Поиск неисправностей в электронных схемах. Как проверить шрус? признаки неисправностей и способы проверки «гранаты Проверка батарейки материнской платы

Неисправности электрооборудования автомобиля встречаются весьма часто и занимают одно из лидирующих мест в списке поломок. Их можно условно поделить на неисправности источников тока (аккумуляторов, генераторов) и неисправности потребителей (оптика, зажигание, климат и т.д.). Основными источниками электропитания автомобиля являются аккумуляторные батареи и генераторы . Неисправность каждого из них ведет к общей неисправности автомобиля и эксплуатации его в ненормальных режимах, а то и вовсе - к обездвиживанию автомобиля.

В электрооборудовании автомобиля аккумулятор и генератор работают в неразрывном тандеме. Если выйдет из строя одно - через некоторое время выйдет из строя и другое. Например, приводит к увеличению зарядного тока генератора. А это влечет за собой неисправность выпрямителя (диодного моста). В свою очередь, при , поступающего от генератора, может увеличиться зарядный ток, что неизбежно приведет к систематической перезарядке батареи, «выкипанию» электролита и скорому разрушению.

Распространенные неисправности генератора:

  • износ или повреждение шкива;
  • износ токосъемных щеток;
  • износ коллектора (токосъемных колец);
  • повреждение регулятора напряжения;
  • замыкание витков статорной обмотки;
  • износ или разрушение подшипника;
  • повреждение выпрямителя (диодного моста);
  • повреждение проводов зарядной цепи.

Распространенные неисправности аккумуляторной батареи:

  • короткое замыкание электродов/пластин батареи;
  • механическое или химическое повреждение пластин аккумулятора;
  • нарушение герметичности банок аккумуляторов - трещины корпуса аккумулятора в результате ударов или неправильной установки;
  • химическое .Основными причинами указанных неисправностей являются:
  • грубые нарушения правил эксплуатации;
  • истечение срока службы изделия;
  • различные производственные дефекты.

Безусловно, конструкция генератора сложнее аккумуляторной батареи. Вполне резонно, что и неисправностей генератора в разы больше, и диагностика их значительно сложнее.

Автомобилисту очень полезно знать основные причины неисправностей генератора , способы их устранения, а также профилактические меры по предотвращению поломок.

Все генераторы подразделяются на генераторы переменного и постоянного тока . Современный легковой транспорт оснащается генераторами переменного тока с встроенным диодным мостом (выпрямителем). Последний необходим для преобразования тока в постоянный, на котором работают электропотребители автомобиля. Выпрямитель, как правило, находится в крышке или корпусе генератора и представляет с последним одно целое.

Все электроприборы автомобиля рассчитаны на строго определенный диапазон рабочих токов по напряжению. Как правило, рабочие напряжения - в диапазоне 13,8–14,7 В. Ввиду того, что генератор «привязан» ремнем к коленчатому валу двигателя, от разных оборотов и скорости движения автомобиля, он будет работать по-разному . Именно для сглаживания и регулирования выдаваемого тока предназначен реле-регулятор напряжения, играющего роль стабилизатора и предотвращающего как скачки, так и провалы рабочего напряжения. Современные генераторы снабжены встроенными интегральными регуляторами напряжения, в просторечье именуемые «шоколадкой» или «таблеткой».

Уже понятно, что любой генератор это достаточно сложный агрегат, чрезвычайно важный для любого автомобиля.

Виды неисправностей генератора

Ввиду того, что любой генератор - это электромеханическое устройство, соответственно и разновидностей неисправностей будет две - механические и электрические .

К первым относятся разрушение креплений, корпуса, нарушение работы подшипников, прижимных пружин, ременного привода и другие, не связанные с электрической частью поломки.

К электрическим неисправностям относятся обрывы обмоток, неисправности диодного моста, выгорание/износ щеток, межвитковые замыкания, пробои, биения ротора, неисправности реле-регулятора.

Нередко симптомы, указывающие на характерные неисправного генератора, могут появиться и вследствие совершенно других неполадок. Как пример - плохой контакт в гнезде предохранителя цепи обмотки возбуждения генератора покажет на неисправность генератора. То же подозрение может возникнуть из-за обгоревших контактов в корпусе замка зажигания. Так же, постоянное горение лампы-сигнализатора неисправности генератора может быть вызвано поломкой реле, мигание этой лампы включающего может свидетельствовать о неисправности генератора.

Основные признаки неисправности автогенератора :

  • При работающем двигателе мигает (или непрерывно горит) контрольная лампа разряда аккумулятора.
  • Разрядка или перезаряд (выкипание) аккумуляторной батареи.
  • Тусклый свет автомобильных фар, дребезжащий или тихий звуковой сигнал при работающем двигателе.
  • Значительное изменение яркости фар при увеличении числа оборотов. Это может быть допустимо при увеличении оборотов (перегазовки) с режима холостого хода, но фары, загоревшись ярко, дальше яркость свою увеличивать не должны, оставаясь в одной интенсивности.
  • Посторонние звуки (вой, писк) исходящие от генератора.

Необходимо регулярно контролировать натяжение и общее состояние ремня привода. При трещинах и расслоениях необходима немедленная замена.

Ремкомплекты генератора

Чтобы устранить указанные неисправности генератора, понадобится провести ремонт. Начиная поиск ремкомплекта генератора в интернете, стоит приготовиться к разочарованию - предлагаемые комплекты, как правило, содержат шайбы, болты и гайки. А вернуть генератору работоспособность порой можно только заменой - щеток, диодного моста, регулятора… Поэтому храбрец, решившийся на ремонт, составляет индивидуальный ремкомплект из тех деталей, которые подходят к его генератору. Выглядит это примерно так, как показывают таблице ниже, на примере пары генераторов для ВАЗ 2110 и Форд Фокус 2.

Генератор ВАЗ 2110 - КЗАТЭ 9402.3701-03 на 80 А. Применяется на ВАЗ 2110-2112 и их модификациях после 05.2004 г., а также на ВАЗ-2170 Лада-Приора и модификациях

Генератор Рено Логан - Bosch 0 986 041 850 на 98 А. Применяется на Renault: Megane, Scenic, Laguna, Sandero, Clio, Grand Scenic, Kangoo, а также Dacia: Logan.

Диагностика неисправностей

На современных автомобилях использование «дедовского» способа путем скидывания с клеммы аккумулятора может привести и к серьезной поломке множества электронных систем автомобиля. Значительные перепады напряжения бортовой сети автомобиля способны вывести из строя почти всю бортовую электронику. Именно поэтому современные генераторы всегда проверяются только путем замера напряжения в сети или диагностики самого снятого узла на специальном стенде. Сначала производится замер напряжения на клеммах аккумулятора, пускается двигатель и снимаются показания уже при работающем моторе. До запуска напряжение должно быть около 12 В, после запуска - от 13,8 до 14,7 В. Отклонение в большую строну свидетельствует, что идете «перезаряд», что подразумевает неисправность реле-регулятора, в меньшую - что ток не поступает. Отсутствие тока подзарядке свидетельствует о неисправности генератора или цепей.

Причины поломок

Распространенные причины неисправностей генератора – это банальный износ и коррозия. Почти все механические неисправности, будь-то износ щеток или развалившиеся подшипники - следствие долгой эксплуатации. Современные генераторы оснащаются закрытыми (не обслуживаемыми) подшипниками, которые просто подлежат замене по истечении определенного срока или пробега автомобиля. То же относится и к электрической части - часто узлы подлежат замене целиком.

Также причинами могут быть:

  • низкое качество изготовления комплектующих;
  • нарушение правил эксплуатации или работа вне пределов нормальных режимов;
  • внешние факторы (соль, жидкости, высокая температура, дорожная «химия», грязь).

Самостоятельная проверка генератора

Самый простой способ - проверить предохранитель. Если он исправен, и его расположение. Проверяется свободное вращение ротора, целость ремня, проводов, корпуса. Если ничего подозрений не вызвало, проверяются щетки и контактные кольца. В процессе работы щетки неизбежно изнашиваются, их может заклинить, перекосить, а канавки токосъёмных колец забиться графитовой пылью. Явный признак этого - избыточное искрение.

Нередки случаи полного износа или поломки, как подшипников, так и поломка статора.

Самая распространенная механическая проблема генератора – износ подшипников. Признак данной неисправности - вой или свист при работе агрегата. Конечно, подшипники нужно немедленно заменить, предварительно осмотрев посадочные места. Ослабление также может быть причиной слабой работы генератора. Одним из признаков может быть высокий по тону свист из-под капота, когда автомобиль газует или разгоняется.

Для проверки обмотки возбуждения ротора на короткозамкнутые витки или обрывы, нужно подключить мультиметр, переключенный в режим измерения сопротивления, к обоим контактным кольцам генератора. Нормальное сопротивление - от 1,8 до 5 Ом. Показания ниже свидетельствует о наличии короткого замыкания в витках; выше – прямой обрыв обмотки.

Для проверки обмотки статора на «пробой на массу», их нужно отсоединить от выпрямительного блока. При показаниях сопротивления, выдаваемых мультиметром, имеющих бесконечно большое значение можно не сомневаться в отсутствии контакта статорных обмоток с корпусом («массой»).

Для проверки диодов в блоке выпрямителя используется мультиметр (после полного отсоединения от обмоток статора). Режим проверки - «проверка диодов». Плюсовой щуп подсоединяется к плюсу или минусу выпрямителя, а минусовой – к выводу фазы. После этого щупы меняют местами. Если при этом значения показаний мультиметра сильно отличаются от предыдущих - диод исправен, если не отличаются - неисправен. Еще одним признаков, свидетельствующим о скорой „кончине“ диодного моста генератора - окисление контактов, а причина этого – перегрев радиатора.

Ремонт и устранение неисправностей

Все механические неполадки устраняются путем замены неисправных узлов и деталей (щеток, ремня, подшипников и т.п.) на новые или исправные. На старых моделях генераторов зачастую требуется проточка контактных колец. Приводные ремни меняются вследствие износа, максимального растяжения или истечение срока эксплуатации. Поврежденные обмотки ротора или статора, их, в настоящее время, меняют на новые в сборе. Перемотка хоть и встречается среди услуг автомастеров, но все реже - это дорого и нецелесообразно.

А вот все электрические проблемы с генератором нужно решать вследствие проверки , как других элементов цепи (в частности АКБ), так и непосредственно его деталей и выходного напряжения. Одной из частых проблем, с которой приходится сталкиваться автовладельцам - это перезаряд , или же наоборот, низкое напряжение генератора . Устранить первую неисправность поможет проверка и замена регулятора напряжения либо диодного моста, а с выдачей низкого напряжения разобраться будет чуть сложнее. Причин, почему генератор выдает низкое напряжение, может быть несколько:

  1. увеличение нагрузки на бортовую сеть потребителями;
  2. пробой одного из диодов на диодном мосте;
  3. выход из строя регулятора напряжения;
  4. проскальзывание поликлинового ремня (вследствие слабого натяжения)
  5. плохой контакт массового провода на генераторе;
  6. короткое замыкание;
  7. просаженный аккумулятор.

Электронный блок управления представляет собой один из основных компонентов автомобиля, поскольку он, по сути, является его «мозгами». Благодаря этому девайсу осуществляется множество различных процессов, обеспечивающих нормальную работу в целом, но как и любое другое устройство, ЭБУ может выйти из строя. Подробнее о том, как проверить ЭБУ на работоспособность и в каких случаях это необходимо — читайте ниже.

[ Скрыть ]

Распространенные неисправности ЭБУ и их причины

Электронная система управления может выйти из строя по разным причинам. Так или иначе, автовладелец в таком случае столкнется с необходимостью проведения диагностики, чтобы точно определить неисправность блока, поскольку в большинстве случаев эти устройства ремонту не подлежат. Как показывает практика, даже специалисты обычно не берутся за ремонт девайса, а просто меняют его на новый. Но в любом случае, перед тем, как попрощаться с ЭБУ, необходимо тщательно разобраться в том, по каким причинам он вышел из строя.


По мнению многих электриков, с которыми мы консультировались при написании этого материала, основной причиной выхода из строя блока являются скачки напряжения в бортовой сети . Перенапряжение же обычно появляется в результате короткого замыкания одного или нескольких соленоидов.

Но это — только одна из самых распространенных причин, по факту их значительно больше:

  1. Выход из строя девайса может произойти в результате его механического повреждения. К примеру, это мог быть сильный удар или большие вибрации, по причине которых на съеме модуля появилась трещина. Также трещины и повреждения могут образоваться в местах пайки элементов или контактов.
  2. Контроллер ЭСУД перегрелся, такая проблема обычно появляется в результате температурных перепадов. На практике известны случаи, когда при низких отрицательных температурах водители заводили двигатели на высоких оборотах, пытаясь обеспечить точный запуск силового агрегата. В этот момент и мог возникнуть перегрев.
  3. Воздействие на контроллер ЭСУД коррозии. Образование коррозии на структуре модуля может быть обусловлено перепадами влажности воздуха в салоне, а также скоплением конденсата или попаданием влаги в моторный отсек транспортного средства.
  4. Нарушение герметизации девайса. Такая проблема приведет к причине неисправности, описанной выше — в частности, попаданию воды в конструкцию модуля.
  5. Если нет связи с ЭБУ то такая неисправность могла быть вызвана вмешательством посторонних в систему управления, что могло способствовать нарушению целостности конструкции. К примеру, если от аккумулятора авто пытались «подкурить» другой автомобиль, при этом двигатель первого был заведен, также с АКБ при работающем моторе могли быть отсоединены клеммы. Кроме того, проблема могла возникнуть в результате того, что при подключении АКБ была перепутана его полярность, то есть клеммы были соединены неправильно. В некоторых случаях неисправность может появиться после включения стартерного узла, к которому не была подключена силовая шина.

В любом случае, по какой бы причине девайс не вышел из строя, проведение ремонта или его замена должны осуществляться после того, как будет выполнена полная диагностика модуля. Необходимо также помнить, что характер поломки может сообщить о возможных неисправностях, присутствующих в работе других систем. Если эти неисправности не будут устранены, это приведет к тому, что новый девайс также выйдет из строя.

Если нет связи с ЭБУ и девайс по каким-то причинам отказывается, автовладелец может заметить это по таким симптомам:

  1. На приборной панели не горит значок Check Engine, появляющийся при определении неисправностей в работе двигателя. Либо же этот значок может мигать или появляться не сразу. Если индикатор мигает, необходимо удостовериться в том, что проблема заключается не в самой лампочке, после этого уже проверять сам блок.
  2. При попытке подключить ЭБУ своими руками к сканер начал выдавать неверные данные, которые вызывают у вас сомнения. То есть информация может в корне отличаться от той, которая должна быть. Если нет связи с ЭБУ, то сканер может и вовсе не распознать это устройство.
  3. Силовой агрегат автомобиль работает со сбоями, троит, может не заводиться или заводиться через раз, также он может даже дымиться. При этом никаких причин такому поведению, в том числе перегрева, нет.
  4. Зажигание автомобиля стало работать с пропусками.
  5. Вентилятор охлаждения двигателя может включаться произвольно, без команды блока управления.
  6. В автомобиле начинают выходить из строя предохранительные элементы, при этом они перегорают неоднократно, а видимых причин тому нет. Если предохранители перегорают, это обычно связано с перенапряжением в бортовой сети или на определенном участке электроцепи, но диагностика не выявляет скачков напряжения.
  7. С различных датчиков импульсы не поступают либо поступают, но нерегулярно.
  8. Кроме того, еще одним симптомом может служить некорректная работа педали газа. Когда водитель жмет ан педаль, она может реагировать на нажатие с замедлением или очень туго. Такой признак является наиболее верным, особенно, если раньше педаль работала в нормальном режиме.
  9. Также на корпусе устройства могут быть видны следы повреждений. Например, это могут быть выгоревшие контакты либо следы подгорания на проводах.
  10. Еще один признак — отсутствие сигналов управления системой зажигания или топливным насосом, регулятором холостого хода и прочими устройствами, работу которых контролирует ЭБУ (автор видео о самостоятельной диагностике — Владимир Чумаков).

Как самостоятельно осуществить диагностику блока?

На первый взгляд может показаться, что диагностика ЭБУ — это сложная задача, с которой справится далеко не каждый. Действительно, произвести проверку своего блока не так просто, но имея теоретические знания, их вполне можно применить на практике.

Необходимые инструменты и оборудование

Чтобы проверить работоспособность модуля самому, нужно будет выполнить ряд действий для подключения к ЭБУ.

Для выполнения проверки вам потребуются следующие устройства и элементы:

  1. Осциллограф. Понятное дело, что такое устройство есть не у каждого автолюбителя, поэтому если у вас его нет, то можно использовать компьютер с заранее установленным на него необходимым диагностическим софтом.
  2. Кабель для подключения к устройству. Вам нужно выбрать адаптер, который поддерживает протокол KWP2000.
  3. Программное обеспечение. Найти диагностический софт сегодня — не проблема. Для этого достаточно промониторить сеть и найти программу, которая подойдет для вашего транспортного средства. Программа подбирается с учетом авто, поскольку на разных машинах ставятся разные блоки управления.

Фотогалерея «Готовимся к диагностике системы»

Алгоритм действий

Процедура диагностики электронной системы управления рассмотрена ниже на примере модуля Бош М 7.9.7. Эта модель блока управления является одной из наиболее распространенных не только в отечественных машинах ВАЗ, но и на авто зарубежного производства. Также нужно отметить, что процесс проверки описан на примере использования программного обеспечения KWP-D.

Итак, как проверить ЭБУ в домашних условиях:

  1. В первую очередь используемый адаптер необходимо соединить с компьютером или ноутбуком, а также самим контроллером ЭСУД. Для этого один конец кабеля подключите к выходу на блоке, а второй — к USB-выходу на компьютере.
  2. Далее, вам необходимо повернуть ключ в замке зажигания машины, но при этом двигатель запускать не нужно. Включив зажигание, на компьютере можно запустить диагностическую утилиту.
  3. Выполнив эти действия, на экране компьютера должно выскочить окно с сообщением, которое подтверждает успешное начало диагностики неисправностей в работе контроллера. Если по каким-то причинам сообщение не появилось, нужно удостовериться в том, что компьютер успешно подключился к контроллеру. Проверьте качество подключения и соединения кабеля с блоком и ноутбуком.
  4. Затем на дисплее ноутбука должна быть выведена таблица, где будут указаны основные технические характеристики и параметры работы транспортного средства.
  5. На следующем этапе вам необходимо обратить внимание на раздел DTC (в разных программах он может называться по-разному). В этом разделе будут представлены все неисправности, с которыми работает силовой агрегат. Все ошибки будут демонстрироваться на экране в виде зашифрованных комбинаций букв и цифр. Для их расшифровки вам нужно зайти в другой раздел, который обычно называется Коды, либо воспользоваться технической документацией к своему авто.
  6. В том случае, если в данном разделе нет ошибок, то вы теперь можете не переживать, поскольку мотор транспортного средства работает отлично (автор видео в домашних условиях — канал АВТО РЕЗ).

Но такой вариант проверки наиболее актуален, если компьютер видит блок. Если же у вас возникли проблемы с подключением к нему, то вам потребуется электрическая схема устройства, а также мультиметр. Сам тестер или мультиметр можно купить в любом тематическом магазине, а электросхема контроллера ЭСУД должна быть в сервисном мануале. Саму схему нужно наиболее внимательно изучить, это потребуется для проверки.

В том случае, если контроллер ЭСУД будет указывать на определенный блок, а не демонстрировать беспорядочные данные, то в соответствии со схемой его нужно найти и прозвонить. Если точной информации нет, то единственным выходом будет диагностика всей системы, как мы уже сказали выше, одной из основных неисправностей считаются пробои.

После того, как пробой будет найден, необходимо произвести проверку сопротивления и точно выявить, в каком месте зафиксирован кабель. Вам нужно будет припаять соответствующий новый провод параллельно старому, если причина кроется в пробое, то эти действия позволят устранить неисправность. Во всех других случаях проблему смогут решить только квалифицированные специалисты.

Видео «Почему контроллер ЭСУД не выходит на связь при проверке»

Из видео, размещенного ниже, вы можете узнать, по каким причинам между контроллером ЭСУД и ноутбуком может отсутствовать связь при проведении диагностики (автор ролика — канал Billye espada).

Данная деталь являет собой особый связующий механизм, он находится между осью и ступицей. К последней крепится диск с покрышкой. Такая деталь выполнена из двух колец, а между ними вставлены конические элементы, изолированные резиновой частью. Этот элемент причисляют к подшипникам качения. Ресурс ступичного подшипника достаточно велик и в среднем составляет 150 тысяч км пробега. Деталь можно не менять на протяжении 5 лет.

Как понять, что ступичный подшипник неисправен? В подобном случае к стандартному шуму покрышек во время движения прибавляется неприятный и очень низкочастотный гул. Помимо постоянного гула во время движения авто поломка ступичного подшипника может сопровождаться следующими «симптомами»:

  1. Авто тянет в сторону – это происходит из-за того, что неисправная деталь как будто стопорится. Как результат, машину тянет вправо или влево, как при неисправности сход-развала.
  2. При изношенном подшипнике обычно появляется вибрация, она во время езды отдает в руль и в кузов. Это один из явных признаков неисправности ступичного подшипника. Важно как можно скорее заменить этот элемент, так как обойма сильно изношена, и вот-вот произойдет «клин».

Ещё один из признаков поломки подшипника качения – своеобразный хруст при движении авто. Это случается из-за того, что обойма практически полностью развалилась и сферические элементы расположены неправильно. Узнать такой хруст легко, его хорошо слышно салоне.

Чем же опасен неисправный подшипник?

Если проигнорировать появившийся гул, свойственный поломке ступичного подшипника, то он будет усиливаться. Как итог, его будет замечать не только водитель, но также и все пассажиры. Неприятный шум при неисправности ступичного подшипника не самая главная проблема.

Намного хуже, что, если не предпринять никаких мер, элемент может заклинить . В итоге полуось полностью деформируется, а шаровая опора рычага моментально выходит из строя. Особенно опасно, когда такая поломка происходит при движении на повышенной скорости, к примеру, за городом.

Почему подшипник может выйти из строя?

Такого рода элементы имеют большой срок службы и ломаются достаточно редко. Однако каждый автомобилист всё-таки сталкивается с подобной проблемой. Наиболее частая первопричина неисправности ступичного подшипника – езда по плохой дороге. Плохое состояние дорог всегда влечёт за собой серьёзные последствия для авто. Именно поэтому существенно увеличивается нагрузка полностью на всю подвеску.

Ещё одна из причин поломки – это неверная запрессовка подшипника.

Если же он будет стоять неправильно, к примеру, наискосок, то он довольно быстро износится. Хватит его не больше, чем на 2 — 3 тысячи километров.

Как проверить неисправность ступичного подшипника

Самым первым признаком того, что неисправен передний ступичный подшипник, будет очень низкочастотный и весьма неприятный гул, который постепенно только нарастает. И всё-таки как проверить подшипник ступицы переднего колеса? Для наиболее детального определения возможно взять на вооружение следующий метод, в котором используются повороты влево и вправо.

  1. В процессе поворота в левую сторону автомобиль начинает крениться на правую сторону. В таком же случае наибольшая нагрузка будет идти на правое колесо, с левого снимается вся нагрузка.
  2. При движении авто на скорости от 10 до 15 км в час из-за очень резкого поворота руля в левую сторону полностью стихает посторонний гул. Это значит, что возникли проблемы со ступичным подшипником левого колеса. Если же шум уходит при повороте только направо, то сломан подшипник правого колеса.

Чтобы сделать диагностику наиболее правильной потребуется приподнять авто домкратом либо подъёмником (если есть). После мотор машины разгоняется до 4 передачи. Скорость должна достигать 70 — 80 км в час помощи автомобильного домкрата. Требуется запустить двигатель, разогнать машину, выжать сцепление, а после отключить передачу. Далее необходимо выйти из салона, а после на слух точно определить источник шума. Когда колесо полностью встанет, нужно взять его в руки по верхней и нижней части, начиная раскачивать его в вертикальном положении.

Наличие пусть даже маленького люфта — в этом случае можно говорить о выявленной поломке ступичного подшипника.

Точно таким же образом можно просмотреть наличие люфта при раскачивании колеса ещё и в горизонтальной плоскости.Существует ещё один вариант, как проверить ступичные подшипники:

  1. Для начала нужно поставить авто на ровную поверхность. С это целью идеально пойдет наиболее ровное асфальтированное покрытие.
  2. В первую очередь проводится проверка на люфт вертикальной оси. Для этого нужно взять колесо в верхней точке и попытаться сильно раскачать.
  3. Если слышны щелчки, то уже можно говорить о наличии ступичного люфта.
  4. Чтобы полностью быть уверенным в наличии неисправности подшипника, нужно приподнять колесо с использованием домкрата и начать быстро вращать его вручную. Если есть хруст, пора ехать на СТО.

Существуют два метода тестирования для диагностики неисправности электронной системы, устройства или печатной платы: функциональный контроль и внутрисхемный контроль. Функциональный контроль обеспе­чивает проверку работы тестируемого модуля, а внутрисхемный контроль состоит в проверке отдельных элементов этого модуля с целью выяснения их номиналов, полярности включения и т. п. Обычно оба этих метода при­меняются последовательно. С разработкой аппаратуры автоматического контроля появилась возможность очень быстрого внутрисхемного кон­троля с индивидуальной проверкой каждого элемента печатной платы, включая транзисторы, логические элементы и счетчики. Функциональ­ный контроль также перешел на новый качественный уровень благодаря применению методов компьютерной обработки данных и компьютерного контроля. Что же касается самих принципов поиска неисправностей, то они совершенно одинаковы, независимо от того, осуществляется ли про­верка вручную или автоматически.

Поиск неисправности должен проводиться в определенной логической последовательности, цель которой - выяснить причину неисправности и затем устранить ее. Число проводимых операций следует сводить к минимуму, избегая необязательных или бессмысленных проверок. Пре­жде чем проверять неисправную схему, нужно тщательно осмотреть ее для возможного обнаружения явных дефектов: перегоревших элементов, разрывов проводников на печатной плате и т. п. Этому следует уделять не более двух-трех минут, с приобретением опыта такой визуальный кон­троль будет выполняться интуитивно. Если осмотр ничего не дал, можно перейти к процедуре поиска неисправности.

В первую очередь выполняется функциональный тест: проверяется работа платы и делается попытка определить неисправный блок и по­дозреваемый неисправный элемент. Прежде чем заменять неисправный элемент, нужно провести внутрисхемное измерение параметров этого эле­мента, для того чтобы убедиться в его неисправности.

Функциональные тесты

Функциональные тесты можно разбить на два класса, или серии. Тесты серии 1 , называемые динамическими тестами, применяются к законченному электронному устройству для выделения неисправного каскада или блока. Когда найден конкретный блок, с которым связана неисправность, применяются тесты серии 2, или статические тесты, для определения одного или двух, возможно, неисправных элементов (резисторов, конден­саторов и т. п.).

Динамические тесты

Это первый набор тестов, выполняемых при поиске неисправности в элек­тронном устройстве. Поиск неисправности должен вестись в направлении от выхода устройства к его входу по методу деления пополам. Суть этого метода заключается в следующем. Сначала вся схема устройства де­лится на две секции: входную и выходную. На вход выходной секции подается сигнал, аналогичный сигналу, который в нормальных условиях действует в точке разбиения. Если при этом на выходе получается нор­мальный сигнал, значит, неисправность должна находиться во входной секции. Эта входная секция делится на две подсекции, и повторяется предыдущая процедура. И так до тех пор, пока неисправность не будет локализована в наименьшем функционально отличимом каскаде, напри­мер в выходном каскаде, видеоусилителе или усилителе ПЧ, делителе частоты, дешифраторе или отдельном логическом элементе.

Пример 1. Радиоприемник (рис. 38.1)

Самым подходящим первым делением схемы радиоприемника является деление на ЗЧ-секпию и ПЧ/РЧ-секцию. Сначала проверяется ЗЧ-секция: на ее вход (регулятор громкости) подается сигнал с частотой 1 кГц через разделительный конденсатор (10-50 мкФ). Слабый или искаженный сигнал, а также его полное отсутствие указывают на неисправность ЗЧ-секции. Делим теперь эту секцию на две подсекции: выходной каскад и предусилитель. Каждая подсекция прове­ряется, начиная с выхода. Если же ЗЧ-секция исправна, то из громкоговорителя должен быть слышен чистый тональный сигнал (1 кГц). В этом случае неис­правность нужно искать внутри ПЧ/РЧ-секции.

Рис. 38.1.

Очень быстро убедиться в исправности или неисправности ЗЧ-секции мож­но с помощью так называемого «отверточного» теста. Прикоснитесь концом отвертки к входным зажимам ЗЧ-секции (предварительно установив регулятор громкости на максимальную громкость). Если эта секция исправна, будет отче­тливо слышно гудение громкоговорителя.

Если установлено, что неисправность находится внутри ПЧ/РЧ-секции, сле­дует разделить ее на две подсекции: ПЧ-секцию и РЧ-секцию. Сначала прове­ряется ПЧ-секция: на ее вход, т. е. на базу транзистора первого УПЧ подается амплитудно-модулированный (AM) сигнал с частотой 470 кГц 1 через раздели­тельный конденсатор емкостью 0,01-0,1 мкФ. Для ЧМ-приемников требуется частотно-модулированный (ЧМ) тестовый сигнал с частотой 10,7 МГц. Если ПЧ-секция исправна, в громкоговорителе будет прослушиваться чистый тональный сигнал (400-600 Гц). В противном случае следует продолжить процедуру разбиения ПЧ-секции, пока не будет найден неисправный каскад, например УПЧ или детектор.

Если неисправность находится внутри РЧ-секции, то эта секция по возмож­ности разбивается на две подсекции и проверяется следующим образом. АМ-сигнал с частотой 1000 кГц подается на вход каскада через разделительный конденсатор емкостью 0,01-0,1 мкФ. Приемник настраивается на прием радио­сигнала с частотой 1000 кГц, или длиной волны 300 м в средневолновом диапа­зоне. В случае ЧМ-приемника, естественно, требуется тестовый сигнал другой частоты.

Можно воспользоваться и альтернативным методом проверки - методом покаскадной проверки прохождения сигнала. Радиоприемник включается и на­страивается на какую-либо станцию. Затем, начиная от выхода устройства, с по­мощью осциллографа проверяется наличие или отсутствие сигнала в контроль­ных точках, а также соответствие его формы и амплитуды требуемым критериям для исправной системы. При поиске неисправности в каком-либо другом элек­тронном устройстве на вход этого устройства подается номинальный сигнал.

Рассмотренные принципы динамических тестов можно применить к любому электронному устройству при условии правильного разбиения системы и подбора параметров тестовых сигналов.

Пример 2. Цифровой делитель частоты и дисплей (рис. 38.2)

Как видно из рисунка, первый тест выполняется в точке, где схема делится при­близительно на две равные части. Для изменения логического состояния сигна­ла на входе блока 4 применяется генератор импульсов. Светоизлучающий диод (СИД) на выходе должен изменять свое состояние, если фиксатор, усилитель и СИД исправны. Далее поиск неисправности следует продолжить в делителях, предшествующих блоку 4. Повторяется та же самая процедура с использовани­ем генератора импульсов, пока не будет определен неисправный делитель. Если СИД не изменяет свое состояние в первом тесте, то неисправность находится в блоках 4, 5 или 6. Тогда сигнал генератора импульсов следует подавать на вход усилителя и т. д.


Рис. 38.2.

Принципы статических тестов

Эта серия тестов применяется для определения дефектного элемента в каскаде, неисправность которого установлена на предыдущем этапе про­верок.

1. Начать с проверки статических режимов. Использовать вольтметр с чувствительностью не ниже 20 кОм/В.

2. Измерять только напряжение. Если требуется определить величину тока, вычислить его, измерив, падение напряжения на резисторе из­вестного номинала.

3. Если измерения на постоянном токе не выявили причину неисправно­сти, то тогда и только тогда перейти к динамическому тестированию неисправного каскада.

Проведение тестирования однокаскадного усилителя (рис. 38.3)

Обычно номинальные значения постоянных напряжений в контрольных точках каскада известны. Если нет, их всегда можно оценить с прие­млемой точностью. Сравнив реальные измеренные напряжения с их но­минальными значениями, можно найти дефектный элемент. В первую очередь определяется статический режим транзистора. Здесь возможны три варианта.

1. Транзистор находится в состоянии отсечки, не вырабатывая никакого выходного сигнала, или в состоянии, близком к отсечке («уходит» в область отсечки в динамическом режиме).

2. Транзистор находится в состоянии насыщения, вырабатывая слабый искаженный выходной сигнал, или в состоянии, близком к насыщению («уходит» в область насыщения в динамическом режиме).

$11.Транзистор в нормальном статическом режиме.


Рис. 38.3. Номинальные напряжения:

V e = 1,1 В, V b = 1,72 В, V c = 6,37В.

Рис. 38.4. Обрыв резистора R 3 , транзистор

находится в состоянии отсечки: V e = 0,3 В,

V b = 0,94 В, V c = 0,3В.

После того как установлен реальный режим работы транзистора, вы­ясняется причина отсечки или насыщения. Если транзистор работает в нормальном статическом режиме, неисправность связана с прохождением переменного сигнала (такая неисправность будет обсуждаться позже).

Отсечка

Режим отсечки транзистора, т. е. прекращение протекания тока, имеет место, когда а) переход база-эмиттер транзистора имеет нулевое напря­жение смещения или б) разрывается путь протекания тока, а именно: при обрыве (перегорании) резистора R 3 или резистора R 4 или когда не­исправен сам транзистор. Обычно, когда транзистор находится в состо­янии отсечки, напряжение на коллекторе равно напряжению источника питания V CC . Однако при обрыве резистора R 3 коллектор «плавает» и теоретически должен иметь потенциал базы. Если подключить вольт­метр для измерения напряжения на коллекторе, переход база-коллектор попадает в условия прямого смещения, как видно из рис. 38.4. По це­пи «резистор R 1 - переход база-коллектор - вольтметр» потечет ток, и вольметр покажет небольшую величину напряжения. Это показание полностью связано с внутренним сопротивлением вольтметра.

Аналогично, когда отсечка вызвана обрывом резистора R 4 , «плавает» эмиттер транзистора, который теоретически должен иметь потенциал ба­зы. Если подключить вольтметр для измерения напряжения на эмиттере, образуется цепь протекания тока с прямым смещением перехода база-эмиттер. В результате вольтметр покажет напряжение, немного большее номинального напряжения на эмиттере (рис. 38.5).

В табл. 38.1 подытоживаются рассмотренные выше неисправности.



Рис. 38.5. Обрыв резистора R 4 , транзистор

находится в состоянии отсечки:

V e = 1,25 В, V b = 1,74 В, V c = 10 В.

Рис. 38.6. Короткое замыкание пе­рехода

база-эмиттер, транзистор на­ходится в

состоянии отсечки: V e = 0,48 В, V b = 0,48 В, V c = 10 В.

Отметим, что термин «высокое V BE » означает превышение нормального напряжения прямого смещения эмиттерного перехода на 0,1 – 0,2 В.

Неисправность транзистора также создает условия отсечки. Напря­жения в контрольных точках зависят в этом случае от природы неис­правности и номиналов элементов схемы. Например, короткое замыкание эмиттерного перехода (рис. 38.6) приводит к отсечке тока транзистора и параллельному соединению резисторов R 2 и R 4 . В результате потенци­ал базы и эмиттера уменьшается до величины, определяемой делителем напряжения R 1 R 2 || R 4 .

Таблица 38.1. Условия отсечки

Неисправность

Причина

  1. 1. V e

V b

V c

V BE

Vac

Обрыв резистора R 1

  1. V e

V b

V c

V BE

Высокое Нормальное

V CC Низкое

Обрыв резистора R 4

  1. V e

V b

V c

V BE

Низкое

Низкое

Низкое

Нормальное

Обрыв резистора R 3


Потенциал коллектора при этом, очевидно, ра­вен V CC . На рис. 38.7 рассмотрен случай короткого замыкания между коллектором и эмиттером.

Другие случаи неисправности транзистора приведены в табл. 38.2.


Рис. 38.7. Короткое замыкание между коллектором и эмиттером, транзистор находится в состоянии отсечки: V e = 2,29 В, V b = 1,77 В, V c = 2,29 В.

Таблица 38.2

Неисправность

Причина

  1. V e

V b

V c

V BE

0 Нормальное

V CC

Очень высокое, не может быть выдержано функционирующим pn -переходом

Разрыв перехода база-эмиттер

  1. V e

V b

V c

V BE

Низкое Низкое

V CC Нормальное

Разрыв перехода база-коллектор

Насыщение

Как объяснялось в гл. 21, ток транзистора определяется напряжением прямого смещения перехода база-эмиттер. Небольшое увеличение этого напряжения приводит к сильному возрастанию тока транзистора. Ко­гда ток через транзистор достигает максимальной величины, говорят, что транзистор насыщен (находится в состоянии насыщения). Потенциал

Таблица 38.3

Неисправность

Причина

  1. 1. V e

V b

V c

Высокое (V c )

Высокое

Низкое

Обрыв резистора R 2 или мало сопротивление резистора R 1

  1. V e

V b

V c

Низкое

Очень низкое

Короткое замыкание конденсатора C 3

коллектора уменьшается при увеличении тока и при достижении насыще­ния практически сравнивается с потенциалом эмиттера (0,1 – 0,5 В). Вооб­ще, при насыщении потенциалы эмиттера, базы и коллектора находятся приблизительно на одинаковом уровне (см. табл. 38.3).

Нормальный статический режим

Совпадение измеренных и номинальных постоянных напряжений и от­сутствие или низкий уровень сигнала на выходе усилителя указывают на неисправность, связанную с прохождением переменного сигнала, на­пример на внутренний обрыв в разделительном конденсаторе. Прежде чем заменять подозреваемый на обрыв конденсатор, убедитесь в его неис­правности, подключая параллельно ему исправный конденсатор близкого номинала. Обрыв развязывающего конденсатора в цепи эмиттера (C 3 в схеме на рис. 38.3) приводит к уменьшению уровня сигнала на выходе усилителя, но сигнал воспроизводится без искажений. Большая утечка или короткое замыкание в этом конденсаторе обычно вносит изменения в режим транзистора по постоянному току. Эти изменения зависят от статических режимов предыдущих и последующих каскадов.

При поиске неисправности нужно помнить следующее.

1. Не делайте скоропалительных выводов на основе сравнения измерен­ного и номинального напряжений только в одной точке. Нужно запи­сать весь набор величин измеренных напряжений (например, на эмит­тере, базе и коллекторе транзистора в случае транзисторного каскада) и сравнить его с набором соответствующих номинальных напряжений.

2. При точных измерениях (для вольтметра с чувствительностью 20 кОм/В достижима точность 0,01 В) два одинаковых показания в разных контрольных точках в подавляющем большинстве случаев указывают на короткое замыкание между этими точками. Однако бывают и исключения, поэтому нужно выполнить все дальнейшие про­верки для окончательного вывода.


Особенности диагностики цифровых схем

В цифровых устройствах самой распространенной неисправностью явля­ется так называемое «залипание», когда на выводе ИС или в узле схемы постоянно действует уровень логического 0 («константный нуль») или ло­гической 1 («константная единица»). Возможны и другие неисправности, включая обрывы выводов ИС или короткое замыкание между проводни­ками печатной платы.


Рис. 38.8.

Диагностика неисправностей в цифровых схемах осуществляется пу­тем подачи сигналов логического импульсного генератора на входы про­веряемого элемента и наблюдения воздействия этих сигналов на состо­яние выходов с помощью логического пробника. Для полной проверки логического элемента «проходится» вся его таблица истинности. Рассмотрим, например, цифровую схему на рис. 38.8. Сначала записываются логические состояния входов и выходов каждого логического элемента и сопоставляются с состояниями в таблице истинности. Подозрительный логический элемент тестируется с помощью генератора импульсов и логи­ческого пробника. Рассмотрим, например, логический элемент G 1 . На его входе 2 постоянно действует уровень логического 0. Для проверки эле­мента щуп генератора устанавливается на выводе 3 (один из двух входов элемента), а щуп пробника - на выводе 1 (выход элемента). Обращаясь к таблице истинности элемента ИЛИ-НЕ, мы видим, что если на одном из входов (вывод 2) этого элемента действует уровень логического 0, то уровень сигнала на его выходе изменяется при изменении логического со­стояния второго входа (вывод 3).

Таблица истинности элемента G 1

Вывод 2

Вывод 3

Вывод 1

Например, если в исходном состоянии на выводе 3 действует логический 0, то на выходе элемента (вывод 1) присутствует логическая 1. Если теперь с помощью генератора изменить логическое состояние вывода 3 к логической 1, то уровень выходного сиг­нала изменится от 1 к 0, что и зарегистрирует пробник. Обратный резуль­тат наблюдается в том случае, когда в исходном состоянии на выводе 3 действует уровень логической 1. Аналогичные тесты можно применить к другим логическим элементам. При этих тестах нужно обязательно пользоваться таблицей истинности проверяемого логического элемента, потому что только в этом случае можно быть уверенным в правильности тестирования.

Особенности диагностики микропроцессорных систем

Диагностика неисправностей в микропроцессорной системе с шинной структурой имеет форму выборки последовательности адресов и данных, которые появляются на адресной шине и шине данных, и последующего сравнения их с хорошо известной последовательностью для работающей системы. Например, такая неисправность, как константный 0 на линии 3 (D 3) шины данных, будет указываться постоянным логическим нулем на линии D 3 . Соответствующий листинг, называемый листингом состояния, получается с помощью логического анализатора. Типичный листинг со­стояния, отображаемый на экране монитора, показан на рис. 38.9. Как альтернатива может использоваться сигнатурный анализатор для сбора потока битов, называемого сигнатурой, в некотором узле схемы и сравнения его с эталонной сигнатурой. Различие этих сигнатур указывает на неисправность.


Рис. 38.9.

В данном видео рассказывается о компьютерном тестере для диагностики неисправностей персональных компьютеров типа IBM PC:

Что же являет собой диагностика неисправностей сотового телефона? Это полная проверка работоспособности всех модулей и функций с последующим выявлением неисправных. Диагностику можно условно разделить на: первичную (предварительную) и детальную. Первичная диагностика позволяет выявить неисправности «на ходу», т.е. без полной разборки телефона. Например, неисправности, связанные со звуком (хрипит динамик), изображением (разбит дисплей) и т.д. Детальная диагностика проводится с разборкой телефона, тщательным осмотром платы и всех функциональных устройств, а также проведением необходимых измерений и замены неисправных компонентов.


При диагностике первым делом (ОБЯЗАТЕЛЬНО!) у хозяина телефона уточняется возможная причина возникновения неисправности. Например, телефон упал, или телефон был залит и т.д. Добросовестные люди могут рассказать полную биографию своего телефона, что во многом помогает ремонтнику. А большинство либо просто скрывают факт своей вины, либо вообще вводят в заблуждение, пытаясь отрицать вину или начинают перекладывать ответственность на детей, друзей и т.п.


Как бы там ни было, всегда нужно полностью детально проверять текущее состояние телефона и сразу же, не откладывая, оповещать хозяев, чтобы потом не возникало проблем, типа: «до вашего ремонта у меня там всё работало!!!». А потом выясняется, что телефон был залит водой и его просто просушили (в лучшем случае) или всего посыпали сахаром/солью да и ещё на зарядку поставили. А потом приносят ремонтировать и с удивлённым лицом говорят: «Да вы что? – Не может быть!» и тому подобное. В таких случаях лучше всего сразу показать состояние и внешний вид телефона изнутри. Большинство вопросов отпадают сами собой.

Собственно, ближе к диагностике

Для начала хочу перечислить несколько моментов, которые необходимо знать, приступая к проведению диагностики:

Все современные телефоны имеют номинальное рабочее напряжение питания 3,6В – 3,7В. При этом на аккумуляторной батарее так же указывают аналогичное напряжение и иногда ёмкость батареи. Но, следует помнить, что полностью заряженная батарея имеет напряжение 4,2В – 4,3В. А при номинальных 3,6В большинство телефонов будут сигнализировать о разряде АКБ и просить зарядить батарею. Исходя из этого становится понятно, что для включения и нормального функционирования телефона достаточно напряжения 3,6В и даже немного менее (некоторые модели исправно работают при напряжении питания 3,3В – 3,4В но с постоянным сообщением о низком заряде). Многие же будут сами отключаться. Поэтому для нормального процесса диагностики и ремонта следует подключать источник питания минимум 3,7В – 3,8В, а лучше 4,0В – 4,2В.

Большинство телефонов можно включить, питая их от блока питания. Достаточно, соблюдая полярность, подключить соответствующие зажимы питающих проводов к контактам коннектора (разъёма/контактной колодки) АКБ и, как обычно, запустить телефон кнопкой включения. А далее можно наблюдать следующее:

А) телефон нормально включится и будет функционировать;

Б) телефон включится и будет ругаться типа «Недопустимая батарея» или «Неизвестный аккумулятор» и т.п.;

В) телефон включится, но попросит установить SIM – карту, даже если она установлена (справедливо для телефонов фирмы NOKIA);

Г) телефон или включится на короткое время и снова отключится или не включится вообще.

Во всех пунктах, кроме а), виновником является отсутствующий «3-й» контакт температурного датчика АКБ (см. выше описание устройства АКБ). В случаях а) и б) можно проводить полную диагностику телефона, кроме зарядки, т.к. для этих целей необходимо подключать батарею соответственно. Для пункта в) можно средний контакт коннектора АКБ соединить с минусовым. После чего телефон исправно запустится с кнопки включения и благополучно увидит SIM-карту. Для пункта г) придётся подключать только заряженный аккумулятор или хитрить со средним контактом путём подбора резистора, номинал сопротивления которого соответствует сопротивлению на плате электроники штатной батареи и соединять его со средним контактом относительно клеммы «-».

В чём отличие подключения телефона от блока питания или от штатной АКБ? Для телефона принципиальной разницы нет. А вот вы можете узнать несколько моментов.

Вариант 1 - включение телефона от штатной АКБ:

Если телефон нормально включился и показывает нормальный заряд батареи, но, очень быстро, особенно в момент регистрации в сети отключается, то это может быть признаком одной из неисправностей:
Аккумулятор телефона утратил свою ёмкость и под нагрузкой его напряжения падает ниже установленного уровня. Следственно – телефон не может работать при напряжении питания ниже допустимого. Данный аккумулятор считается неисправным и подлежит замене.
Телефон имеет повышенное потребление тока. Это указывает на неисправность платы телефона. Данная неисправность может проявиться в результате воздействия на телефон влаги или же удара.

Более точно определить неисправность можно при детальной диагностике.


Вариант 2 - включение телефона от блока питания:

Самым главным преимуществом блока питания (БП) является его универсальность, т.е. от него можно запитать любой телефон, при этом он всегда готов к работе в отличие от разряженного аккумулятора в самый неподходящий момент. А если он ещё оборудован амперметром (с возможно меньшей ценой деления измерительной шкалы) – то здесь можно много чего сказать о работе телефона по показаниям данного прибора. Показания амперметра как раз показывают потребление тока телефоном. Какое потребление считается нормальным? - Для каждого телефона оно своё, но находится примерно в одинаковых пределах. Для наглядности: в выключенном состоянии (при условии полной исправности) телефон не потребляет энергии. Ну если совсем точно, то очень мало, что сравнимо с саморазрядом аккумулятора. Энергия тратится на питание тактового генератора процессора и/или контроллера питания и маленькой части ОЗУ для нормальной работы «часов/даты/будильника» и ещё некоторых служебных процессов телефона. При включении и дальнейшей работе в активный режим переходит масса устройств телефона и потребление возрастает. Больше всего в телефоне потребляют энергию такие узлы:

Подсветка клавиатуры и дисплея ~ 70 – 300 мА (для разных моделей) в активном режиме. В среднем до 150 – 200 мА.

Усилитель мощности GSM-модуля (PA – Power Amplifier). Для разных телефонов по-разному + этот параметр зависит от уровня сигнала покрытия сотовой сети. Чем слабее сигнал – тем больше потребляется энергии. В среднем до 200мА. Некоторые устаревшие телефоны прошлых поколений потребляют, как правило, до 400 мА.

Усилитель мощности звука (Audio Power Amplifier). Зависит от уровня выходного сигнала. В среднем до ~100 мА.

Если телефон включен и находится в дежурном режиме (т.е. ни один из вышеперечисленных модулей в данный момент не активен), потребление очень мало и составляет единицы миллиампер. Периодически проскакивают всплески в момент обмена данными телефона и базовой станции. Если потребление в дежурном режиме постоянно и составляет более миллиампера – с телефоном что-то не так. Аккумулятор такого телефона будет преждевременно разряжаться. Чаще всего это происходит в результате попадания влаги или телефон подвергался ударам или падениям вследствие чего вышли из строя некоторые элементы.

На этот параметр нужно всегда обращать внимание, иначе телефон после ремонта с оставшимся повышенным потреблением обязательно к вам вернётся.

Далее. Никогда не поддавайтесь на провокации со стороны хозяев телефона, которые панически хотят срочно прошить телефон потому, что он у них ГЛЮЧИТ! Терпеть не могу это слово, так как под ним обычно подразумевают ВСЕ ЧТО УГОДНО и вместо того чтобы внятно объяснить конкретную неисправность телефона, просто говорят ОН ГЛЮЧИТ! ВЫ МНЕ ЕГО ПРОШЕЙТЕ! А на самом деле выясняется, что телефон пострадал, причем по вине пользователя. К примеру быстро разряжается АКБ, пропадает связь, не работает клавиатура и тому подобное. Наслушаются друг друга и начитаются в интернете, а потом несут куда угодно, лишь бы только прошить. Какой вид ремонта проводить над телефоном - прошить или не прошить - должны принимать ВЫ после детальной диагностики!

Приступая к диагностике, кроме необходимого оборудования и материалов необходимо иметь минимальный (для начала) набор запчастей - дисплеи, шлейфы, звонки, динамики, микрофоны и т.д. Это и так понятно. Не менее важным моментом является наличие схемы электрической принципиальной с расположением элементов на печатной плате, желательно совместно с инструкцией по разборке/сборке. Ведь разобраться вслепую можно только с опытом и при условии частого ремонта тех или иных моделей. В таких случаях в голове откладывается расположение элементов на плате, что намного ускоряет процесс поиска неисправностей. Найти схемы мобильных телефонов можно в сети Интернет на тематических сайтах, форумах и т.д. Бывают ситуации, когда найти схему на телефон не удается. Чаще всего на очень новые модели телефонов. В таком случае практически всегда можно найти сервис-мануал (от англ. Service-manual) - сервисную инструкцию. Как правило, в ней содержится инструкция по разборке/сборке телефона и фрагменты схемы электрической принципиальной, а также указан (не всегда) алгоритм поиска неисправностей по основным категориям (не включается, не работает динамик/микрофон, не видит сим-карту и т.д.)