет отсутствовать и напряженность магнитного поля, пронизывающего каждый из проводников, всегда будет одна и та же. В таком режиме ЭДС индукции в проводниках обмотки ротора не появляется, ток в обмотке ротора не возникает и вращающий момент двигателя равен нулю.
Именно из-за этого свойства такой двигатель и получил наименование «асинхронный», потому что он развивает вращающий момент на валу, только если вращение ротора «отстает» от вращения магнитного поля.
Вторая особенность заключается в следующем. Если частота вращения ротора по каким-либо причинам становится больше частоты вращения магнитного поля, двигатель автоматически переходит в режим генераторного торможения. Это происходит вследствие того, что, когда вращение проводников обмотки ротора начинает опережать вращение магнитного поля, полярность ЭДС индукции и направление тока в этих проводниках меняются на противоположные. Соответственно меняют направление вращения на противоположное электромагнитные силы, действующие на проводники обмотки ротора.
Сформировать вращающееся магнитное поле статора можно, например, следующим образом. Если взять статор шестиполюсного двигателя постоянного тока и включать пары противоположных полюсов поочередно, то в этом статоре появится вращающееся магнитное поле (рис. 1.4).
Такой же эффект может быть достигнут, если три пары полюсов запитать от трехфазной цепи. Как было сказано выше, в такой цепи напряжения и токи фаз равномерно сдвинуты друг относительно друга по времени. Это означает, что максимального значения токи в фазах достигают поочередно. Соответственно и максимальная напряженность магнитного поля в парах магнитов на рис. 1.4 будет возникать поочередно, что эквивалентно поочередному включению пар магнитов.
Скорость вращения магнитного поля статора, показанного на рис.
1.4, зависит от того, как часто переключаются пары магнитов. При питании же от трехфазной сети скорость вращения магнитного поля статора определяется частотой тока. У статора, показанного на рис. 1.4, на
каждую фазу приходится одна пара полюсов. Это означает, что магнитное поле будет делать один полный оборот за время, равное одному пе риоду питающего тока. Например, при частоте тока обмотки статора 50 Гц скорость вращения магнитного поля в таком статоре составит 50 об/с, или 3000 об/мин.

Рис. 1.4. Формирование вращающегося магнитного поля статора двигателя с шестью полюсами
Если на статоре разместить не 6, а 12 магнитов и повторить очередность чередования фаз два раза за один полный механический оборот, то скорость вращения поля снизится в два раза и при частоте тока статора 50 Гц составит 25 об/с, или 1500 об/мин, и т. д.
В принципе, можно сделать асинхронный двигатель не только трехфазным, но и четырехфазным, пятифазным и т. д. Но это уже мало что дает в практическом смысле и заметно усложняет обмотку статора. Поэтому вместе с системой трехфазного тока классической стала конструкция именно трехфазного асинхронного двигателя.
Существуют также одно- и двухфазные асинхронные двигатели, но такие электрические машины имеют специфичные характеристки и используются только в маломощных бытовых устройствах.
Трехфазный асинхронный двигатель является электрически и магнитно симметричным по фазам. Обмотки трех фаз имеют идентичные
параметры и развивают одинаковую мощность. В этом случае, как говорилось выше, нулевой провод трехфазной питающей цепи не требуется, и поэтому статоры асинхронных двигателей, как правило, имеют только фазные выводы. При этом обмотки магнитных полюсов трех фаз обычно соединяют двумя способами: «звездой» или «треугольником» (рис. 1.5).

Рис. 1.5. Схемы соединения фазных обмоток асинхронного двигателя

Рис. 1.6. Общий вид статора асинхронного тягового двигателя
Обмотка ротора асинхронного двигателя является короткозамкнутой, так как никаких других элементов в ее цепи нет. Конечно, эта обмотка всегда имеет определенные активное сопротивление и индуктивность, как любая обмотка вообще.
В современных асинхронных двигателях статор не делают с явными полюсами, как показано на рис. 1.4. Чтобы более эффективно использовать объем, обмотку статора в асинхронном двигателе распределяют равномерно в пазах (рис. 1.6), так же как это делают на роторе коллекторного двигателя постоянного тока. Если представить статор такой машины в плоском развернутом виде,
то размещение проводников обмотки трехфазного двигателя с шестью фазными полюсами будет выглядеть, как показано на рис. 1.7. На этом рисунке обмотка каждого из полюсов условно показана размещенной в двух пазах.
Реально в асинхронном двигателе на каждый полюс обычно делают больше пазов и витков для повышения плавности распределения магнитного потока вдоль воздушного зазора между статором и ротором.

Рис. 1.7. Упрощенная развернутая схема обмотки статора асинхронного двигателя

Рис. 1.8. Общий вид ротора асинхронного тягового двигателя
Обмотку ротора асинхронного двигателя делают также в виде расположенных в пазах проводников, замкнутых между собой с торцов кольцами (рис. 1.8). Такая конструкция обмотки ротора получила название «беличья клетка». Так как все проводники обмотки ротора замкнуты между собой накоротко, изолировать проводники ротора от стального тела ротора не имеет смысла. Это дополнительно упрощает конструкцию двигателя и повышает его надежность.

Синхронные двигатели с возбуждением от постоянных магнитов, обладающие преимуществами в отношении массогабаритных показателей и потребления энергии, все чаще находят применение в тяговом приводе, хотя они требуют использования сложных систем управления и пока имеют недостаточную надежность.

За последние несколько лет от ведущих мировых поставщиков подвижного состава поступило много предложений, касающихся использования синхронных тяговых двигателей с возбуждением от постоянных магнитов (СДПМ). Такие двигатели имеют меньшие габариты и массу по сравнению с преобладавшими до сих пор на рынке трехфазными асинхронными двигателями.

СДПМ использовались, в частности, на установившем 3 апреля 2007 г. мировой рекорд скорости электропоезде AGV V150 постройки компании Alstom (рис. 1). Они находят применение на подвижном составе различного назначения (таблица) - от трамвая-поезда Citadis Dualis (рис. 2) до двухэтажного междугородного электропоезда Twindexx (рис. 3) для железных дорог Швейцарии (SBB).

Рис. 1. Высокоскоростной электропоезд AGV V150 во время рекордного пробега Рис. 2. Трамвай-поезд Citadis Dualis (фото: Alstom) Рис. 3. Электропоезд Twindexx (источник: Bombardier)

Считается, что железнодорожные компании-операторы консервативны в отношении применения новых технологий. В то же время разработчики и изготовители тягового подвижного состава заинтересованы в скорейшей реализации передовых технических решений. Если использование новых разработок способствует существенному улучшению эксплуатационных показателей, эти разработки достаточно быстро находят применение, что подтверждается опытом внедрения импульсных преобразователей для питания тяговых двигателей постоянного тока последовательного возбуждения, тяговых двигателей постоянного тока независимого возбуждения, синхронных двигателей и трехфазных асинхронных двигателей с короткозамкнутым ротором. С развитием технологий повышалась эффективность тягового привода и совершенствовалось управление им, что позволило улучшить характеристики сцепления и снизить потребление энергии.

СДПМ и электронная аппаратура управления ими представляют собой наиболее современную технологию в области тягового привода. Миллионы СДПМ благодаря своей сравнительно малой массе и хорошей управляемости уже используются в приводах гибридных автомобилей. Более крупные двигатели предоставляют такие же возможности для повышения эффективности тягового привода железнодорожного подвижного состава. Данная технология внедряется на новом подвижном составе различного назначения. Однако при этом выявились несколько существенных проблем, требующих решения.

На автомобилях с двигателями внутреннего сгорания для регулирования скорости обычно используют сложное механическое устройство - коробку передач, благодаря чему двигатель может работать в оптимальном скоростном диапазоне. Тяговые двигатели подвижного состава железных дорог должны эффективно работать во всем диапазоне скорости, обеспечивая передачу крутящего момента на колеса через одноступенчатый редуктор либо непосредственно. Такое простое в плане механического оборудования решение позволяет создать надежные системы привода, не требующие сложного технического обслуживания.

Таким образом, первое требование, предъявляемое при проектировании тяговых двигателей, - их способность обеспечивать крутящий момент или тяговое усилие в широком диапазоне скорости (от 0 до 320 км/ч).

Безусловно, важно, чтобы тяговый двигатель работал надежно. В то же время, с точки зрения машиниста и железнодорожной компании-оператора, в равной степени имеет значение точное и плавное регулирование момента во всем диапазоне скорости при помощи системы управления тяговым приводом. Надлежащее регулирование крутящего момента обеспечивает оптимальное использование сцепления между колесом и рельсом, плавное ускорение, способность поддержания постоянной скорости и возможность применения электрического торможения.

При взаимодействии колес с рельсами крутящий момент тягового двигателя преобразуется в линейную силу тяги или торможения. На рис. 4 представлен график зави-симости силы тяги от скорости, а также кривая сопротивления движению поезда. Кривая силы тяги пересекает кривую сопротивления движению в точке так называемой установившейся скорости, т. е. максимальной теоретически возможной скорости. Вблизи этой точки величина изменения силы тяги, за счет которой создается ускорение поезда (на рис. 4 обозначена красной стрелкой), невелика. На рис. 5 показаны характеристики мощности тягового привода и потребной тяговой мощности (мощность равна произведению скорости и силы тяги).

Тяговые двигатели, как правило, рассчитываются на определенный режим работы. Двигатель должен развивать требуемый момент при нулевой скорости и поддерживать его до номинальной во всей зоне 1 кривой силы тяги. Выше этой скорости тяговый двигатель развивает максимальную выходную мощность. В зоне 2 сила тяги обратно пропорциональна скорости. В зоне 3 вследствие ограничений характеристик тягового двигателя сила тяги обратно пропорциональна квадрату скорости.


Рис. 4. Тяговая характеристика и сопротивление движению
Рис. 5. Характеристики мощности

При низкой скорости крутящий момент двигателя теоретически может быть больше, чем передаваемый при взаимодействии колеса и рельса. Однако это привело бы к перегрузке двигателя, поэтому таких режимов следует избегать посредством соответствующих действий машиниста или электронной системы управления.

Ранее для управления тяговыми двигателями постоянного тока применялось регулирование напряжения посредством изменения схемы их соединения с последо-вательного на параллельное и регулирование тока с помощью пускотормозных резисторов. На современном подвижном составе для управления как коллекторными двигателями постоянного тока, так и синхронными и асинхронными двигателями переменного тока ис-пользуются электронные системы, обеспечивающие изменение напряжения или как напряжения, так и частоты. Применяемые ныне системы тягового электропривода позволяют достичь качественного управления во всем диапазоне скорости при относительно простых алгоритмах регулирования.

Регулирование СДПМ позволяет достаточно легко достичь требуемых характеристик в зоне постоянного крутящего момента, однако для регулирования в зоне постоянной мощности требуются более сложные алгоритмы.

Двигатели переменного и постоянного тока, как и СДПМ, по существу работают на основе одних и тех же физических законов. Поэтому принципы управления ими до неко-торой степени подобны. В электрических машинах всех видов крутящий момент возникает при взаимодействии двух магнитных полей. Для появления крутящего момента между векторами напряженности этих магнитных полей должен быть определенный угол, в идеальном случае равный 90 эл. град. Упомянутые поля могут быть созданы токами, про-текающими по обмоткам двигателя, или постоянными магнитами.

В настоящее время в тяговом приводе находят применение главным образом трехфазные асинхронные двигатели. Тем не менее весьма важно понимать природу и поведение магнитных полей статора и ротора электрических машин других типов.

В традиционном двигателе постоянного тока северные и южные полюса поля статора всегда ориентированы в одном и том же направлении, в то время как поле якоря (ротора) сдвинуто на 90 эл. град вследствие использования коллектора. В двигателе последовательно-го возбуждения один и тот же ток проходит как через обмотку статора, так и через обмотку ротора, тогда как в случае использования двигателя независимого возбуждения имеется возможность независимо управлять полями ротора и статора.

В традиционном трехфазном синхронном двигателе магнитное поле ротора создается током, протекающим по его обмотке, а ориентация поля определяется физическим положением обмотки ротора. Поле статора создается током, протекающим по его обмотке, и вращается со скоростью, определяемой частотой инвертора, от которого получает питание обмотка статора. Угол между полями статора и ротора увеличивается в зависимости от крутящего момента, а частоты вращения ротора и поля статора одинаковы. Когда угол становится отрицательным, двигатель переходит в тормозной режим.

В трехфазном асинхронном двигателе магнитное поле статора индуцирует в обмотке ротора ток (рис. 6), который, в свою очередь, генерирует магнитное поле. Последнее, взаимодействуя с полем статора, создает тяговый или тормозной момент. В режиме тяги частота вращения ротора ниже частоты вращения поля статора, заданной преобразователем, а в режиме торможения - выше. Крутящий момент не возникает, если частоты вращения равны. Соотношение частот вращения ротора и поля статора характеризуется величиной, на-зываемой скольжением.

В СДПМ поле ротора создается магнитами, которые либо распределены по поверхности ротора, либо размещены в его пазах (рис. 7). В последнем случае обеспечивается большая механическая прочность и меньшие потери на вихревые токи в роторе. В качестве материала для постоянных магнитов получил распространение сплав неодим-железобор (Nd2Fe14B) благодаря его оптимальным магнитным свойствам. Магнитное поле статора создается с помощью трехфазной многополюсной обмотки, размещенной в пазах шихтованного сердечника.


Рис. 6. Принцип работы асинхронного двигателя с короткозамкнутым ротором
Рис. 7. Принцип работы СДПМ

Во всех электрических машинах вращающееся магнитное поле генерирует ЭДС, противоположную по направлению питающему напряжению - так называемую противо-ЭДС. При нулевой частоте вращения она равна нулю, однако с ее ростом линейно возрастает. Для поддержания постоянной величины крутящего момента в зоне 1 (см. рис. 4 и 5) следует увеличивать напряжение питания.

Крутящий момент электрической машины представляет собой произведение магнитного потока и тока. Силовой полупроводниковый преобразователь регулирует питающее постоянное или однофазное напряжение таким образом, чтобы значения тока в обмотках двигателя находились в допустимых пределах. Наиболее современным решением является использование преобразователей на основе биполярных транзисторов с изолированным затвором (IGBT) с широтно-импульсной модуляцией.

В зоне 1, где сила тяги постоянна, напряжение (а в случае асинхронного двигателя - и частота) должно возрастать пропорционально частоте вращения двигателя, при этом значение произведения магнитного потока и тока, т. е. крутящего момента, поддерживается постоянным. При превышении номинального значения частоты вращения приложенное напряжение не может быть увеличено из-за ограничений параметров силового пре-образователя и изоляции двигателя. Однако с точки зрения механических характеристик частота вращения может быть выше.

Переход в зону 2 осуществляется посредством ослабления поля, при этом уменьшается противо-ЭДС или (для СДПМ) осуществляется противодействие ее влиянию. В двигателях постоянного тока это достигается уменьшением величины тока, протекающего через обмотку возбуждения, за счет включения параллельно ей сопротивления ослабления поля, в традиционном синхронном двигателе - путем уменьшения тока в обмотке ротора. В асинхронном двигателе ослабление поля происходит автоматически с увеличением частоты тока обмотки статора, в то время как питающее напряжение остается неизменным. В СДПМ осуществить ослабление поля сложнее, поскольку поле ротора создается постоянными магнитами.

В зоне 3 магнитный поток и ток уменьшаются быстрее, чем в зоне постоянной мощности, чтобы избежать превышения предельных электрических и механических характеристик двигателя. Например, в двигателе постоянного тока независимого возбуждения ток якоря также снижается в зависимости от скорости.

Основная причина расширения применения СДПМ в тяговом приводе - их существенные преимущества по сравнению с трехфазными асинхронными двигателями. В пределах примерно 80% рабочего диапазона КПД СДПМ больше на 1-2%, а удельная мощность - на 30-35%, вследствие чего при равной мощности габариты и масса СДПМ примерно на 25% меньше.

В асинхронном двигателе имеет место нагрев ротора вследствие наличия мощности скольжения. В СДПМ он фактически отсутствует, благодаря чему нет необходимости в охлаждении ротора. Статор СДПМ обычно полностью герметичен и имеет жидкостное охлаждение, что способствует повышению надежности двигателя. Кроме того, при использовании СДПМ возможно осуществлять электрическое торможение при низких значениях скорости, что делает принципиально возможным самоуправляемое торможение при замыкании накоротко обмоток статора. Однако достижение этих преимуществ невозможно без компромисса. Выявлены семь основных факторов, препятствующих распространению СДПМ для целей электрической тяги, хотя уже разработаны методы решения этих проблем.

Ограничения размеров и стоимости четырехквадрантного преобразователя и двигателя не позволяют использовать их во всем диапазоне скорости только путем поддержания величины питающего напряжения, настолько превышающей противо-ЭДС, чтобы величина тока была достаточна для достижения требуемого крутящего момента. Проблема может быть решена с помощью ослабления поля, благодаря чему создаются зоны постоянного момента и постоянной мощности. Поскольку регулирование поля, создаваемого постоянными магнитами, затруднительно, ослабление поля достигается подачей тока в обмотки статора. Таким образом создается поле с вектором напряженности, направленным против вектора напряженности поля, создаваемого постоянными магнитами ротора. При этом возникают потери в меди обмотки статора, что в некоторой степени снижает положительный эффект, получаемый благодаря низким потерям при использовании ротора с постоянными магнитами.

Для управления токами, создающими эффект ослабления поля, необходимо определить положение ротора с точностью до 1-2 эл. град. Для четырехполюсного двигателя требуется механическое разрешение не менее чем 1,5 эл. град. Если использовать датчики, от них требуются весьма высокие точность и надежность, чтобы обеспечить нормальную работу системы управления. Возможно управление и без применения датчиков, однако при этом может быть снижена точность регулирования.

Магнитный поток зависит от температуры, при этом напряженность поля снижается примерно на 1% при увеличении температуры ротора на 10 К. Для СДПМ, которые работают в температурном диапазоне 200 К (от -40 до +160 °С), это имеет существенное значение. Поэтому электронная система управления должна контролировать рабочую температуру и учитывать ее при формировании управляющего сигнала.

Каждый СДПМ требует индивидуального силового полупроводникового регулятора, гарантирующего подачу управляющего импульса на включение силовой цепи строго в требуемый момент времени. Впрочем, в современном тяговом при-воде все чаще используются индивидуальные системы управления каждым двигателем. Таким образом, эта проблема решается.

При значительных токах и высоких температурах может произойти необратимое размагничивание, даже если температура ротора не достигает точки Кюри между 310 и 370 °C. Однако более опасно короткое замыкание в обмотке статора, которое может привести к разрушению двигателя, поскольку создаваемое постоянными магнитами вращающееся поле продолжает индуцировать значительные токи в статоре. Здесь размагничивание может быть полезным, поскольку снижает эти токи.

Еще одна проблема связана с тем, что при работе без нагрузки (когда поезд движется в режиме выбега) вращающийся ротор двигателя с постоянными магнитами продолжает индуцировать токи в сердечнике статора. Возникающие вихревые токи наряду с эффектом гистерезиса вызывают потери в стали, что снижает КПД двигателя.

Редкоземельные металлы, используемые в СДПМ, обладают хорошими магнитными свойствами, но довольно чувствительны к механическому и тепловому воздействию. Конструкция ротора у СДПМ сложнее, чем у асинхронных двигателей. Схема управления СДПМ также сложнее в связи с наличием многократных контуров обратной связи и необходимости преобразования сигнала.

Существует достаточно много областей применения, где преимущества СДПМ безусловно преобладают над их недостатками, и это делает их привлекательными для разработчиков тягового привода. Меньшие размеры и масса имеют особое значение при ограниченности пространства — например, в случае необходимости размещения двигателя на оси колесной пары без редуктора.

Более высокий КПД и меньшие потери в роторе обеспечивают существенные преимущества СДПМ с точки зрения совершенствования эксплуатационных характеристик подвижного состава и сокращения потребления энергии (рис. 8). Это видно, в частности, на примере электропоезда V150 компании Alstom. Асинхронные двигатели устанавливаются на тележках, расположенных под кузовами моторных вагонов, тогда как СДПМ могут быть размещены на тележках под узлами сочленения, что позволяет уменьшить сложность и массу тягового привода.


Рис. 8. Электромеханическая характеристика и КПД СДПМ

СДПМ могут в перспективе получить намного более широкое применение в тяговом приводе (таблица), подобно тому, как в середине 1980-х годов завоевали популярность трех-фазные асинхронные тяговые двигатели, пришедшие на смену двигателям постоянного тока.

Примеры применения тяговых СДПМ

Оператор, страна

Подвижной состав

Изготовитель

NTV (Италия) 25 высокоскоростных поездов AGV Alstom
SBB (Швейцария) 59 двухэтажных электропоездов Twindexx Bombardier
SNCF (Франция) 31 трамвай-поезд Citadis Dualis Alstom
SNCF (Франция) Электропоезда Regiolis (рамочный контракт) Alstom
SNCF (Франция) Электропоезда Omneo (рамочный контракт) Bombardier
Прага (Чехия) Низкопольные трамвайные вагоны типа 15T Skoda
Метрополитен Токио (Япония) Электропоезда серии 16000 Kawasaki
JR East (Япония) Пригородные электропоезда серии E331 для Токио Toshiba
Опытные образцы
Метрополитен Мюн­хена (Германия) Электропоезд типа C19 с тележками Syntegra Siemens
Китай Прототип локомотива на топливных элементах CNR Yongji
Швеция Электропоезд Grona Taget Bombardier
Турция Низкопольный трамвай Citadis X04 Alstom
Япония Поезд с изменяемой шириной колеи RTRI

Железные Дороги Мира - 2011

Вентильные тяговые двигатели. Попытки использовать бесколлекторные двигатели переменного тока в электрической тяге делались еще в 30-х годах. Однако практическая возможность их применения появилась лишь после освоения промышленностью серийного выпуска силовых тиристоров и диодов, а также полупроводниковых элементов, позволяющих рационально выполнять системы управления и регулирования частоты питающего напряжения.

Вентильный тяговый двигатель по конструкции является синхронной машиной, у которой обмотка якоря расположена на статоре, а обмотка возбуждения - на роторе. Статор вентильного

двигателя (рис. 105) состоит из литого остова 7 и шихтованного из электротехнической стали Э1300 сердечника. Остов служит корпусом двигателя и внешне не отличается от остовов тяговых двигателей пульсирующего тока, а сердечник является магнитопроводом.

Сердечник 9 запрессован в остов между массивными кольцевыми боковинами 13. По наружному диаметру он стянут планками 8, приваренными к остову и к боковинам. От проворачивания сердечник удерживается шпонкой и шестью штифтами, вставленными в отверстия остова и иакладок. Для снижения потоков рассеяния и потерь между боковинами и пакетом установлены немагнитные изоляционные листы 12.

На наружной поверхности сердечника в 12 точках установлены датчики управления двигателем по положению магнитного потока. Каждый датчик имеет одну заданную и две считывающие одновит-ковые обмотки из провода ПСД диаметром 1,16 мм. Общий кабель от них выходит в коробку выводов, в которой через штепсельный разъем он соединен с устройством управления электровозом.

Пазы сердечника по его длине имеют скос на одно пазовое деление В них расположена двухслойная волновая обмотка. Корпусная изоляция ее катушек выполнена шестью слоями стеклослюди-нитовой ленты Л2С25КС 0,09 X 20 мм, наложенной вполуперекрышу. В пазах обмотка закреплена стеклопластовыми клиньями. Вывод статорной обмоткн до коробки выводов выполнен двойной шиной.

Роторы вентильных двигателей имеют различные конструктивные исполнения. На электровозе ВЛ80в-216 были установлены шестиполюсные вентильные двигатели с явнополюсным ротором.

Такое исполнение ротора технологически проще, однако в тепловом и механическом отношении материалы ротора и изоляции полюсных катушек оказались перегруженными. Связано это с тем, что м.д.с. возбуждения для вентильного двигателя с учетом реакции якоря и углов коммутации превышают м.д.с. холостого хода примерно в 1,8 раза, в то время, как в машине постоянного тока -

всего лишь в 1,2 раза Кроме того, из-за полюсных распорок ухудшался отвод тепла от катушек возбуждения.

Поскольку частоты вращения будут, по-видимому, возрастать по мере совершенствования подшипникового узла и редуктора, увеличится и теплонапряжен-ность в результате стремления вписать большую мощность в заданные габариты. Поэтому единственно возможной оказалась конструкция ротора с неявно выраженными полюсами.

В отличие от обычных синхронных машин у вентильного двигателя должна быть надежная демпферная обмотка со стержнями достаточного сечения для снижения сверхпереходного реактивного сопротивления двигателя. Стержни 15 демпферной обмотки медные, расположены равномерно по всей окружности ротора. Как показывают расчеты, такая конструкция демпферной обмотки позволяет получить сравнительно невысокие сверхпереходные индуктивные сопротивления якорной обмотки при допустимых потерях в стержнях, обусловленных процессом коммутации.

Для неявно выраженных полюсов ротора систему демпферных стержней можно расположить либо в верхней части пазов в виде крепящего обмотку возбуждения металлического клина, либо в отверстии зубцов. Первый способ технологически неудобен из-за трудности сваривания концов стержней (клиньев) на соединительных кольцах. Вторая конструкция демпферной клетки предпочтительнее, так как стержни могут быть приварены прямо к медному крайнему листу, специально выштампованному для этой цели. Преимущество такой конструкции еще и в том, что демпферная клетка может быть изготовлена на роторе до укладки обмотки возбуждения. Такую конструкцию ротора имеют вентильные восьмиполюсные двигатели НБ-601 электровоза ВЛ80в-661

Асинхронные тяговые двигатели. Максимальный вращающий момент двигателя

Мтах « С1Аи\/(2хг),

где См - постоянный коэффициент двигателя; и, - напряжение сети, х - индуктивное сопротивление.

Рис. 105. Продольный (а) и поперечный (б) разрезы тягового двигателя НБ-601 электровоза

/ - вал, 2 - роликовый подшипник, 3 - втулка якоря, 4 - подшипниковый щит; 5 - кольца; 6 - щеткодержатель; 7 - остов; 8-планки, 9- сердечник остова; 10- обмотка статора, // - сердечник ротора; 12-немагнитные прокладки (листы), 13-боковина сердечника статора, 14-букса, 15-

стержни демпферной обмотки

Асинхронный двигатель чувствителен к понижению напряжения. Например, при понижении напряжения на 10 % вращающий момент уменьшается на 19 %. В отличие от асинхронного двигателя промышленного исполнения тяговый асинхронный двигатель имеет ряд особенностей, вытекающих из условий его работы на локомотиве (питание от преобразователя частоты и фаз, вписывание значительной мощности в заданные, весьма сжатые габариты, обусловленные размерами ходовой части локомотива). На всех тяговых коллекторных двигателях электровозов с осевой вентиляцией 30 % воздуха проходит через воздушный зазор, осуществляя интенсивный отвод тепла с поверхностей якорей и полюсов.

У асинхронного тягового двигателя, чтобы уменьшить намагничивающий ток и повысить cos ф, стремятся воздушный зазор между статором и ротором выполнить по возможности минимальным по конструктивным и производственным условиям. В связи с этим у асинхронных двигателей при аксиальной независимой вентиляции не удается охладить поверхности ротора и статора, обращенные к воздушному зазору. Чтобы пропустить между статором и ротором больше охлаждающего воздуха, у тягового асинхронного двигателя используются надпазовые каналы (рис. 106, о),

через которые проходит около 30 % всего охлаждающего воздуха

Высота надпазового канала составляет (1,0 -г- 1,5) 6 пс, где Ь пс - ширина паза статора. В вентильном двигателе надпазовые каналы в статоре неприемлемы, так как они примерно на 40 % повышают индуктивное сопротивление рассеяния статора, что приводит к уменьшению вращающего момента. В асинхронном же двигателе увеличение индуктивного Сопротивления рассеяния обмотки статора не столь вредно, так как коммутация осуществляется принудительно.

В многополюсной машине активные материалы используются более эффективно, асинхронный двигатель работает с меньшими потерями, к.п.д его выше На параметры двигателя и электровоза в целом также влияют максимальное

f max И номинальное / ном Значения ЧЭСТО-

ты тока обмотки статора. Частота fmax =

Р" max/(60 + f 2), Где f2 = /CK -

частота тока ротора или скольжения, составляющая обычно 1-2 % от /тах, с достаточной точностью / тах = рп гаах/59.

Номинальная частота fH0M= pnmaJ (59к„), где kv - соотношение скоростей, обычно равный 2. Теоретически оптимальная частота fom = 100-г 150 Гц, а пределы регулирования частоты преобразователя от 1-2 до 200- 300 Гц. Однако существуют ограничения, связанные с применением подшипни-


Рис. 106 Расположение надпазовых каналов у тягового асинхронного двигателя (а) и кривые

/ - сердечник ротора, 2- обмотка ротора, 3-каиал, 4- надпазовый канал, 5 - обмотка статора,

6 - статор, 7 - текстолитовый клин


Таблица 4

Показатели Основные параметры часового режима тягового двигателя

Серия электровоза

Мощность на входе двигателя, кВт

Напряжение линейное, В

Ток фазный /фі, А

Коэффициент мощности

Частота тока, Гц

Наибольшая частота вращения.

Момент вращения на валу двигате-

Сила тяги на ободе колеса, кН

Скорость движения электровоза, км/ч

Класс изоляции

Число фаз

Число полюсов статора

Воздушный зазор, мм

Масса двигателя без зубчатой пере-

Расход охлаждающего воздуха,

*" Частота тока статора при продолжительном

режиме. *2 В

режиме я», = 890 об/мин *3 Мощ-

ность продолжительного режима Рм = 500 кВт *4 Масса меди двигателя 230 кг (623 кг у НБ-418К6); удельная масса двигателя 4,28 кг/кВт, удельная масса меди 0,255 кг/кВт, удельная масса стали 1,62 кг/кВт (0,74 у НБ-418К6) Число пазов ротора її = 80, а длина 455 мм; число пазов статора 1\ = 108, длина 465 мм. *5 Без редуктора

ков, для которых максимальная частота вращения п шах составляет 3000-4000 об/мин, и невозможностью выполнения тягового редуктора с большим передаточным отношением. Отечественные подшипники серийных тяговых двигателей при приемлемой долговечности обеспечивают яшах = 2150 об/мин. При передаточном отношении і = 4,4 и диаметре среднеиз-ношенного бандажа £> ср = 1200 мм это соответствует максимальной скорости движения электровоза ПО км/ч. На серийных электровозах с опорно-осевым подвешиванием тяговых двигателей "шах = 5,353. При V = 120 км/ч и £>ср = = 1200 мм получим п тах = 2800 об/мин, но промышленность не выпускает подшипники на такую частоту вращения.

От числа полюсов асинхронного тягового двигателя зависят и потери в преобразователе. Для снижения их коэффициент соотношения скоростей ки должен быть принят равным 2,5

В основном создание асинхронного привода большой мощности зависит в значительной степени от успехов в ряде областей электроники, машиностроения, развития технологии и др.

С 1982 г. ВЭлНИИ приступил к новому этапу создания электровозов с асинхронными двигателями. Согласно требованиям МПС это 12-осные электровозы (серия ВЛ86*). Для них разработаны и построены двигатели НБ-607 (рис. 107, а и б); их привод унифицирован с приводом электровозов ВЛ80Р и ВЛ80С. Статор 2 и сердечник 3 ротора выполнены шихтованными. Пакет статора запрессован в литой остов /. Обмотка статора 4 петлевая, трехфазная, шес-типолюсная, закреплена в пазовой части магнитными клиньями. Обмотка ротора медная, стержни соединены медными кольцами и закреплены на пазовой части магнитными клиньями, а на лобовой стеклобандажами. На валу ротора смонтирован датчик частоты вращения.

Основные технические данные некоторых бесколлекторных тяговых двигателей. В табл. 4 приведены основные параметры тяговых двигателей НБ-601 и НБ-607 электровозов ВЛ80 в и ВЛ86 ф и для сравнения двигателей OD64604 фирмы ВВС электровоза Е120 (ФРГ) двигателей BAZ10577/6 фирмы AEG электровоза 182001.

Основные технические данные двигателя.

Мощность часового режима – 170кВт, частота вращения часового режима – 1290 об/мин, номинальное напряжения питания – 530 В, номинальная частота – 43 Гц, масса – 805 кг.

3-х фазный двигатель, самовентилируемый с короткозамкнутым ротором. Тяговые двигатели, установлены на вагонах 81-740/741, с опорой только на раму тележки, что снижает ударные нагрузки на двигатель при прохождении неровностей и стыков ходовых.

Двигатели могут работать как электродвигателями так и генераторами. В первом случае электрическая энергия, потребляемая от контактной сети (3-ий рельс), преобразуется в механическую, развивая при этом вращающий момент на валу двигателя.

Во втором случае двигатель преобразует, приведенную к валу механическую энергию от вращения колесных пар в электрическую, которая может быть вновь возвращена в контактную сеть (рекуперативное торможение) или гасится на тормозном реостате (сопротивление), при реостатном электрическом торможении.

Асинхронная электрическая машина характеризуется тем, что при ее работе возбуждается вращающее магнитное поле, которое вращается асинхронно относительно скорости вращения ротора.

Устройство тягового двигателя.

Тяговый двигатель состоит из: статора, ротора, двух подшипниковых щитов, вентилятора.

Статор (неподвижная часть) – предназначен для укладки в него обмотки. Имеет форму полого цилиндра, собранного из пластин электротехнической стали, толщиной 0,5мм, изолированных друг от друга слоем лака, что обеспечивает уменьшение потерь от вихревых токов.

Фазные обмотки, которые возбуждают вращающее магнитное поле, размещаются в пазах на внутренней стороне сердечника статора. Обмотка статора подсоединяется к 3-х фазному источнику переменного тока – инвертору.

1,2 отверстия крепления подшипникового щита

3. вылет обмотки

4. отверстие центровки подшипникового щита; 5. обмотка

Ротор (вращающаяся часть) – короткозамкнутый.

Собирается также из штампованных пластин электротехнической стали, определенной конфигурации, в результате чего на внутренней стороне сердечника ротора образуются пазы. В пазы ротора вставляют обмотку, которая изготовляется в виде цилиндрической(беличьей) клетки из медных или алюминиевых стержней. Стержни вставляются без изоляции. Концы стержней замыкают накоротко кольцами, которые изготавливают из того же материала. Обмотка ротора не соединяется с сетью и с обмоткой статора. Ротор насажен на вал тягового двигателя. Вентилятор устанавливается на конце вала ротора со стороны привода. Вал т/д изготавливается из высоколегированной стали. Имеет несколько шеек различной длинны и диаметра для посадки на них подшипниковых щитов, ротора, вентилятора.

1- вентилятор; 2 и 5 – вал; 3 - беличья клетка; корпус статора.

Подшипниковые щиты


Подшипниковые щиты устанавливаются в статор с двух сторон. Подшипники щитов опираются на вал тягового двигателя.

Конструкция асинхронного тягового двигателя

В пазы статора укладывают обмотку, которая в простейшем случае состоит из трех катушек - фаз, сдвинутых в пространстве на 120 эл. градусов. Ротор асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали. На поверхности ротора имеются продольные пазы для обмотки. Листы сердечника ротора специально не изолируют, т.к. в большинстве случаев достаточно изоляции от окалины. В зависимости от типа обмотки роторы двигателей обычного исполнения делятся на короткозамкнутые и фазные.

Обмотка короткозамкнутого ротора представляет собой медные стержни, забитые в пазы. С двух сторон эти стержни замыкаются кольцами. Соединения стержней с кольцами осуществляется пайкой или сваркой. Чаще всего короткозамкнутую обмотку выполняют расплавленным, алюминием и литьем под давлением. При этом вместе со стержнями и кольцами отливаются и лопатки вентилятора.


Короткозамкнутый ротор

ПРИНЦИП ОБРАЗОВАНИЯ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ МАШИНЫ.

На статоре трехфазного двигателя расположены 3 обмотки (фазы), которые смещены в пространстве по отношению друг к другу на 120 эл. градусов. Токи, подаваемые в фазные обмотки, отодвинуты друг от друга во времени на 1/3 периода.


Токи в трехфазной обмотке

Образование вращающегося магнитного поля.

Асинхронные двигатели широко применяются в промышленности. Эти двигатели состоят из двух основных частей: неподвижной – статора и вращающейся – ротора. В асинхронном двигателе переменный трехфазный ток включается в обмотку статора, состоящую из трех самостоятельных частей. Как видно из графика изменений трехфазного тока напряжение достигает максимального значения не одновременно во всех трех фазах, а попеременно, через равные промежутки времени, то в одной, то в другой, то в третьей фазе. Следователь но, если включить такой ток в три обмотки, расположенные так, как это показано на рисунке:

Максимальное значение магнитного потока будет создаваться то в первой, то во второй, то в третьей обмотке, соответственно максимальным значениям тока в фазах, подключенных к этим обмоткам. Магнитное поле, перемещающееся таким образом по замкнутому кругу, называется вращающимся магнитным полем.

Описанное создание вращающегося магнитного поля поясняется рис. Если подключить фазу к первой катушке обмотки двигателя, фазу 2 ко второй катушке, а фазу 3 к третьей катушке обмотки, то в момент времени t 1 максимальный поток будет в первой катушке, так как в это время сила тока в фазе 1, подключенной к первой катушке, будет иметь максимальное значение. Затем сила тока в фазе 1 постепенно ослабевает и, переходя через нуль, меняет направление, в это время увеличивается значение силы тока в фазе 2 и к моменту времени t 2 сила тока в фазе 2 достигает максимального значения, поэтому максимальный поток уже создастся не первой катушкой, а второй. Это в свою очередь означает, что магнитное поле повернулось на 120°. К моменту времени t 3 максимум тока будет в фазе 3, а максимум потока будет создаваться третьей катушкой - магнитное поле повернулось еще на 120º.

К моменту времени t 4 создается такая же картина поля, как и в момент времени t 1, т. е. снова максимума ток достигает в фазе 1, а максимальный магнитный поток создается первой катушкой Это значит, что за время t 1 - t 2 магнитное поле повернулось на 360° (совершило полный оборот).

Обмотка ротора асинхронного двигателя замкнута на себя, или на сопротивление. При неподвижном роторе и наличии тока в обмотке статора силовые линии вращающегося магнитного ноля пересекают неподвижные витки обмотки ротора, в результате чего в обмотке ротора появляется ЭДС и ток. Этот ток, взаимодействуя с полем статора, создает вращающий момент, стремящийся повернуть ротор в сторону вращения поля. Ротор двигателя начнет вращаться. По мере увеличения скорости ротора уменьшаются число пересекаемых силовых линий и ЭДС и, следовательно, ток ротора асинхронного двигателя. Однако ротор никогда не достигает скорости поля, а всегда вращается. Это отставание ротора от ноля статора называют скольжением. Чем больше нагрузка на валу двигателя, тем больше скольжение. Выражается скольжение в процентах или в относительных единицах.

Обычно асинхронные двигатели имеют при полной нагрузке скольжение 2-4%.

Скорость вращения ротора асинхронного двигателя определяется по формуле:


где n-скорость вращения ротора, об/мин;

f - частота питающей сети;

p- число пар полюсов;

s - скольжение.

ПРИНЦИП ДЕЙСТВИЯ АСИНХРОННОГО ДВИГАТЕЛЯ .

Вращающееся магнитное поле статора пересекает проводники обмотки ротора и наводит в них ЭДС. Так как роторная обмотка замкнута, то в проводниках ее возникают токи. Ток каждого проводника, взаимодействуя с полем статора, создает электромагнитную силу – F эм. Совокупность сил всех проводников обмотки создает электромагнитный момент М, который приводит ротор во вращение в направлении вращающего поля.

Частота вращения ротора n 2 будет всегда меньше синхронной частоты n 1 т.е. ротор всегда отстает от поля статора. Поясним это следующим образом. Пусть ротор вращается с частотой п 2 равной частоте вращающегося поля статора n 1 . В этом случае поле не будет пересекать проводники роторной обмотки. Следовательно, в них не будет наводиться ЭДС и не будет токов, а это значит, что вращающий момент М = 0. Таким образом, ротор асинхронного двигателя принципиально не может вращаться синхронно с полем статора. Разность между частотами поля статора n 2 и ротора n 1 называется частотой скольжения Δn:

Отношение частоты скольжения к частоте поля называется скольжением:


В общем случае скольжение в асинхронном двигателе может изменяться от нуля до единицы. Однако номинальное скольжение S H обычно составляет от 0,01 до 0,1 %. Преобразуя выражение *), получим выражение частоты вращения ротора:

Обмотка ротора асинхронного двигателя электрически не связана с обмоткой статора. В этом отношении двигатель подобен трансформатору, в котором обмотка статора является первичной обмоткой, а обмотка ротора - вторичной. Разница состоит в том, что ЭДС в обмотках трансформатора наводится не изменяющимся во времени магнитным потоком, а ЭДС в обмотках двигателя - потоком постоянным по величине, но вращающимся в пространстве. Эффект в том и в другом случаях будет одинаковым. В отличие от вторичной обмотки трансформатора, неподвижной, обмотка ротора двигателя вместе с ним вращается. ЭДС роторной обмотки, в свою очередь, зависит от частоты вращения ротора. В этом нетрудно убедиться, анализируя процессы, протекающие в асинхронном двигателе. Синхронная частота вращения магнитного поля статора перемещается относительно ротора с частотой скольжения Δn. Она же наводит в обмотке ротора ЭДС Е 2 , частота которой f 2 связана со скольжением S:

Учитывая, что fi=pn 1 /60, f 2 =pn 1 S/60.

Приняв величину номинального скольжения порядка 0,01-0,1, можно подсчитать частоту изменения ЭДС в роторной обмотке, которая составляет 0,5-5 Гц (при ^=50 Гц).

Бесколлекторные тяговые двигатели

Около 8-10 лет назад масса поезда (весовая норма) ограничивалась условиями сцепления, т. е. достигнутым значением расчетного коэффициента сцепления. Поэтому не так остро ставился вопрос о существенном повышении силы тяги, а следовательно, и мощности тяговых двигателей электровозов. Исследования и опытная эксплуатация ряда новых устройств показали, что имеются большие возможности повышения расчетного коэффициента сцепления. Этого можно достичь, применив независимое возбуждение, а также осуществив автоматическое выравнивание нагрузок тяговых двигателей. О других возможностях повышения коэффициента сцепления будет рассказано ниже.

Но дальнейшее повышение мощности тяговых двигателей электровозов, необходимой для реализации более высокого расчетного коэффициента сцепления, осуществить все трудней. Этому препятствуют прежде всего размеры тягового двигателя: длина его ограничена расстоянием между бандажами колесных пар, диаметр - расстоянием между осью колесной пары и валом двигателя - централью Ц (см. рис. 3). До сих пор при наличии жестких габаритных ограничений размеров двигателей мощность их повышали путем применения более теплостойких изоляционных материалов, усиления охлаждения, увеличения числа пар полюсов, устройства компенсационной обмотки, выбора оптимального напряжения для тяговых двигателей электровозов переменного тока.

С повышением мощности все напряженнее работает коллекторно-щеточный узел. Его состоянием в значительной мере определяется продолжительность работы электровоза между осмотрами и ремонтами. Повышение мощности тяговых двигателей встречает все больше препятствий и не способствует увеличению их надежности и к. п. д. Поэтому вполне понятно стремление создать мощный бесколлекторный тяговый двигатель.

Электровозы с асинхронными тяговыми двигателями . На протяжении всей истории создания и совершенствования электровозов было много попыток использовать самый простой и дешевый асинхронный двигатель для целей тяги. До недавнего времени этого не удавалось сделать, так как частоту его вращения можно экономично регулировать только изменением частоты питающего тока. Применяемые ранее для этого электромашинные преобразователи были тяжелыми. Появление тиристоров открыло путь для создания легкого и надежного преобразователя частоты.

Устройство асинхронного двигателя, как уже отмечалось, несложно. Он имеет неподвижный статор и вращающийся ротор (рис. 75). Различают асинхронные двигатели: с короткозамкнутым ротором и с фазовым ротором. В качестве тяговых используют асинхронные двигатели с короткозамкнутым ротором. Сердечник такого ротора, как и статора, собирают из листов электротехнической стали. Обмотка ротора состоит из медных стержней, расположенных в пазах сердечника и замкнутых с торцов кольцами. Обмотка без сердечника ротора представляет собой так называемое "беличье колесо".

В пазах статора уложены три обмотки, сдвинутые одна относительно другой на 120°. Эти обмотки обычно соединяют звездой. При включении обмоток в трехфазную цепь по каждой из них проходит переменный ток и создается три переменных магнитных потока. Эти потоки, складываясь, образуют результирующий поток, вращающийся с частотой 3000 об/мин при одной паре полюсов на каждую фазу. Вращающийся магнитный поток статора двигателя, пересекая обмотку ротора, индуктирует в ней э. д. с. Под действием э. д. с. в обмотке ротора проходит ток, создающий собственный магнитный поток. Магнитные потоки статора и ротора взаимодействуют, в результате чего ротор начинает вращаться.

Частота вращения ротора несколько меньше частоты вращения магнитного потока статора, иначе силовые линии не пересекали бы обмотку ротора. Разность этих частот вращения называется скольжением. Увеличивая число пар полюсов, можно получить другие частоты вращения магнитного потока: 1500, 1000, 750 об/мин и т. д. Частота вращения ротора будет несколько меньше этих значений.

Обычно скольжение составляет 1-3% синхронной частоты. Следовательно, если изменять частоту питающего напряжения в широких пределах и тем самым синхронную частоту, вместе с ней будет изменяться и частота вращения ротора. Но, помимо частоты, необходимо регулировать и напряжение, подводимое к асинхронному двигателю для того, чтобы получить тяговую характеристику примерно такую, как при использовании двигателей постоянного тока с последовательным возбуждением.

Регулирование напряжения осуществляется, как и на отечественных электровозах переменного тока, переключением вторичной обмотки тягового трансформатора с помощью главного контроллера ГК (рис. 76) ступенями. Затем в выпрямительной установке В напряжение выпрямляется и подается на инвертор И. В выпрямителе осуществляется плавное регулирование напряжения, подводимого к инвертору И.

Отпирая и запирая тиристоры инверторной установки в определенной последовательности, получают трехфазное напряжение, которое подводится к обмотке статора асинхронного двигателя АД. Напомним, что к обычным асинхронным двигателям подводится переменное трехфазное напряжение, а следовательно, и ток, изменяющийся синусоидально. При этом каждая фаза сдвинута относительно другой на 120°, как показано на рис. 77. Для наглядности изменение напряжения каждой фазы показано на отдельных осях. При формировании трехфазного напряжения на электровозе с асинхронными двигателями переключаемые вентили инвертора создают напряжение ступенчатой формы в каждой фазе.

Частота напряжения, подводимого к асинхронному двигателю, регулируется изменением частоты переключения этих вентилей.

В инверторе предусмотрено специальное устройство, надежно восстанавливающее управляющие свойства тиристоров при срыве инвертирования. Реверсирование тяговых двигателей осуществляют, переключая цепи управления тиристоров инвертора, так как для изменения направления вращения асинхронного двигателя достаточно поменять местами любые две подводимые фазы.

На основе разработок научно-исследовательских и учебных институтов на Новочеркасском электровозостроительном заводе построен электровоз переменного тока с асинхронными тяговыми двигателями ВЛ80 а. Электровоз создан на базе восьмиосного электровоза ВЛ80 К. Мощность каждого тягового двигателя составляет 1200 кВт, т. е. в 1,5 раз больше, чем коллекторного двигателя электровоза ВЛ80 К.

Не исключена возможность создания тягового привода с асинхронным двигателем без редуктора. В этом случае ротор асинхронного двигателя монтируют непосредственно на оси колесной пары, а статор имеет разъемную форму.

Электровозы с вентильными синхронными двигателями . В качестве бесколлекторных тяговых двигателей на электровозе можно использовать синхронные двигатели со статическими (вентильными) преобразователями - так называемые вентильные двигатели.

Поясним принцип работы вентильного двигателя. На его статоре расположена трехфазная обмотка, а на роторе - обмотка возбуждения постоянного тока (рис. 78). Начало и конец обмотки возбуждения соединены с двумя кольцами, электрически изолированными одно от другого. Фазные обмотки статора соединены в звезду; начала их подключены к преобразователю - инвертору И (или источнику постоянного тока). Инвертор И питается от выпрямительной установки В, подключенной к вторичной обмотке тягового трансформатора. Если, например, в какой-либо момент времени открыты тиристоры А1 и Х2 инвертора, ток от выпрямителя В пройдет через тиристор А1, обмотки статора I и II, тиристор Х2, обмотку возбуждения ОВ и возвратится в выпрямительную установку. При указанном стрелками направлении тока в обмотках I, II и обмотке возбуждения результирующий магнитный поток статора, взаимодействуя с потоком обмотки возбуждения, создаст вращающий момент, и ротор повернется по часовой стрелке. Переключая в, определенном порядке выводы статорной обмотки, можно обеспечить непрерывное вращение ротора.

Таким образом, по принципу действия вентильный двигатель подобен машине постоянного тока, где коллектор заменен системой силовых управляемых вентилей инверторной установки. Но в отличие от двигателя постоянного тока вентильный двигатель имеет только три коммутируемых вывода при трехфазной обмотке вместо нескольких сотен коллекторных пластин. Кроме того, обмотка возбуждения в вентильном двигателе стала подвижной, а якорь неподвижным. Вентильная коммутация тока в обмотках допускает значительное напряжение между выводами: до нескольких тысяч вольт. Напомним, что обычный механический коллектор удовлетворительно работает при напряжении между коллекторными пластинами не более 30-32 В. Переключение выводов статорной обмотки в необходимой очередности и соответственно изменение положения ротора осуществляет система управления, имеющая специальный датчик положения ротора.

Вентильный двигатель является многофазной машиной, обмотка якоря которой питается от преобразователя, управляемого синхронно с вращением ротора, снабженного обмоткой возбуждения. Таким образом, вентильный двигатель состоит из электрической машины, вентильного преобразователя и связывающей их системы управления.

Новочеркасским электровозостроительным заводом первоначально был построен опытный образец восьмиосного грузового электровоза ВЛ80 В с вентильными тяговыми двигателями. После испытания его была выпущена небольшая партия подобных электровозов для эксплуатационных испытаний. Электровозы оборудованы системой автоматического управления, действующей в режимах тяги и электрического торможения. На электровозе применено независимое возбуждение вентильных двигателей от выпрямителей-возбудителей, изменяющих ток возбуждения пропорционально току обмотки якоря двигателя. Ротор двигателя имеет шесть полюсов, ток к обмотке возбуждения подводится через два кольца и щетки. Частота вращения двигателя регулируется изменением подводимого напряжения. Напряжение вторичной обмотки, а следовательно, и выпрямительной установки регулируется примерно так же, как и на электровозах переменного тока с коллекторными двигателями. Исключено только встречное включение регулируемой и нерегулируемой обмоток трансформатора и несколько повышено их напряжение. После того, как к двигателям будет подведено номинальное напряжение, дальнейшее увеличение скорости осуществляется регулированием магнитного потока возбуждения.

На электровозах ВЛ80 В применена схема выпрямления и преобразования тока, несколько отличающаяся от изображенной на рис. 78. На рис. 78 показаны отдельные выпрямительная В и инверторная И установки, т. е. приведена так называемая схема с явным звеном постоянного тока. На электровозе ВЛ80 В эти две установки совмещены в общем устройстве.