Правильный запуск двигателя автомобиля. Запуск двигателя автомобиля после долгого простоя. Техническое обслуживание ПД

Система запуска двигателя автомобиля осуществляет первичное вращение ДВС, в результате чего происходит воспламенение топливно-воздушной смеси в цилиндрах и силовой агрегат начинает работать самостоятельно.

Далее коленчатый вал начинает вращаться самостоятельно, то есть двигатель запускается, обороты коленвала увеличиваются, вращение вала становится возможным благодаря преобразованию тепловой энергии сгорания топлива в механическую работу. Как только обороты коленвала достигают определенной частоты, происходит автоматическое отключение системы запуска.

В этой статье мы рассмотрим, как работает электрическая система пуска двигателя, из каких какие основных элементов она состоит, а также поговорим о том, какие еще бывают системы запуска , кроме электрических решений.

Читайте в этой статье

Система пуска двигателя: конструктивные особенности и принцип действия электрического запуска ДВС

Начнем с того, что на раннем этапе двигатели автомобиля запускались вручную. Для этого использовалась особая заводная рукоятка, которая вставлялась в специальное отверстие, после чего водитель самостоятельно проворачивал коленчатый вал.

В дальнейшем появилась система электрического пуска, которая в самом начале была не совсем надежной. По этой причине на многих моделях электрический пуск комбинировали с возможностью ручного запуска, что давало возможность запустить двигатель в случае возникновения проблем с электрозапуском. Затем от такой схемы полностью отказались, так как общая надежность электрических систем значительно возросла.

Итак, система запуска (часто называется стартерная система пуска двигателя) состоит из механических и электрических узлов и агрегатов. Как уже было сказано, главной задачей является проворачивание двигателя для запуска.

Основными элементами в схеме электрического пуска двигателя выступают:

  • стартерная цепь;
  • стартер;
  • аккумулятор;

В двух словах, стартерная цепь фактически является электроцепью, по которой электрический ток подается от к стартеру. В такую цепь входит провод, который соединяет аккумулятор и стартер, «масса» на кузов автомобиля, а также различные клеммы и соединения, по которым идет пусковой ток.

Что касается аккумулятора, основной задачей является обеспечение необходимого напряжения для работы стартера. Важно, чтобы , что позволяет стартеру прокручивать коленвал ДВС с необходимой для запуска частотой.

Стартер представляет собой электромотор. На валу стартера установлена шестерня, которая после подачи напряжения на стартер входит в зацепление с зубчатым венцом на . Так реализована передача крутящего момента от стартера на коленвал двигателя.

Еще отметим, что стартер потребляет большой пусковой ток. При этом для включения и выключения стартера используется слаботочный переключатель, более известный как замок зажигания. Данный элемент осуществляет управление специальным реле, а также блокировочными выключателями стартера (при наличии).

Вернемся к общему устройству элементов системы. Как уже говорилось, стартер с тяговым реле представляет собой электродвигатель постоянного тока. Стартер состоит из статора, который является корпусом, ротора (якорь), а также щеток со щеткодержателем, тягового реле и механизма привода.

Тяговое реле обеспечивает питание обмоток стартера, а также позволяет работать механизму привода. Указанное тяговое реле включает в себя обмотку, якорь, контактную пластину. Электрический ток подается на тяговое реле через специальные контактные болты.

Механизм привода нужен для передачи крутящего момента от стартера на коленвал. Основными элементами конструкции является рычаг привода или вилка, которая имеет поводковую муфту, демпферная пружина, а также обгонная муфта и ведущая шестерня. Указанная шестерня входит в зацепление с зубчатым венцом маховика, который установлен на коленвалу. Замок зажигания после поворота ключа в положение «старт» отвечает за подачу постоянного тока от АКБ на тяговое реле стартера.

Принцип работы системы электрического запуска ДВС

Система электрического запуска стоит на различных типах двигателей ( , бензиновые, дизельные, роторно-поршневые, газовые и т.д.)

Общий принцип работы заключается в следующем:

После того, как водитель поворачивает ключ в замке зажигания, электрический ток от АКБ подается на контакты тягового реле (на втягивающее стартера). В то время, когда ток начинает проходить по обмоткам тягового реле, осуществляется втягивание якоря. Указанный якорь перемещает рычаг механизма привода, в результате осуществляется зацепление ведущей шестерни и зубчатого венца маховика.

Параллельно якорь замыкает контакты реле, благодаря чему реализуется питание электрическим током обмоток статора и якоря. Это позволяет стартеру вращаться, передавая крутящий момент на коленчатый вал.

После запуска двигателя обороты коленвала увеличиваются. В этот момент срабатывает обгонная муфта, отсоединяющая стартер от двигателя, при этом стартер еще продолжает свое вращение. Затем при помощи возвратной пружины тягового реле происходит обратное перемещение якоря. Это позволяет вернуть механизм привода в обратное положение.

Кстати, если говорить о различных штатных блокировках стартера при запуске двигателя, такие решения встречаются, однако не на всех моделях авто. Основной задачей является повышение комфорта эксплуатации и безопасности. Если просто, стартер не будет работать, пока водитель не выжмет сцепление или не включит нейтральную передачу перед запуском двигателя.

Наличие такой блокировки позволяет избежать рывков и случайного перемещения ТС, что часто случается, когда водитель начинает заводить двигатель от стартера с включенной передачей.

Система воздушного пуска двигателя

Система воздушного пуска является еще одним решением, которое позволяет прокручивать коленчатый вал ДВС. Для запуска мотора используется сжатый воздух. При этом такое пневматическое оборудование, как правило, на автомобилях и другой технике не используется, однако пусковые системы данного типа можно встретить на стационарных двигателях внутреннего сгорания.

Если говорить о конструкции, устройство системы воздушного пуска двигателя предполагает наличие следующих элементов:

  • воздушный баллон;
  • электроклапаны;
  • маслоотстойник;
  • обратный клапан;
  • воздухораспределитель;
  • пусковые клапаны;
  • трубопроводы;

Принцип работы системы воздушного запуска ДВС основан на том, что сжатый в воздушном баллоне воздух под давлением подается в коробку-распределитель, далее проходит через фильтры в редуктор и поступает к электропневмоклапану.

Далее необходимо нажать кнопку «пуск», после чего клапан открывается, затем воздух из воздухораспределителя проходит через пусковые клапаны и попадает в цилиндры двигателя, создавая давление и раскручивая коленвал. Когда обороты достигают нужной частоты, двигатель запускается.

Добавим, что такие силовые установки дополнительно оснащены электрической системой пуска от стартера, что позволяет завести агрегат в том случае, если с воздушным пуском, который является основным способом, имеются какие-либо проблемы или произошла поломка.

Необходимо учитывать, что электрическая система пуска двигателей обычно предполагает то, что мощность АКБ и стартера будут практически одинаковыми. Это значит, что напряжение аккумулятора в значительной степени меняется с учетом того тока, который потребляет стартер.

Простыми словами, на эффективность и легкость запуска ДВС сильно влияет общее состояние АКБ, температура аккумулятора, уровень заряда, а также исправность стартера и стартерной цепи. Диагностировать некоторые проблемы на раннем этапе позволяют такие признаки, как явное затухание габаритов и подсветки панели приборов в момент пуска двигателя.

Как известно, яркость ламп зависит от напряжения в бортовой сети. При этом нормально работающая система пуска не должна сильно «просаживать» напряжение. Отметим, что в норме допускается снижение яркости приборной панели и, в ряде случаев, перезапуск магнитолы, однако яркость не должна сильно понижаться.

Если же яркость освещения не меняется, при этом коленвал также не крутится, зачастую уместно говорить об обрыве в цепи. Если стартер крутит медленно и освещение практически гаснет, тогда , так и с электроцепями или АКБ.

Еще отметим, что в случае проблем с запуском, которые связаны со стартером, некоторые водители привыкли стучать по данному устройству. Дело в том, что такие постукивания на старых моделях стартеров (например, на «классике» ВАЗ) в некоторых случаях позволяли сместить щетки стартера, ротора и т.д. В результате удавалось на короткое время восстановить работоспособность устройства.

При этом важно понимать, что современные стартеры в своем устройстве имеют постоянные магниты. Указанный магниты весьма хрупкие, то есть после удара по стартеру происходит их раскалывание.

В конечном итоге цельный магнит разрушается. Более того, такие магниты на некоторых моделях стартеров могут быть просто приклеены к корпусу. Соответственно, если ударять по корпусу сильно, отколовшиеся части магнита попадают на ротор или в область установки подшипников, полностью выводя стартер из строя.

Читайте также

Почему стартер может не работать после поврота ключа в замке зажигания. Основные причины неисправностей стартера: бендикс, тяговое реле, щетки, обмотка.

  • Как быстро завести двигатель при разряженной АКБ. Особенности и преимущества использования автономного пускозарядного устройства. Советы при выборе бустера.


  • Хотим отметить, что если вы нуждаетесь в каких либо автозапчастях для своего автомобиля , то наш интернет-сервис будет рад предложить вам их по самым низким ценам. Все, что вам нужно, это зайти в меню " " и заполнить форму, либо ввести название запчасти в верхнем правом окошке данной страницы, после этого на вас выйдут наши менеджеры и предложат лучшие цены, каких вы еще видом не видывали и слыхом не слыхивали! Теперь к главному.

    Итак, все мы знаем, что самой важной частью машины является маэстро двигатель. Основной целью работы двигателя является преобразование бензина в движущую силу. В настоящее время, самым простым способом заставить автомобиль двигаться, является сжигание бензина внутри двигателя. Именно поэтому двигатель автомобиля называется двигателем внутреннего сгорания .

    Две вещи, которые следует запомнить:

    Существуют различные двигатели внутреннего сгорания. Например, дизельный двигатель отличается от бензинового. Каждый из них имеет свои преимущества и недостатки.

    Существует такая вещь, как двигатель внешнего сгорания. Лучшим примером такого двигателя является паровой двигатель парохода. Топливо (уголь, дерево, масло) сгорает вне двигателя, образовывая пар, который и является движущей силой. Двигатель внутреннего сгорания является гораздо более эффективным (требуется меньше топлива на километр пути). К тому же он намного меньше эквивалентного двигателя внешнего сгорания. Это объясняет тот факт, почему мы не видим на улицах автомобили с паровыми движками.

    Принцип, лежащий в основе работы любого поршневого двигателя внутреннего сгорания : если вы поместите небольшое количество высокоэнергетического топлива (например, бензина) в небольшое замкнутое пространство, и зажжете его, то при сгорании в виде газа высвобождается невероятное количество энергии. Если создать непрерывный цикл маленьких взрывов, скорость которых будет, например, сто раз в минуту, и пустить получаемую энергию в правильное русло, то мы получим основу работы двигателя.

    Сейчас почти все автомобили используют так называемый четырехтактный цикл сгорания для преобразования бензина в движущую силу четырех колесного друга. Четырехтактный подход также известен как цикл Отто, в честь Николауса Отто, который изобрел его в 1867 году. К четырем тактам относятся:

    1. Такт впуска.
    2. Такт сжатия.
    3. Такт горения.
    4. Такт выведения продуктов сгорания.

    Устройство под названием поршень, выполняющее одну из основных функций в двигателе, своеобразно заменяет картофельный снаряд в картофельной пушке. Поршень соединен с коленчатым валом шатуном. Как только коленчатый вал начинает вращение, происходит эффект «разряда пушки». Вот что происходит, когда двигатель проходит один цикл:

    Ø Поршень находится сверху, затем открывается впускной клапан и поршень опускается, при этом двигатель набирает полный цилиндр воздуха и бензина. Это такт называется тактом впуска. Для начала работы достаточно смешать воздух с небольшой каплей бензина.

    Ø Затем поршень движется обратно и сжимает смесь воздуха и бензина. Сжатие делает взрыв более мощным.

    Ø Когда поршень достигает верхней точки, свеча испускает искры, чтобы зажечь бензин. В цилиндре происходит взрыв бензинового заряда, что заставляет поршень опуститься вниз.

    Ø Как только поршень достигает дна, открывается выхлопной клапан, и продукты сгорания выводятся из цилиндра через выхлопную трубу.

    Теперь двигатель готов к следующему такту и цикл повторяется снова и снова.

    Теперь давайте рассмотрим все части двигателя, работа которых взаимосвязана. Начнем с цилиндров.

    Основные составные части двигателя благодаря которым он работает

    Осноова двигателя - это цилиндр , в котором вверх-вниз перемещается поршень. Двигатель, описанный выше, имеет один цилиндр. Это характерно для большинства газонокосилок, но большинство автомобилей имеет более чем один цилиндр (как правило, четыре, шесть и восемь). В многоцилиндровых моторах цилиндры обычно размещаются тремя способами: в один ряд, V-образным способом и плоским способом (также известный как горизонтально-оппозитный).

    Разные конфигурации имеют разные преимущества и недостатки с точки зрения гладкости, производственных затрат и характеристик формы. Эти преимущества и недостатки делают их более или менее подходящими к разным видам транспортных средств.

    Давайте более подробно рассмотрим некоторые ключевые детали двигателя.

    Свечи зажигания

    Свечи зажигания обеспечивают искру, которая воспламеняет воздушно-топливную смесь. Искра должна возникнуть в правильный момент для безотказной работы двигателя.

    Клапаны

    Впускные и выпускные клапаны открываются в определенный момент для того чтобы впустить воздух и топливо и выпустить продукты сгорания. Следует обратить внимание на то, что оба клапана закрыты в момент сжатия и сгорания, обеспечивая герметичность камеры сгорания.

    Поршень

    Поршень - это цилиндрический кусок металла, который движется вверх-вниз внутри цилиндра двигателя.

    Поршневые кольца

    Поршневые кольца обеспечивают герметичность между скользящим внешним краем поршня и внутренней поверхностью цилиндра. Кольца имеют два назначения:

    • Во время тактов сжатия и сгорания они предотвращают утечку воздушно-топливной смеси и выхлопных газов из камеры сгорания
    • Они не позволяют маслу попасть в зону сгорания, где оно будет уничтожено.

    Если ваш автомобиль начинает «подъедать масло» и вам приходиться подливать его каждые 1000 километров, значит двигатель автомобиля довольно старый и поршневые кольца в нем сильно изношены. Как следствие они не могут обеспечивать герметичность на должном уровне. А это значит, вам нужно озадачиться вопросом, ибо покупка нового движка кропотливое и ответственное дело.

    Шатун

    Шатун соединяет поршень с коленчатым валом. Он может вращаться в разные стороны и с обоих концов, т.к. и поршень и коленчатый вал находятся в движении.

    Коленчатый вал

    Круговыми движениями коленчатый вал заставляет поршень двигаться вверх-вниз.

    Маслосборник

    Маслосборник окружает коленчатый вал. Он содержит некоторое количество масла, которое собирается в нижней его части (в масляном поддоне).

    Основные причины неполадок и перебоев в машине и двигателе

    Одним прекрасным утром вы можете сесть в свой автомобиль и осознать, что утро не так уж и прекрасно… Автомобиль не заводится, мотор не работает. Что может быть причиной этому. Теперь, когда мы разобрались в работе двигателя, вы можете понять, что может стать причиной его поломки. Существует три основных причины: плохая топливная смесь, отсутствие сжатия или отсутствие искры. Кроме того тысячи мелочей могут стать причиной его неисправности, но эти три образуют «большую тройку». Мы рассмотрим, как эти причины влияют на работу мотора на примере совсем простого двигателя, который мы уже обсуждали ранее.

    Плохая топливная смесь

    Данная проблема может возникнуть в следующих случаях:

    · У вас закончился бензин и в автодвигатель поступает только воздух, чего не достаточно для сгорания.

    · Могут быть забиты воздухозаборники, и в движок просто не поступает воздух, который крайне необходим для такта сгорания.

    · Топливная система может поставлять слишком мало или слишком много топлива в смесь, а это означает, что горение не происходит должным образом.

    · В топливе могут быть примеси (например, вода в бензобаке), которые препятствуют горению топлива.

    Отсутствие сжатия

    Если топливная смесь не может быть сжата должным образом, то и не будет надлежащего процесса сгорания обеспечивающего работу машины. Отсутствие сжатия может возникнуть по следующим причинам:

    · Поршневые кольца двигателя изношены, поэтому воздушно-топливная смесь просачивается между стенкой цилиндра и поверхностью поршня.

    · Один из клапанов неплотно закрывается, что, опять-таки, позволяет смеси вытекать.

    · В цилиндре есть отверстие.

    В большинстве случаев «дырки» в цилиндре появляются в том месте, где верхушка цилиндра присоединяется к самому цилиндру. Как правило, между цилиндром и головкой цилиндра есть тонкая прокладка, которая обеспечивает герметичность конструкции. Если прокладка ломается, то между головкой цилиндра и самим цилиндром образуются отверстия, которые также становятся причиной утечки.

    Отсутствие искры

    Искра может быть слабой или вообще отсутствовать по нескольким причинам:

    • Если свеча зажигания или провод, идущий к ней, изношены, то искра будет довольно слабой.
    • Если провод перерезан или отсутствует вообще, если система, посылающая искры вниз по проводу не работает должным образом, то искры не будет.
    • Если искра приходит в цикл слишком рано, или же слишком поздно, топливо не сможет воспламениться в нужный момент, что соответственно влияет на стабильную работу мотора.

    Возможны и другие проблемы с двигателем. Например:

    • Если разряжен, то двигатель не сможет сделать ни одного оборота, соответсвенно вы не сможете завести автомобиль.
    • Если подшипники, которые позволяют свободно вращаться коленчатому валу, изношены, коленчатый вал не сможет провернуться и запустить двигатель.
    • Если клапаны не будут закрываться или открываться в необходимый момент цикла, то работа двигателя будет невозможна.
    • Если в автомобиле закончилось масло, поршни не смогут свободно двигаться в цилиндре, и двигатель застопорится.

    В правильно работающем двигателе вышеописанные проблемы быть не могут. Если же они появились, ждите беды.

    Как видите, в моторе автомобиля есть ряд систем, которые помогают ему выполнять главную задачу - преобразовывать топливо в движущую силу.

    Клапанный механизм двигателя и система зажигания

    Большинство подсистем автомобильного мотора могут быть внедрены по средствам различных технологий, и более совершенные технологии могут улучшить эффективность работы двигателя. Давайте рассмотрим эти подсистемы, используемые в современных автомобилях. Начнем с клапанного механизма. Он состоит из клапанов и механизмов, которые открывают и закрывают проход топливным отходам. Система открытия и закрытия клапанов называется валом. На распределительном валу имеются выступы, которые и перемещают клапаны вверх и вниз.

    Большинство современных движков имеют так называемые накладные кулачки. Это означает, что вал расположен над клапанами. Кулачки вала воздействуют на клапаны непосредственно или через очень короткие связующие звенья. Эта система настроена так, что клапаны находятся в синхронизации с поршнями. Многие высокоэффективные двигатели имеют по четыре клапана на один цилиндр - два на вход воздуха и два на выход продуктов сгорания, и такие механизмы требуют два распределительных вала на один блок цилиндров.

    Система зажигания производит высоковольтный заряд и передает его на свечи зажигания при помощи проводов. Сначала заряд поступает в распределитель, который вы можете с легкостью найти под капотом большинства легковых автомобилей. В центр распределителя подключен один провод, а из него выходит четыре, шесть или восемь других проводов (в зависимости от количества цилиндров в двигателе). Эти провода посылают заряд на каждую свечу зажигания. Работа двигателя настроена так, что за один раз только один цилиндр получает заряд от распределителя, что гарантирует максимально плавную работу мотора.

    Система зажигания двигателя, охлаждения и набора воздуха

    Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует вокруг цилиндров по специальным проходам, потом, для охлаждения, она поступает в радиатор. В редких случаях двигатели автомобиля оснащены воздушной системой автомобиля. Это делает двигатели легче, но охлаждение при этом менее эффективное. Как правило, двигатели с таким видом охлаждения, имеют меньший срок службы и меньшую производительность.

    Теперь вы знаете, как и почему мотор вашей машины охлаждается. Но почему же тогда так важна циркуляция воздуха? Существуют автомобильные двигателя с наддувом - это означает, что воздух проходит через воздушные фильтры и попадает непосредственно в цилиндры. Для увеличения производительности некоторые двигатели оснащены турбонаддувом, а это значит, что воздух, который поступает в двигатель, уже находится под давлением, следовательно, в цилиндр может быть втиснуто больше воздушно-топливной смеси.

    Повышение производительности автомобиля - это круто, но что же происходит на самом деле, когда вы проворачиваете ключ в замке зажигания и запускаете автомобиль? Система зажигания состоит из электромотора, или стартера, и соленоида. Когда вы проворачиваете ключ в замке зажигания, стартер вращает двигатель на несколько оборотов для того чтобы начался процесс сгорания топлива. Требуется действительно мощный мотор, чтобы запустить холодный двигатель. Так как запуск двигателя требует много энергии, сотни ампер должны поступить в стартер для его запуска. Соленоид является тем переключателем, который может справиться с таким мощным потоком электричества, и когда вы проворачиваете ключ зажигания, активируется именно соленоид, который, в свою очередь, запускает стартер.

    Смазочные жидкости двигателя, топливная, выхлопная и электрические системы

    Когда дело доходит до ежедневного использования автомобиля, первое, о чем вы заботитесь это наличие бензина в бензобаке. Каким образом этот бензин приводит в действие цилиндры? Топливная система двигателя выкачивает бензин из бензобака и смешивает его с воздухом таким образом, чтобы в цилиндр поступила правильная воздушно-бензиновая смесь. Топливо подается тремя распространенными способами: смесеобразованием, впрыском через топливный порт и прямым впрыском.

    При смесеобразовании, прибор под названием карбюратор, добавляет бензин в воздух, как только воздух попадает в двигатель.

    В инжекторном движке топливо впрыскивается индивидуально в каждый цилиндр либо через впускной клапан (впрыск через топливный порт), либо непосредственно в цилиндр (прямой впрыск).

    Масло также играет важную роль в двигателе. Смазочная система гарантирует, что в каждую из движущихся частей двигателя поступает масло для плавной работы. Поршни и подшипники (которые позволяют свободно вращаться коленчатому и распределительному валу) - основные части, которые имеют повышенную потребность масла. В большинстве автомобилей, масло засасывается через масляный насос и маслосборника, проходит через фильтр, чтобы очиститься от песка, затем, под высоким давлением впрыскивается в подшипники и на стенки цилиндра. Далее масло стекает в маслосборник, и цикл повторяется снова.

    Теперь вы знаете немного больше о тех вещах, которые поступают в двигатель вашего автомобиля. Но давайте поговорим и том, что выходит из него. Выхлопная система. Она крайне проста и состоит из выхлопной трубы и глушителя. Если бы не было глушителя, вы бы слышали звук всех тех мини-взрывов, которые происходят в двигателе. Глушитель гасит звук, а выхлопная труба выводит продукты сгорания из автомобиля.

    Теперь поговорим об электрической системе автомобиля, которая тоже приводит его в действие. Электрическая система состоит из аккумулятора и генератора переменного тока. Генератор переменного тока подключен проводами к двигателю и вырабатывает электроэнергию, необходимую для подзарядки аккумулятора. В свою очередь, аккумулятор предоставляет электроэнергию всем системам автомобиля, которые в ней нуждаются.

    Теперь вы знаете все о главных подсистемах двигателя. Давайте рассмотрим, каким способом вы можете увеличить мощность двигателя своего автомобиля.

    Как увеличить производительность двигателя и улучшить его работу?

    Используя всю вышеприведенную информацию, вы, должно быть, обратили внимание на то, что есть возможность заставить двигатель работать лучше. Производители автомобилей постоянно играют с этими системами с одной лишь целью: сделать двигатель более мощным и сократить расход топлива.

    Увеличение объема двигателя. Чем больше объем двигателя, тем больше его мощность, т.к. за каждый оборот двигатель сжигает больше топлива. Увеличение объема двигателя происходит за счет увеличения либо самих цилиндров, либо их количества. В настоящее время 12 цилиндров - это предел.

    Увеличение степени сжатия. До определенного момента, высшая степень сжатия производит больше энергии. Однако, чем больше вы сжимаете воздушно-топливную смесь, тем выше вероятность того, что она воспламенится раньше, чем свеча зажигания даст искру. Чем выше октановое число бензина, тем меньше вероятность преждевременного воспламенения. Именно поэтому высокопроизводительные автомобили нужно заправлять высокооктановым бензином, так как двигатели таких машин используют очень высокий коэффициент сжатия для получения большей мощности.

    Большее наполнение цилиндра. Если в цилиндр определенного размера можно втиснуть больше воздуха (и, следовательно, топлива), то вы сможете получить больше энергии от каждого цилиндра. Турбонаддувы и наддувы нагнетают давление воздуха и эффективно вталкивают его в цилиндр.

    Охлаждение поступающего воздуха. Сжатие воздуха повышает его температуру. Тем не менее, хотелось бы иметь как можно более холодный воздух в цилиндре, т.к. чем выше температура воздуха, тем он расширяется при горении. Поэтому многие системы турбонаддува и наддува имеют интеркулер. Интеркулер - это радиатор, через который проходит сжатый воздух и охлаждается, прежде чем попасть в цилиндр.

    Сделать меньшим вес деталей. Чем легче часть двигателя, тем лучше он работает. Каждый раз, когда поршень меняет направление, он тратит энергию на остановку. Чем легче поршень, тем меньше энергии он потребляет.

    Впрыск топлива. Система впрыска топлива позволяет очень точное дозирование топлива, которое поступает в каждый цилиндр. Это повышает производительность двигателя и существенно экономит топливо.

    Теперь вы знаете практически все о том, как работает двигатель автомобиля, а также причины основных неполадок и перебоев в машине. Напоминаем, что если после прочтения данной статьи вы почувствовали, что ваша машина требует обновления каких либо автодеталей, то рекомендуем заказать и купить их через наш интернет-сервис заполнив форму запроса в меню " ", либо заполнив название запчасти в правом верхнем окошке данной страницы. Надеемся, что наша статья о том, как работает двигатель автомобиля? А также основные причины неполадок и перебоев в машине поможет вам совершить правильную покупку.

    Использование: в производстве и эксплуатации машин с поршневыми двигателями внутреннего сгорания для создания системы запуска карбюраторных дизельных двигателей. Сущность изобретения: запуск двигателя внутреннего сгорания с запуском вспомогательного пускового двигателя заключается в заполнении цилиндра горючей смесью, ее сжатии и воспламенении, прокручивании вала запускаемого двигателя, в нем перед запуском вспомогательного пускового двигателя его поршни устанавливают в положение начала рабочего хода, объем, отсекаемый поршнем заполняют горячей смесью, сжигают ее, а получаемое давление передают с поршня вспомогательного пускового двигателя на вал запускаемого с начала его рабочего хода. 1 з.п.ф-лы, 3 ил.

    Изобретение относится к производству и эксплуатации машин с поршневыми двигателями внутреннего сгорания (ДВС) и может быть применено для создания системы запуска карбюраторных и дизельных двигателей автомобилей, сельскохозяйственных и других машин, а также стационарных двигателей средней мощности. В настоящее время на автомобилях в подавляющем большинстве случаев применяют электростартерный способ запуска ДВС Электростартер обеспечивает удобный запуск без применения мускульной энергии. Однако он не обеспечивает надежный запуск двигателя при низких температурах в виду недостаточно высокой скорости прокручивания вала, которая ограничена стоимостными и массогабаритными показателями стартерной аккумуляторной батареи и электродвигателя. Кроме того стартерная аккумуляторная батарея недолговечна и требует для своего изготовления остродефицитного свинца, а остальное электрооборудование стартера дорогостоящей меди. Так что при имеющихся широких масштабах производства и эксплуатации ДВС, наличие в изделиях указанных материалов уже с трудом обеспечивается природными ресурсами. Наиболее близким по технической сущности к предлагаемому является способ запуска ДВС с помощью вспомогательного пускового ДВС. Он состоит в том, что сначала запускают вспомогательный пусковой ДВС, прокручивая его вал с помощью мускульной энергии или электростартером, а затем, с помощью пускового ДВС прокручивают вал запускаемого ДВС. При этом в пусковом двигателе при пуске его совершают процессы, аналогичные процессам, происходящим при запуске в основном двигателе, а именно: заполняют горючей смесью при давлении, близком к атмосферному, цилиндр, устанавливая поршень в точку, соответствующую концу рабочего хода, сжимают горючую смесь, поднимая т.о. давление до нескольких атмосфер, зажигают горючую смесь после сжатия и совершают рабочий ход. Причем указанные действия при запуске и после запуска пускового двигателя циклически повторяют неоднократно, и уже затем, после прогрева пускового двигателя, когда он, имея сравнительно малый объем цилиндра, становится способным принять на себя нагрузку, его плавно, посредством фрикционной муфты, соединяют с валом запускаемого и увеличивают обороты до величин, требуемых условиями запуска Такой способ запуска, в виде меньшего по сравнению с электроприводом удельного веса ДВС, а также в следствие частичного подогрева масла главного двигателя при работе пускового двигателя, обеспечивает более высокую скорость прокручивания вала запускаемого двигателя в условиях низких температур при приемлемых массогабаритных показателях. Однако при этом способе проблема запуска, связанная с необходимостью прокручивания вала ДВС от постороннего источника энергии, остается. Она лишь перекладывается на двигатель меньшей мощности. И если это прокручивание осуществляется мускульной энергией, например заводным шнурком, то это обуславливает неудобство, дискомфорт и длительное время запуска, неприемлемые, например, для автомобиля и с чем приходится все же мириться при запуске тяжелых мобильных машин. А если прокручивание пускового ДВС осуществляется электростартером, то не исключается необходимость иметь на мобильном средстве стартерную аккумуляторную батарею и мощный электродвигатель со всеми вышеуказанными негативными последствиями. Кроме того, получающая при этом трехкаскадная система двигателей оказывается слишком сложной по конструкции, т.к. уже сам пусковой ДВС классической двухтактной схемы имеет почти все элементы главного запускаемого двигателя, причем часть систем дублирует системы главного двигателя (система газораспределения, кривошипно-шатунный механизм, сцепление), а часть систем является дополнительной (карбюратор, бензобак, система электрического зажигания). Целью изобретения является повышение удобства запуска ДВС путем устранения необходимости в энергичном прокручивании при запуске пускового ДВС, а также обеспечение возможности упрощения конструкции пускового устройства в целом. Предлагается способ запуска ДВС, согласно которому сначала запускают вспомогательный пусковой ДВС, с помощью которого прокручивают вал запускаемого ДВС. Цель достигается следующими отличиями. Перед запуском поршень пускового ДВС устанавливают в точку, соответствующую началу рабочего хода, а также заполняют образуемый при этом поршнем и головкой цилиндра, объем камеры сгорания горючей смесью при атмосферном давлении. Порядок совершения указанных действий не имеет значения. Несущественно также, какой в пусковом двигателе используется механизм для передачи движения поршня на вал запускаемого ДВС. Однако, если при этом используется кривошипно-шатунный механизм, то указанное положение начала рабочего хода следует выбрать после верхней мертвой точки. Затем производят зажигание горючей смеси. Образующееся при этом давление продуктов сгорания с поршня пускового двигателя передают на вал запускаемого ДВС с самого начала первого рабочего хода, и совершают один рабочий ход. При этом поршень пускового ДВС и вал запускаемого ДВС двигаются одновременно с ускорением, в результате чего запускаемый ДВС достигает скорости вращения, требуемой условиями надежного пуска, а поршень пускового ДВС в конце рабочего хода автоматически расцепляется с валом запускаемого ДВС и, имея сравнительно небольшую массу, останавливается при ударе в буферное устройство. В исходное положение поршень возвращают только для совершения следующего запуска. При этом, несмотря на использование в пусковом ДВС малоэффективного в термодинамическом отношении процесса, характеризующегося отсутствием предварительного сжатия горючей смеси, что приводит, по сравнению с известным способом, и снижению КПД и литровой мощности пускового ДВС, как двигателя, процесс запуска ДВС по всему комплексу показателей оказывается более эффективным, т. к. КПД и литровая мощность при одноходовом процессе не являются решающими. Цилиндр при этом можно сделать достаточно большого объема и одновременно тонкостенным, и это обеспечит любые потребные энергии запуска. Зато устраняется необходимость прокручивания пускового ДВС при запуске. Установка поршня на начало рабочего хода осуществляется без противодавления и может быть осуществлена возвратной пружиной. Это исключает необходимость применения мускульной энергии или электростартера. Может быть также упрощена и конструкция пускового ДВС, т.к. кривошипно-шатунный механизм может быть заменен реечным, тросовым, ленточным и т.п. Механизмы газообмена, подачи топлива и зажигания, работающие в статике, также могут быть решены более просто. Поскольку скорость воспламенения предварительно заряженной и находящейся в статическом состоянии без турбулентных потоков, горячей смеси может оказаться недостаточна велика, что может привести к тому, что рабочий ход будет совершен ранее достижения максимального давления газов, в одном из вариантов предлагаемого способа в период нарастания давления газов, начиная от момента зажигания, поршень удерживают в исходном положении фиксатором, который отключают не позднее момента достижения максимума давления газов. Этим обеспечивается наиболее полное преобразование тепловой энергии продуктов сгорания в работу по ускорению вала запускаемого ДВС. В технике известны одноходовые ДВС, т.е. такие, весь рабочий цикл которых состоит из одного рабочего хода, минуя ход предварительного сжатия горючей смеси. Особенно это касается наиболее ранних изобретений по ДВС, когда полезная роль сжатия еще не была осознана Однако при переходе к использованию ДВС в качестве пускового двигателя, т.е. в более поздний период времени, логика развития техники увела от мысли использования одноходовых ДВС в виду появления более совершенных ДВС с предварительным сжатием. Эта логика состоит в том, что совершенствуя часть системы, мы совершенствуем и саму систему в целом. Однако в данном случае это утверждение ошибочно. Парадоксальность предлагаемого технического решения, чем и доказывается его неочевидность и соответствие критерию "изобретательский уровень", несмотря на апостериорно кажущуюся очевидную простоту решения, состоит в том, что применение в данном случае в системе менее эффективного процесса в пусковом ДВС приводит к повышению эффективности системы запуска в целом. Это получается вследствие того, что критерии эффективности для двигателя вообще и для пускового двигателя в составе пусковой системы различны, например по КПД, по влиянию литровой мощности на массогабаритные показатели и др. И это не было учтено в существующей технике запуска ДВС. Изобретение поясняется описанием примеров осуществления способа и тремя фигурами. На фиг. 1 изображена схема одного из возможных вариантов пускового ДВС, приспособленного к осуществлению предлагаемого способа. На фиг. 2 показан тот же пусковой ДВС в другой проекции, а также показаны его расположение относительно запускаемого ДВС и связи управления процессом запуска. На фиг. 3 показан тот же пусковой ДВС в третьей проекции. Показаны связи управления клапанами цилиндра. Осуществление предлагаемого способа запуска ДВС рассмотрим на примере с использованием специально приспособленной более простой конструкции вспомогательного пускового ДВС, показанной на фигурах 1 3, хотя в принципе не исключена возможность использования пускового ДВС классической схемы с изменением некоторых конструктивных параметров (объем цилиндра и др.). Перед этим необходимо описать устройство примененного в способе пускового ДВС. Он состоит из цилиндра 1 с поршнем 2. К штоку 3 поршня прикреплен трос 4, намотанный на ролик 5. Последний имеет храповые зубья 6 и возвратную пружину 7. Весь пусковой двигатель выполнен в виде рычага 8, образованного цилиндром 1 и жестко с ним связанным стержнем 9. На конце этого рычага, на оси 10, установлен указанный ролик 5. Сам рычаг 8 с помощью цилиндрического шарнира 11 закреплен на неподвижном основании, общем с основанием запускаемого ДВС 12 так, что зубья 6 при отклонении рычага 8 могут быть введены в зацепление с храповиком 13 вала запускаемого двигателя. За счет сжатой пружины 14 рычаг 8 имеет два устойчивых положения прижатое к храповику 13 двигателя 12 и отведенное от храповика 13 в упор 15. Для вентиляции цилиндра 1 имеется два клапана 16, расположенных в верхней и нижней точках цилиндра и снабженных приводными рычагами 17, срабатывающими от упора в основание всей силовой установки (основание всюду изображено штриховкой около незамкнутой линии). На стержне 8 расположен фиксатор 18 для удержания поршня от преждевременного перемещения и выполненный в виде подпружиненной собачки 19, взаимодействующей со штоком 3 и имеющей регулируемый упор 20, расположенный на основании фиксатора 18. Линия, проходящая через ось 21 собачки и точку a касания собачки со штоком, образует с нормалью к поверхности штока угол, расположенный в пределах конуса трения, что является условием заклинивания штока собачкой. Для подачи горючего имеется поршневой объемный дозатор 22 с винтовой подачей поршня 23 и приводным храповиком 24 для вращения винта. Для выхода жидкости имеется трубка 25, малого внутреннего сечения, подведенная к щели одного из клапанов 16. Причем выходное отверстие трубки 25 расположено выше уровня жидкости в дозаторе 22. Собачка 26 храповика дозатора 22 установлена на рычаге 27, имеющем возвратную пружину 28 и упор 29, ограничивающий ход рычага 27 в регулируемых пределах. Рычаг 27 и рычаг 8 присоединены к концам общего балансира 30, средняя точка которого соединена с ручкой 31 дистанционного управления запуском посредством тяги. Для зажигания, в цилиндре установлен механический фрикционный воспламенитель 32, привод вращения которого также осуществляется дистанционно с помощью ручки 33. Следует также указать на наличие у поршня резинового буфера 34 и штифта 35, служащего для автоматического отключения пускового ДВС в конце рабочего хода поршня. У штока 3 имеется ограничитель хода 36, определяющий точку начала рабочего хода. В задней стенке цилиндра 1 имеется отверстие 37, служащее для воздушного демпфирования движений поршня, а в боковой стенке цилиндра имеется отверстие 38 для стравливания избыточного давления газов в конце рабочего хода. Предлагаемый способ запуска состоит в следующем. Поршень 2 вспомогательного пускового двигателя (фиг. 1) устанавливают в положение, соответствующее началу рабочего хода, как показано на фиг. 1, что осуществляется сразу после выполнения предыдущего запуска автоматически возвратной пружиной 7, наматывающей трос 4 на ролик 5. После этого осуществляют заполнение отсекаемого поршнем 2 в цилиндре 1 объема b горячей смесью. В данном варианте это делается в два этапа. На первом этапе производится вентиляция объема b через клапаны 16 воздухом. Вентиляция осуществляется за счет естественной конвективной тяги от тепла предыдущего запуска, чему способствует наличие двух клапанов 16, расположенных в верхней и нижней точках объема b. Для вентиляции используется все время между двумя очередными запусками, т. к. при нерабочем положении рычага 8, когда зубья 6 отведены от храповика 13, рычаги 17 упираются в основание (фиг. 3), и поэтому клапаны 16 открыты. В других конструктивных вариантах пускового двигателя может быть применена принудительная вентиляция объема b, в т.ч. не только воздухом, но и горячей смесью. Однако в любом случае при этом для исключения больших затрат энергии используются низконапорные средства (не более нескольких сотен Паскалей), т.е. в пределах разброса величин абсолютного давления атмосферы), что и позволяет обобщенно говорить, что заполнение объема b горючей смесью производится при атмосферном давлении. Для запуска пускового ДВС может использоваться как жидкое, так и газообразное горючее. Рассмотрим вариант с применением жидкого горючего. Для запуска лучше всего использовать такую горючую жидкость, которая имеет при температуре цилиндра 1 упругость паров не менее 15 o C 20 мм ртутного столба и не имеет при этом шлейфа трудноиспаряющихся фракций с меньшей упругостью паров. В качестве такой жидкости для запуска летом годится, например обычный бензин, этиловый или метиловый спирт, а для запуска зимой легкие фракции бензина (пентан, гексан), метиловый спирт или этиловый эфир. Возможно использование для зимнего запуска бензина и без отгонки низкокипящих фракции, если увеличить вводимую объемную дозу. Однако это потребует корректировать объем подаваемого горючего в цилиндр 1 в зависимости от температуры цилиндра. Подача горючего в цилиндр 1 производится следующим образом. Перед запуском тянут ручку 31 на себя. При этом, поскольку возвратная пружина 28 собачки 26 дозатора 22 слабее силы, необходимой для перевода рычага 8 в другое положение, то сначала движется только рычаг 27 дозатора. В процессе этого движения собачкой 26 осуществляется ввинчивание поршня 23, вытеснение расположенной под ним жидкости через трубку 25 и впрыскивание ее через щель приоткрытого клапана 16 в полость b цилиндра 1. Объем впрыскиваемой жидкости определяется ходом рычага 27, ограничиваемым упором 29, который может быть изменен в зависимости от применяемого горячего (или от температуры, если используется горячее с наличием трудно испаряющихся фракций). Когда при вытягивании ручки 31 рычага 27 дойдет до упора 29, впрыск горячего заканчивается и в движение приходит рычаг 8, который при этом скачком переводится в положение, соответствующее касанию зубьев 6 с храповиком 13. При этом одновременно под действием своих пружин закрываются клапаны 16, т.к. их приводные рычаги 17 перестают упираться в основание (см. фиг. 3). Осуществив таким образом за счет вытягивания ручки 31 все вышеописанные необходимые операции по подготовке пускового двигателя к пуску и выждав время, необходимое для испарения впрыснутого в цилиндр 1 горючего (1 o C 3 сек), производят зажигание горючей смеси, дергая за ручку 33 и вращая т.о. колесико механического фрикционного воспламенителя 32, вырабатывающего искру. Горючая смесь воспламеняется и давление в полости b начинает возрастать. А поскольку фронт горения в условиях спокойной нетурбулизированной газовой среды распространяется со сравнительно небольшой скоростью, то период нарастания давления может составить несколько десятых долей секунды. Чтобы избежать при этом преждевременного перемещения поршня 2 и совместить по времени его движение с максимумом давления, поршень 2 удерживают после зажигания в исходном положении с помощью фиксатора 18. При этом собачка 19, прижимаемая пружиной к штоку 3, заклинивает шток. По мере возрастания давление газов сила трения и сила давления в точке a контакта собачки 19 со штоком 3 возрастают пропорционально, и результирующий вектор силы остается внутри конуса трения. Т.о. шток удерживается собачкой. Однако по мере возрастания давления собачка 19, имеющая надрез С для понижения ее жесткости, а также детали ее крепления, деформируются, что вызывает небольшое перемещение собачки по направлению к упору 20. И при достижении некоторой силы давления, величина которой может регулироваться положением упора 20, собачка дойдет до упора 20. На этом дальнейший рост силы трения и давления в кинематической цепи собачки 19 прекратится и поршень 2 выдернет шток 3. Начнется рабочий ход поршня 2. Упор 20 регулируют так, чтобы выдергивание штока происходило при силе в 1,5 3 раза меньшей максимальной силы давления газов (в зависимости от скорости распространения пламени применяемого горючего). При этом максимум силы давления буде совмещен по времени с движение поршня и работа продуктов сгорания будет максимальная. На начальном этапе рабочего хода, когда скорость еще не велика, происходит натяжение троса 4 и выбор люфта между зубьями 6 и храповиком 13. Затем ускорение передается на вал запускаемого двигателя 12. На протяжение рабочего хода поршня 2 вал запускаемого ДВС 12 совершает примерно один оборот. При этом площадь поршня 2 подобрана так, что к концу рабочего хода газами совершается работа, достаточная для прокручивания вала на один оборот и сообщения ему остаточной кинетической энергии, соответствующей числу оборотов, необходимых для надежного запуска. В данном случае при любых температурах можно получить в конце рабочего хода скорость вращения вала двигателя 12 не меньше числа оборотов холостого хода двигателя, что обеспечивает надежный запуск двигателя. В конце рабочего хода поршень 2, имея скорость порядка 2 4 м/с, ударяется буфером 34 о заднюю стенку цилиндра 1. При этом газы стравливаются через отверстие 38 до давления, определяемого силой возвратной пружины 7. При этом давление уже можно открыть клапаны 16. За счет удара штифта 35 поршня в основание силовой установки, рычаг 8 возвращается в исходное положение. При этом клапаны 16 открываются. Давление в цилиндре 1 падает до атмосферного и пружина 7 возвращает поршень 2 в исходное положение, определяемое упором 36. Спустя несколько секунд, необходимых для вентиляции цилиндра 1, пусковой двигатель готов к проведению следующего запуска. Если же пусковой двигатель не сработал, то вернуть рычаг 8 в исходное положение можно, нажав на ручку 31. Если по каким-либо причинам пусковой двигатель был запущен в холостую - при расцепленном положении зубьев 6 и храповика 13, то разрушения двигателя все равно не произойдет, т.к. сечение отверстия 37 подобрано так, что оно ограничит возрастание скорости поршня 2, если она превышает номинальную, за счет квадратичной зависимости давления в нерабочей полости цилиндра 1 от скорости истечения воздуха из этой полости при движении поршня 2. Приведем основные параметры процесса запуска и конструкции пускового ДВС, разработанного для автомобилей ВАЗ. Объем полости b 1,5 литра. Рабочий ход поршня 150 мм. Диаметр цилиндра 120 мм. Толщина цилиндра 1 мм. Масса всего пускового устройства около 5 кг. Это в 5 раз меньше массы электростартерной системы, которая может быть снята с автомобиля. Пусковой двигатель удобно размещается в моторном отсеке с левой стороны. При этом ось цилиндра 1 располагается наклонно. Тяги управления запуском выведены в салон. Расход горючего на один запуск в пусковом двигателе менее 1 г. Максимальное давление в цилиндре 1 порядка 5 6 атмосфер. При этом к храповику, расположенному на носке коленвала двигателя ВАЗ прикладывается крутящий момент не более 12 кгс/м, т.е. не более момента затяжки храповика. (Штатный храповик заменяется мелкозубчатым). При рабочем ходе поршня 2 совершается работа около 600 дж. Потребная работа запуска при нормальной температуре около 250 дж. Весь избыток энергии идет на увеличение кинематической энергии коленвала. При этом минимальная частота вращения коленвала, получаемая при низких температурах, составляет не менее 750 об/мин, т.е. не менее оборотов холостого хода двигателя. При этом уже выходит на полную мощность штатный электрогенератор двигателя. Однако для обеспечения возможности запуска двигателя совсем без помощи аккумулятора, необходимо решить проблему повышения скорости тока в обмотке возбуждения генератора. Среди других возможных вариантов осуществления способа следует указать на возможность применить вместо задержки поршня турбулизацию горючей смеси при воспламенении. Можно также повысить скорость воспламенения форкамерным зажиганием, распределением воспламенителей по объему и т.п. Таким образом, предлагаемый способ запуска ДВС исключает необходимость в прокручивании пускового ДВС от постороннего источника энергии, что повышает удобство запуска без применении электростартера. Одноходовый процесс в пусковом ДВС позволяет существенно упростить конструкцию пускового устройства по сравнению с применяемым сейчас двухтактным ДВС классической схемы, т.к. кривошипно-шатунный механизм может быть замещен более простым по типу шнурового, а карбюратор, система газораспределения и система зажигания более простыми системами вентиляции, дозированного впрыска и механическим фрикционным воспламенителем, действующим статически без регламентации по времени. Несмотря на пониженные КПД и литровую мощность, масса и габариты пускового двигателя, а также расход топлива на запуск, не только не возрастают, но также могут быть снижены, т. к. запуск проводится всего за один ход поршня. При этом цилиндр не несет практически никакой тепловой нагрузки, а по условиям механической прочности он, даже при объемах в несколько литров, может быть сделан из листовой стали при толщине стенки менее 1 мм. Причем, за счет возможности значительного увеличения объема цилиндра пускового двигателя (до объемов, превышающих суммарный объем цилиндров запускаемого двигателя), значительно возрастают энергетические возможности пускового устройства и обеспечивается надежный запуск ДВС (особенно дизелей) в любых условиях. Растянутость пресса горения по времени при проведении процесса в нетурбулизированной среде не вызывает увеличения теплоотдачи в стенки цилиндра, т.к. определяющей является конвективная теплопередача, а она, в отсутствии турбулизации, в той же мере замедляется. Предлагаемый способ запуска позволит в массовых автомобилях перейти на работу с легкими щелочными аккумуляторами, необходимыми лишь для обеспечения габаритного освещения и формирования системы зажигания при запуске. Это позволит сэкономить свинец и медь, увеличить полезную нагрузку автомобиля, а также повысить степень готовности автомобиля к использованию после длительной стоянки. Источники информации: 1. ж. Изобретатель и рационализатор, N 6, 1989, с. 12. 2. А.В Кузнецов, Устройство и эксплуатация ДВС. М. Высшая школа, 1979, пл. X, стр. 212 216. (прототип) 3. А.В. Моравский, М.А. Файн. Огонь в упряжке. М. Знание. 1990, стр. 69; 77; 78.

    Формула изобретения

    1. Способ запуска двигателя внутреннего сгорания, включающий запуск вспомогательного пускового двигателя, с помощью которого прокручивают вал запускаемого двигателя внутреннего сгорания, отличающийся тем, что перед запуском вспомогательного пускового двигателя его поршни устанавливают в положение, соответствующее началу рабочего хода, объем, отсекаемый поршнем, заполняют горючей смесью при атмосферном давлении, сжигают горючую смесь, а получаемое давление передают с поршня вспомогательного пускового двигателя внутреннего сгорания на вал запускаемого двигателя внутреннего сгорания с начала его рабочего хода. 2. Способ по п.1, отличающийся тем, что при нарастании давления газов во вспомогательном пусковом двигателе внутреннего сгорания поршень вспомогательного пускового двигателя внутреннего сгорания удерживают в исходном положении фиксатором, который отключают не позднее момента достижения максимального давления газов.

    Пусковой двигатель, или "пускач", представляет собой двигатель внутреннего сгорания карбюраторного типа мощностью 10 лошадиных сил, который используется для облегчения запуска дизельных тракторов и спецтехники. Подобные устройства ранее устанавливались на все тракторы, однако сегодня на их место пришел стартер.

    Устройство пускового двигателя

    Конструкция ПД состоит из:

    • Системы питания.
    • Редуктора пускового двигателя.
    • Кривошипно-шатунного механизма.
    • Остова.
    • Системы зажигания.
    • Регулятора.

    Остов двигателя состоит из цилиндра, картера и головки цилиндров. Части картера соединены между собой болтами. Штифты очерчивают центр пускового двигателя. Передаточные шестерни защищены специальной крышкой и располагаются в передней части картера, цилиндр - в верхней части. Удвоенные литые стенки создают рубашку, в которую подается вода через патрубок. Колодцы, соединенные двумя продувочными окнами, позволяют смеси поступать в картер.

    По своему устройству пусковые двигатели являются двухтактными стартовыми двигателями, идущими в паре с модифицированными дизелями. Двигатели оснащаются однорежимным центробежным регулятором, напрямую подключаемым к карбюратору. Стабильность работы коленвала, как и открытие и закрытие дроссельной заслонки, регулируются в автоматическом режиме. Несмотря на малую мощность (всего 10 лошадиных сил), ПД может вращать коленвал со скоростью 3500 оборотов в минуту.

    Принцип работы пускового двигателя

    Пускач, как и большинство одноцилиндровых двухтактных двигателей, работает на бензине. ПД оснащается свечами зажигания, и электрическим стартером.

    Регулировка и настройка ПД

    Стабильная и корректная работа пускача возможна только при правильной настройке всех механизмов и деталей. Сначала настраивается карбюратор посредством установки длины тяги, объединяющей рычаг дроссельной заслонки и регулятор. Регулировка карбюратора осуществляется на низких оборотах.

    Следующий этап - настройка оборотов коленчатого вала при помощи пружины. Изменение уровня ее сжатия позволяет отрегулировать количество оборотов. Последними регулируются система зажигания и механизм выключения приводной шестерни.

    Двигатель ПД-10

    Основной деталью конструкции ПД-10 является чугунный картер, собранный из двух половин. К картеру посредством четырех шпилек крепится чугунный цилиндр, к передней стенке которого прикреплен карбюратор, к задней - глушитель. Чугунная головка закрывает цилиндр сверху, зажигательная искровая свеча ввернута в центральное отверстие. Наклонное отверстие, или краник, предназначается для продувки цилиндра и заливки топлива.

    Размещен на шарикоподшипниках и роликовых подшипниках во внутренней полости картера. Шестерня крепится на переднем конце коленчатого вала, а на заднем - маховик. Самоподжимные сальники уплотняют места выхода коленчатого вала из картера. Сам коленчатый вал обладает составной конструкцией.

    Система питания представлена воздухоочистителем, топливным баком, карбюратором, фильтром-отстойником, топливопроводом, который соединяет карбюратор и отстойник бачка.

    В качестве топлива для однофазного двигателя с пусковой обмоткой используется смесь из дизельного масла и бензина в соотношении 1:15. Одновременно с этим смесь применяется для смазки поверхностей трущихся деталей двигателя.

    Система охлаждения двигателя общая с дизелем и является водяной термосифонной.

    Система зажигания представлена магнето правого вращения, проводами и свечами. Шестерни коленчатого вала приводятся в действие магнето.

    Электрический стартер провоцирует пусковой момент двигателя ПД-10. Маховик соединяется с шестерней стартера специальным венцом и имеет канавку, предназначенную для ручного запуска двигателя.

    После запуска двигатель с пусковой обмоткой соединяется посредством механизма передачи с основным двигателем трактора. Механизм передачи состоит из фрикционного многодискового сцепления, автомата включения, обгонной муфты и понижающей шестеренной передачи. В пусковой момент асинхронного двигателя автомат включения цепляет шестерню с зубчатым маховиком, приводя в движение Частота вращения коленчатого вала основного двигателя набирается до тех пор, пока он не начнет самостоятельно работать. После этого активируются сцепление и автомат включения. Пускач останавливается после разрыва электрической цепи.

    Для обеспечения корректного пускового момента асинхронного двигателя топливная смесь подается к цилиндрам карбюраторных двигателей системой питания, от которой зависят основные показатели двигателя - экономичность, мощность, токсичность отработанных газов. Система должна содержаться в отличном техническом состоянии при эксплуатации пускачей.

    Преимущества пусковых ДВС и предъявляемые к ним требования

    Среди достоинств двигателей отмечают возможность подогрева моторного масла в картере при помощи отработанных газов и прогрева охлаждающей системы посредством циркуляции охлаждающей жидкости через рубашку охлаждения.

    Карбюраторные двигатели принципиально отличаются от других моторов системой питания, включающей топливную систему и устройства, обеспечивающее его питание воздухом.

    Основные требования, предъявляемые к карбюраторам:

    • Быстрый и надежный пуск двигателя.
    • Тонкое распыление топлива.
    • Обеспечение быстрого и надежного запуска двигателя.
    • Точное дозирование горючего для обеспечения отличных мощностных и экономических показателей во всех режимах работы двигателя.
    • Возможность плавного и быстрого изменения режима работы двигателя.

    Техническое обслуживание ПД

    Техническое обслуживание пускача заключается в регулировке зазоров между контактами прерывателя магнето и электродами свечи зажигания. А также в диагностике и осмотре пусковой рабочей обмотки двигателя.

    Проверка зазоров между электродами

    Свечу зажигания выкручивают, отверстие закрывают заглушкой. Нагар на свече устраняют ее помещением на несколько минут в ванночку с бензином. Изолятор очищают специальной щеткой, корпус и электроды - металлическим скребком. Зазор между электродами проверяют щупом: его величина должна быть в пределах 0,5-0,75 миллиметра. Регулировка зазора осуществляется подгибанием бокового электрода в случае необходимости.

    Исправность свечи проверяется посредством ее подключения к магнето проводами и прокручиванием коленчатого вала до появления искры. После проверки и обслуживания свеча возвращается на место и закручивается.

    Проверка зазора между контактами прерывателя

    Детали прерывателя протираются мягкой тканью, смоченной в бензине. Нагар, образовавшийся на поверхности контактов, зачищается надфилем. Коленчатый вал двигателя прокручивается до максимального размыкания контактов. Измерение зазора осуществляется специальным щупом. Если возникает необходимость в регулировке зазора, то при помощи отвертки ослабляется затяжка винта и крепления стойки. Фитиль кулачка смачивается несколькими каплями чистого моторного масла.

    Регулировка момента зажигания

    Момент зажигания пускового двигателя регулируется после выкручивания свечи зажигания. В отверстие цилиндра опускается глубомер штангенциркуля. Минимальное расстояние до днища поршня показывается глубомером в момент поворота коленчатого вала и поднятия поршня в верхнюю мертвую точку. После этого коленвал проворачивается в обратную сторону, а поршень опускается ниже мертвой точки на 5,8 миллиметра. Контакты прерывателя магнето должны при этом размыкаться кулачком ротора. Если этого не происходит, то магнето поворачивается до размыкания контактов и фиксируется в данном положении.

    Регулировка редуктора

    Техническое обслуживание редуктора пускача заключается в его регулярном смазывании и настройке механизма включения. Муфта редуктора начинает пробуксовывать при регулировке механизма включения в случае чрезмерного износа дисков. Признаками этого является перегрев муфты и слишком медленное вращение коленчатого вала при запуске.

    Механизм включения редуктора регулируется при запуске пусковой шестерни посредством поворота рычага вправо и снятия пружины. Под действием пружины рычаг возвращается в крайнее левое положение и включает сцепление редуктора. При этом угол между вертикалью и рычагом должен составлять 15-20 градусов.

    Рычаг переставляется на шлицах валика в случае, если угол не соответствует указанной норме. Он перемещается из крайнего левого в крайнее правое положение под действием оттяжной пружины. Положение рычага регулируется вилками тяги таким образом, чтобы он располагался в горизонтальном положении, после чего устанавливается пружина. Левый конец прорези серьги при правильной регулировке должен соприкасаться с пальцем рычага, а сам палец - с правым концом прорези серьги с небольшим зазором. На серьге метками ограничена зона, в пределах которой должен находиться палец рычага при включенной муфте редуктора.

    Правильно отрегулированный привод обеспечивает включение пусковой шестерни при поднятии рычага в верхнее крайнее положение и включении муфты редуктора при переходе в крайнее нижнее положение. При включении шестерни должна включаться муфта редуктора, что является обязательным условием.

    Регулировка механизма включения редуктора

    Механизм включения редуктора регулируется посредством перевода рычага управления муфтой во включенное положение его поворотом до упора против часовой стрелки. Отклонение рычага от вертикали не должно превышать 45-55 градусов.

    Для регулировки угла без изменения валика выкручивают болты, рычаг снимают со шлицев и устанавливают в требуемом положении, после чего болты закручивают. Пусковая шестерня, или бендикс, должна находиться в выключенном положении, для чего рычаг проворачивается против часовой стрелки без перемещений.

    Длина тяги регулируется резьбовой вилкой таким образом, чтобы она надевалась на рычаги. Палец рычага пусковой шестерни при этом должен занимать крайнее левое положение прорези. Максимальный зазор между пальцем и прорезью не должен превышать 2 миллиметров. Пальцы шплинтуют после установки тяги, затем затягивают контргайки вилки. Рычаг возвращают в вертикальное положение и соединяют с тягой. Муфта регулирует длину тяги.

    После регулировки механизма необходимо убедиться в том, что рычаг перемещается без заедания. Работа механизма проверяется при запуске. Пусковая шестерня не должна скрежетать во время работы пускового двигателя.

    При правильной регулировке и настройке всех механизмов и деталей обеспечивается стабильная работа двигателя.

    Прежде, чем рассматривать вопрос, как работает двигатель автомобиля , необходимо хотя бы в общих чертах разбираться в его устройстве. В любом автомобиле установлен двигатель внутреннего сгорания, работа которого основана на преобразовании тепловой энергии в механическую. Заглянем глубже в этот механизм.

    Как устроен двигатель автомобиля – изучаем схему устройства

    Классическое устройство двигателя включает в себя цилиндр и картер, закрытый в нижней части поддоном. Внутри цилиндра находится с различными кольцами, который перемещается в определенной последовательности. Он имеет форму стакана, в его верхней части располагается днище. Чтобы окончательно понять, как устроен двигатель автомобиля, необходимо знать, что поршень с помощью поршневого пальца и шатуна связывается с коленчатым валом.

    Для плавного и мягкого вращения используются коренные и шатунные вкладыши, играющие роль подшипников. В состав коленчатого вала входят щеки, а также коренные и шатунные шейки. Все эти детали, собранные вместе, называются кривошипно-шатунным механизмом, который преобразует возвратно-поступательное перемещение поршня в круговое вращение .

    Верхняя часть цилиндра закрывается головкой, где расположены впускной и выпускной клапаны. Они открываются и закрываются в соответствии с перемещением поршня и движением коленчатого вала. Чтобы точно представить, как работает двигатель автомобиля, видео в нашей библиотеке следует изучить также подробно, как и статью. А пока мы попытаемся выразить его действие на словах.

    Как работает двигатель автомобиля – кратко о сложных процессах

    Итак, граница перемещения поршня имеет два крайних положения – верхнюю и нижнюю мертвые точки. В первом случае поршень находится на максимальном удалении от коленчатого вала, а второй вариант представляет собой наименьшее расстояние между поршнем и коленчатым валом. Для того чтобы обеспечить прохождение поршня через мертвые точки без остановок используется маховик, изготовленный в форме диска.

    Важным параметром у двигателей внутреннего сгорания является степень сжатия, напрямую влияющая на его мощность и экономичность.

    Чтобы правильно понять принцип работы двигателя автомобиля, необходимо знать, что в его основе лежит использование работы газов, расширенных в процессе нагревания, в результате чего и обеспечивается перемещение поршня между верхней и нижней мертвыми точками. При верхнем положении поршня происходит сгорание топлива, поступившего в цилиндр и смешанного с воздухом. В результате температура газов и их давление значительно возрастает.

    Газы совершают полезную работу, благодаря которой поршень перемещается вниз. Далее через кривошипно-шатунный механизм действие передается на трансмиссию, а затем на автомобильные колеса. Отработанные продукты удаляются из цилиндра через систему выхлопа, а на их место поступает новая порция топлива. Весь процесс, от подачи топлива до вывода отработанных газов, называется рабочим циклом двигателя.

    Принцип работы двигателя автомобиля – различия в моделях

    Существует несколько основных видов двигателей внутреннего сгорания. Наиболее простым является двигатель с рядным расположением цилиндров. Расположенные в один ряд, они составляют в целом определенный рабочий объем. Но постепенно некоторые производители отошли от такой технологии изготовления к более компактному варианту.

    Много моделей используют конструкцию V-образного двигателя. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Во многих конструкциях количество цилиндров составляет от 6 до 12 и более. Это позволяет значительно сократить линейный размер двигателя и уменьшить его длину.

    Таким образом, разнообразие двигателей позволяет успешно их использовать в автомобилях самого разного назначения. Это могут быть стандартные легковые и грузовые машины, а также спортивные авто и внедорожники. В зависимости от типа двигателя вытекают и определенные технические характеристики всей машины.