Пластичные смазки для автомобилей. Роль пластичной смазки в работе подшипника. Основное свойство пластичных смазок

Пластичные смазки , используются повсеместно. Они обслуживают промышленные станки и конвейеры, сельскохозяйственную технику и городской электротранспорт, подшипниковые узлы, работающие на предельных скоростях и при высоких температурах. Подобные условия эксплуатации диктуют особое внимание к качеству продукта, соответствию всех его характеристик ГОСТу и условиям использования. Пластические смазки позволяют экономить на смазочном материале и успешно применяются как закладные и консервационные, обеспечивая герметичную защиту узла. Свойства смазки определяют компоненты, которые входят в её состав: масло, загуститель, добавочные модифицирующие присадки.

Одним из важнейших условий работы подшипника является правильная его смазка. Недостаточное количество смазочного материала или неправильно выбранный смазочный материал неизбежно приводит к преждевременному износу подшипника и сокращению срока его службы.

Пластичная смазка определяет долговечность подшипника не в меньшей мере, чем материал его деталей. Особенно возросла роль смазки с повышением напряженности работы узлов трения: с повышением частот вращения, нагрузок и в первую очередь температуры (наиболее значительного фактора, обусловливающего долговечность смазочного материала в подшипнике).

Пластичная смазка в подшипниковых узлах выполняет следующие основные функции:

  • образует между рабочими поверхностями необходимую упруго гидродинамическую масляную пленку, которая одновременно смягчает удары тел качения о кольца и сепаратор, увеличивая этим долговечность подшипника и снижая шум при его работе;
  • уменьшает трение скольжения между поверхностями качения, возникающее вследствие их упругой деформации под действием нагрузки при работе подшипника;
  • уменьшает трение скольжения, возникающее между телами качения, сепаратором и кольцами;
  • служит в качестве охлаждающей среды;
  • способствует равномерному распределению тепла, образующегося при работе подшипника, по всему подшипнику и предотвращает этим развитие высокой температуры внутри подшипника;
  • защищает подшипник от коррозии;
  • препятствует проникновению в подшипник загрязнений из окружающей среды.

Смазывание подшипника пластичной смазкой

Смазывание подшипников качения в основном выполняется с помощью пластичных смазочных материалов (пластичных смазок) и жидких масел.

Главными критериями выбора вида смазочного материала являются рабочие условия подшипников качения, а именно:

  • скорость вращения,
  • колебания,
  • влияние окружающей среды (температура, влажность, агрессивность и др.).
  • Жидкие масла являются, несомненно, наиболее предпочтительными для смазывания подшипников. Во всех случаях, где это возможно, следует применять именно их. Существенным преимуществом жидких масел по сравнению с пластичной смазкой является улучшенный отвод тепла и частиц изношенного материала от узлов трения, а также отличная проникающая способность и отличное смазывание. Однако по сравнению с пластичной смазкой недостатками жидких масел являются конструкционные расходы, необходимые для того, чтобы удержать их в подшипниковом узле, а также опасность их утечки. Поэтому на практике по возможности стараются применять пластичные смазочные материалы. Основное преимущество пластичной смазки перед жидким маслом заключается в том, что она более длительное время работает в узлах трения и снижает, таким образом, конструкционные расходы. Более 90% всех подшипников качения смазываются именно пластичной смазкой .

    Пластичные смазки - это мазеобразные продукты, чьи состав и свойства разработаны для снижения трения и износа при превышении широчайшего предела температур и периода времени. Смазки бывают твердыми, полужидкими или мягкими, состоящими из:

    • загустителей,
    • смазочной жидкости, выступающей в качестве базового масла,
    • добавок (присадок).

    Рисунок 1.1 - Микроструктура пластичной смазки

    Масло, присутствующее в смазочном материале, называется его базовым маслом. Пропорции базового масла могут изменяться в зависимости от типа и количества сгустителя и возможного применения смазки. Для большинства смазок, содержание базового масла колеблется от 85% до 97%.

    В качестве базовых масел используют:

    • минеральные масла,
    • синтетические масла, в том числе сложноэфирные синтетические и силиконовые масла;
    • на растительных маслах;
    • на смеси вышеперечисленных масел (в основном минеральных и синтетических).

    Наиболее широкого применяются пластичные смазки на основе минерального масла и металлических мыл, металлических комплексных мыл, неорганических и органических загустителей. Они пригодны для работы при температуре до 150 ºС.

    Синтетические смазки превосходят минеральные по ряду качеств, таких как неокисляемость, низко- и высокотемпературные характеристики, устойчивость по отношению к жидким и газообразным реагентам. Специальное синтетическое базовое масло и загуститель играют немаловажную роль в определении вышеуказанных свойств.

    Сложноэфирное синтетическое масло - это сочетание кислоты, спирта и воды в качестве субпродукта. Сложные эфиры высоких спиртов с двухосновными жирными кислотами формируют сложноэфирные масла, используемые в качестве синтетических смазочных масел и базовых масел. Такие пластичные смазки обычно используются для низких температур и высоких скоростей.

    Различные виды силиконового базового масла имеют в своем составе метил силикона, фенил метил силикона, хлорофенилметил силикона и т.д. В дополнение к обычным металлическим и комплексным мылам, синтетические органические загустители имеют важное значение для производства силиконовых смазок. Они позволяют полнее использовать хорошие высокотемпературные характеристики силиконовых масел. Силиконовые смазки также имеют очень хорошие низкотемпературные параметры. Недостатком является малая нагружаемость смазочной пленки силиконовой смазки. Они непригодны для трения скольжения металла по металлу, так как может появиться значительный износ или рифление.

    В последнее время получили распространение пластичные смазки на основе перфторированного полиэфирного масла (PFPE) , обладающего исключительной термической стабильностью и нетоксичностью, способностью работать в условиях глубокого вакуума и нейтральностью к широкому спектру химических веществ. Смазки с использованием PFPE разрабатываются специально для эксплуатации в условиях:

    • высоких температур - до 300 ºС;
    • глубокого вакуума - остаточное давление до 10 -10 Па и менее;
    • агрессивных сред;
    • возможного контакта с пищевыми продуктами;
    • контакта с различными полимерами.

    Растительные масла в качестве базовых масел пластичных смазок применяются крайне редко. В основном, когда требуются применение возобновляемых ресурсов и возможность биологического распада. Масло из семян рапса — очень экономически эффективное натуральное эфирное базовое масло. Узкий температурный диапазон ограничивает возможности использования. Подсолнечное масло имеет более широкий температурный диапазон. Однако более высокая цена ограничивает экономические возможности использования.

    Для снижения себестоимости в ряде случаев смешиваются дешевые и дорогие виды или сорта базовых масел. Однако при этом эксплуатационные свойства пластичных смазок, основанные на смешанных маслах, могут ухудшиться.

    Загустители делятся на мыльные и немыльные , и сами по себе придают смазке определенные свойства. Мыльные смазки могут быть разделены на простые и сложные (комплексные) мыльные смазки, каждая из которых определяется названием катиона, на котором основано мыло (т.е. литиевые, натриевые, кальциевые, бариевые или алюминиевые мыльные смазки).

    Смазочные вещества, изготовленные из алюминиевых мыл и минеральных масел, характеризуются прозрачностью, хорошим сцеплением и хорошей устойчивостью к воде. Они были очень важны в 1940-х годах, но в настоящее время их место занято другими смазками, например литиевыми. Это связано с тем, что смазки с алюминиевым мылом более устойчивы к сдвигу, имеют относительно низкую точку каплепадения (около 110 0 С), и они могут превращаться в гель. Максимальные температуры колеблются в пределах от 60 0 С до 100 0 С.

    Рисунок 1.2 - Структура пластичной смазки на основе комплексного алюминиевого мыла и минерального базового масла

    Смазочные материалы, производящиеся из комплексных алюминиевых мыл и минеральных или синтетических базовых масел имеют высокую температурную стабильность, хорошую водостойкость; расчетные температуры находятся в пределах до 140 º C, точка каплепадения в некоторых случаях может превышать 250 º C.

    Смазки, производимые из бариевого или комплексного бариевого мыл с минеральными или синтетическими базовыми маслами имеют хорошую водостойкость, высокую нагружаемость и высокую устойчивость к сдвигам. Точка каплепадения для смазки на основе бариевого мыла составляет около 150 º C, точка каплепадения для смазок на комплексного бариевого мыла может превышать 220 º C в некоторых случая (в зависимости от их консистенции). За последние три десятилетия смазочные материалы на основе комплексного бариевого мыл хорошо зарекомендовали себя во всех областях промышленности. Промышленное производство смазок на основе комплексного бариевого мыла достаточно сложно.

    Смазочные материалы основаны на минеральных или синтетических маслах со сгустителями в виде металлических мыл кальция точка каплепадения смазки на основе кальциевого мыла составляет менее 130 º C. Сегодня Са-12-гидроксистеарат используется почти для всех простых кальциевых смазок. Эти смазки разрушаются, если термически перегружены, т.к. вода в загустителе испаряется.

    В применимых диапазонах температур приблизительно до 70 º C, смазки на основе кальциевых мыл становятся водоотталкивающими и полностью водостойкими. Соответственно, концентрация загустителя остается высокой. Если происходит перегрев, то образуется большое количество золы. Смазки на основе кальциевого мыла имеют ограничения только при использовании для роликоподшипников, но эти смазки используются в качестве герметичной смазки для предотвращения попадания воды. Современные смазки на основе комплексного кальциевого безводного мыла имеют диапазон температур, превышающий 120/130 º C, а также точку каплепадения свыше 220 º C. Они имеют хорошую водостойкость в указанном диапазоне температур.

    Смазки на основе минеральных или синтетических масел, загущенные литиевым мылом (рисунки 1-2), отвечают современным стандартам высокого качества, широкого применения и относятся к универсальным смазкам. Сегодня Li-12-гидростеарат используется практически во всех простых литиевых смазках. Они водонепроницаемы, имеют высокую точку каплепадения (около 180 º C), и имеют хорошие и очень хорошие высокотемпературные характеристики, зависящие от базового масла и его вязкости. Смазки на основе комплексных литиевых мыл характеризуются высокой термической стойкостью с точкой каплепадения, превышающей 220 º C, а также высокой стойкостью к окислению.

    Смазочные материалы, изготовленные с применением натриевых или комплексных натриевых мыл и минеральных масел, имеют хорошие адгезионные свойства. Вместе с водой они превращаются в эмульсию, и таким образом, совершенно теряют водостойкость. Малое количество воды поглощается без этого вредного воздействия, но если будет большее количество воды, то смазка превратиться в жидкость и у нее появиться способность к вытеканию. Натриевые смазки имеют относительно малые низкотемпературные характеристики, с диапазоном расчетных температур от -20 до 100 º C. Смазки на основе комплексного натриевого мыла имеют лучшую стойкость к высоким температурам (до 160 º C), и водостойкость в пределах до 50 º C. Смазки на основе комплексных натриевых мыл, содержащие минеральные или синтетические масла, считаются хорошими смазками для высокотемпературных и длительных применений.

    Гелевая смазка содержит неорганический загуститель, т.е. бентонит или силикагель. Этот загуститель состоит из очень тонко распределенных твердых частиц. Пористая поверхность этих частиц имеет свойство поглощать масла. Гелевые смазки не имеют четко определенной точки каплепадения или точки плавления. Они применяются в широком диапазоне температур, водостойкие, но сопротивляемость коррозии часто относительно слабая, что подходит для использования при высоких скоростях и больших нагрузках.

    Полимочевины - это синтетические органические загустители для смазочных материалов. Их точки каплепадения и точки плавления в зависимости от их консистенции превышают 220 0 С. Они обладают превосходной водостойкостью и хорошей смазочной способностью для металлопластиковых пар трущихся деталей и для эластомеров в зависимости от типа базового масла и вязкости. Полиуретановые смазки (таблица 3.10) на основе отдельных видов минеральных или синтетических масел являются хорошими смазками, используемыми длительное время и при высоких температурах.

    Использование пластиков как синтетических органических загустителей привело к новым разработкам в области смазочных материалов. PTFE (тефлон) - один из самых термоустойчивых загустителей для высокотемпературных смазок и смазок длительного использования, базовыми маслами которых являются высококачественные масла, такие как перфторалкиловое сложноэфирное синтетическое масло. Смазки, загущенные PTFE, не имеют определенных точек каплепаденияи точек плавления. Из-за своей сравнительно низкой точки плавления, PE (полиэтилен) достаточно редко используется в качестве загустителя.

    Присадки препятствуют износу и коррозии, обеспечивают дополнительный эффект снижения трения, улучшают сцепление смазки и предотвращают повреждения при пограничном и смешанном процессе трения. Таким образом, присадки улучшают качество, технические характеристики и, особенно, области применения смазки.

    В качестве стандартных смазочных материалов для закрытых подшипников используются пластичные смазки на основе литиевого загустителя и минерального масла с консистенцией NLGI 2 или 3, обеспечивающие работу в диапазоне температур -20 ... 100 ºС. В случае эксплуатации в особых условиях применяются специализированные пластичные смазки. Ниже приведены характеристики и основное назначение пластичных смазок применяемых в некоторых видах подшипников российского производства и ряда зарубежных производителей.

    Для нормальной работы подшипников достаточно небольшого количества смазочного материала. Переполнение подшипникового узла смазкой приводит не только к большим механическим потерям, но и к ухудшению ее свойств из-за повышенной температуры и непрерывного перемешивания всей массы смазок - последняя размягчается и может вытекать из подшипникового узла. Правильное количество смазки для подшипников качения зависит от конфигурации подшипника, скорости, дополнительной направляющей поверхности и уплотнений. Общих правил использования не существует из-за разницы направляющей поверхности подшипников качения и конфигурации.

    Для смазывания подшипников выпускается большое разнообразие пластичных смазок . Некоторые из них, в зависимости от области применения.

    Информация частично взята с сайта http://www.snr.com.ru/e/lubrications_1_2.htm

    Область применения пластичных смазок:

    • Смазки общего назначения

    Смазки пластичные общего назначения применяются во всех областях машиностроения, металлургии, транспорта, сельского хозяйства. Работают в узлах трения при температуре до +70 о С.

    Графитная смазка

    Солидол Ж

    Солидол С

    Смазки пластичные для повышенных температур применяются в энергетике, металлургии, химической и пищевой промышленности. Работоспособны при температуре до +110 о С.

    Консталин

    Смазка 1-13

    • Многоцелевые смазки

    Многоцелевые пластичные смазки для узлов трения машин и механизмов различных отраслей промышленности, сельского хозяйства и транспорта. Работоспособны при температуре от -30 о С до +130 о С в условиях повышенной влажности.

    Фиол-1, Фиол-2

    Литол-24

    Лимол

    • Термостойкие смазки

    Смазки для узлов трения, работающих при температурах свыше +150 о С.

    ВНИИНП-246

    ВНИИНП-231

    ВНИИНП-219

    ВНИИНП-210

    ВНИИНП-207

    Циатим-221

    Смазка Графитол

    • Низкотемпературные смазки

    Пластичные смазки для применения в узлах трения при температурах ниже -40 о С.

    Лита

    смазка ГОИ-54п

    Циатим-203

    Зимол

    • Химически стойкие смазки

    Смазки, стойкие к воздействию агрессивных химических сред.

    ВНИИНП-294

    ВНИИНП-283

    ВНИИНП-282

    Циатим-205

    • Приборные смазки

    Приборные смазки для узлов трения приборов и точных механизмов, работающих при невысоких нагрузках.

    Смазка ОКБ-122-7

    Циатим-201

    • Автомобильные смазки

    Смазки пластичные для применения в узлах автомобилей.

    Смазка №158

    Шрус-4

    • Железнодорожные смазки

    Смазки пластичные, разработанные для железнодорожного транспорта.

    ЖТ-79Л, ЖТ-72

    ЛЗ ЦНИИ

    СТП-з, СТП-л

    • Металлургические смазки

    Металлургические смазки созданы специально для применения в металлургии.

    Смазка ЛС-1П

    • Смазки индустриальные

    Узкоспециализированные смазки для различных отраслей промышленности.

    • Смазки электроконтактные

    Смазки токопроводящие для электрических контактов.

    УВС Суперконт

    УВС Экстраконт

    УВС Примаконт

    ЭПС-98

    • Смазки консервационные

    Пластичные смазки, предназначенные для защиты от коррозии.

    Смазка консервационная пушечная ПВК

    • Смазки канатные

    Канатные смазки и пропиточные составы.

    Торсиол-35, Торсиол-55

    Канатная БОЗ

    • Смазки резьбоуплотнительные (резьбовые)

    Смазки для уплотнения резьбовых соединений

    Арматол-60

    Арматол-238

    Резьбол Б

    Компания Центр-Ойл производит пластичные смазки.

    Пластичные смазки использовались еще в XIV веке до н.э. египтянами для осей деревянных колесниц. Изготавливали их из оливкового масла, смешивая его с известью.

    Современные смазки представляют собой многокомпонентные структуры, отвечающие многим, зачастую противоречивым требованиям, которые выдвигает специфика работы различных узлов.

    Пластичные смазки используют для уменьшения трения и износа узлов, в которых создавать принудительную циркуляцию масла нецелесообразно или невозможно. Легко проникая в зону контакта трущихся деталей, смазки удерживаются на трущихся поверхностях, не стекая с них, как это происходит с маслом. Смазки применяются также в качестве защитных или уплотнительных материалов.

    К достоинствам пластичных смазок следует отнести способности:

      Удерживаться

      Не вытекать

      Не выдавливаться из негерметизированных узлов трения

      Более широкий, чем у масел, температурный диапазон применения

    Все это позволяет упростить конструкцию узлов трения, следовательно, уменьшить их металлоемкость и стоимость. Некоторые смазки обладают хорошей герметизирующей способностью и хорошими консервационными свойствами.

    Основными недостатками являются удержание продуктов механического и коррозионного износа, которые увеличивают скорость разрушения трущихся поверхностей, и плохой отвод тепла от смазываемых деталей.

    По области применения в соответствии с ГОСТ смазки делятся на следующие группы:

    • Антифрикционные смазки – снижают силу трения и износ различных трущихся поверхностей
    • Консервационные смазки – предотвращают коррозию металлических поверхностей механизмов при их хранении и эксплуатации
    • Уплотнительные смазки – герметизируют и предотвращают износ резьбовых соединений и запорной арматуры (вентили, задвижки, краны)
    • Канатные смазки – предотвращают износ и коррозию стальных канатов

    В автомобилях наибольшее распространение получили антифрикционные смазки многоцелевые.

    В бывшем СССР до 1979 г. наименования смазок устанавливали произвольно.

    В результате одни смазки получили словесное название (Солидол-С), другие – номер (№ 158), третьи – обозначение создавшего их учреждения (ЦИАТИМ-201, ВНИИНП-292). В 1979 г. был введен ГОСТ 23258-78 (действующий в настоящее время в России), согласно которому наименование смазки должно состоять из одного слова и цифры.

    За рубежом фирмы-производители вводят наименование смазок произвольно из-за отсутствия единой для всех классификации по эксплуатационным показателям (за исключением классификации по консистенции).

    Это привело к появлению огромного ассортимента пластичных смазок.

    Не каждая смазка допускает перемешивание с другой, поэтому перед закладкой новой смазки рекомендуется тщательно удалить остатки старой. Сделать это необходимо еще и потому, что старая смазка содержит продукты износа. Отечественные автомобили смазываются в соответствии со своей картой смазки. В случае ее отсутствия можно воспользоваться таблицей.

    Узел трения
    Наименование смазки
    Регулируемые подшипники ступицы, нерегулируемые подшипники полуоси
    Литол-24, ЛСЦ-15, Зимол, Лита
    Подшипники промежуточной опоры карданного вала
    Литол-24, ЛСЦ-15
    Подшипники генератора, стартера и других электродвигателей, оси октан-корректора распределителя зажигания
    Фиол-2М*, Литол-24, Зимол, № 158, ЦИАТИМ-201
    Игольчатые подшипники карданных шарниров
    Фиол-2У*, ШРУС-4*, № 158
    Шарниры равных угловых скоростей
    ШРУС-4
    Шарниры подвески и рулевого управления, имеющие пресс-масленки
    ШРБ-4, ШРУС-4, Литол-24
    Герметизированные разборные шарниры подвески
    ШРБ-4*
    Герметизированные шарниры рулевого управления
    ЛСЦ-15*
    Герметизированные неразборные шарниры подвески
    ШРБ-4*
    Шлицевые соединения
    ЛСЦ-15*, Литол-24
    Оси, валики, подшипники скольжения, петли, тросы в оболочках
    ЛСЦ-15*, Литол-24, ЦИАТИМ-201
    Гибкий вал спидометра
    ЦИАТИМ-201
    Переключатель указателей поворота
    КСБ*
    Шарниры и оси привода педалей газа, выключения сцепления
    ЛСЦ-15*
    Шарниры подвески и рулевого управления легковых автомобилей ГАЗ
    ВНИИ НП-242*, Фиол-2У
    Рессоры
    Графитная, Лимол, ВНИИ НП-232
    Монтаж деталей, работающих в контакте резина – металл
    ДТ-1
    Стеклоподъемники, замки, стопорные механизмы дверей
    ЛСЦ-15*

    * Применяется в качестве несменяемой на весь период эксплуатации.

    Подделка или смазка, не соответствующая названию на упаковке, выявляется в некоторых случаях достаточно просто.

    Встретив в розничной торговле смазку в банке или тюбике с обозначением неизвестной вам фирмы, обратите внимание на товарный знак изготовителя. Если таковой отсутствует на упаковке, желательно посмотреть на сертификат соответствия, где должен быть обязательно указан изготовитель смазки и другая ценная информация (срок действия сертификата, данные об испытательной лаборатории, проводившей анализ, информация об органе, выдавшем сертификат).

    Например, вы взяли смазку Литол-24, вызывающую у вас сомнение. Попробуйте опустить небольшую емкость с небольшим количеством смазки в кипящую воду. Плавление проверяемой смазки означает, что это не Литол-24 и ее применение обязательно вызовет нежелательные последствия для узлов автомобиля.

    Подавляющее большинство современных смазок (в т. ч. литиевые) имеют температуру каплепадения значительно выше +100 °С. Специалистам известны случаи продажи банок с наименованием ШРУС-4, которые были наполнены дешевой графитной смазкой, представляющей собой смесь порошкообразного графита и Солидола, с максимальной температурой применения +65 °С.

    Зарубежные производители пластичных смазок – это в основном крупные нефтеперерабатывающие корпорации, известные автолюбителям по производимым ими качественным моторным и трансмиссионным маслам.

    Пластичные автомобильные смазки


    От узлов шасси автомобиля требуется длительная работа без обслуживания, в том числе без пополнения их смазочными материалами. Увеличение средних скоростей автомобилей, внедрение перспективных конструкторских разработок, направленных на повышение надежности, безопасности, снижение металлоемкости, ведет, как правило, к уменьшению габаритов узлов шасси и ужесточению режимов работы смазочных материалов.

    В автомобильной технике используется 15- 20 марок пластичных смазок. Большая часть их рассчитана на весь срок службы автомобиля и применяется только при сборке автомобилей, а б эксплуатации используют не более 3-5 типов смазок. Число механизмов, узлов и деталей автомобиля, смазываемых пластичными смазками (ступицы колес, подшипники электрооборудования, сцепление, точки смазки шасси, рулевого управления, кузова и др.), значительно больше, чем смазываемых маслами (двигатель, коробка передач, задний мост, картер руля). В новых моделях автомобилей смазки вытеснили масло из рулевого механизма, исчезают подшипники ступиц колес с закладной смазкой (вместо них применяют закрытые подшипники) и др.

    Пластичные смазки по свойствам занимают промежуточное положение между маслами и твердыми смазками. Они сочетают свойства твердого тела и жидкости, что связано с их строением. Грубой моделью смазки может служить кусок ваты, пропитанный маслом. Волокна ваты соответствуют частицам дисперсной фазы, а масло, удерживаемое в вате, дисперсионной среде смазки. Наличие структурного каркаса придает смазке свойства твердого тела. Под действием собственного веса оп не разрушается, однако достаточно приложить нагрузку, как каркас разрушается и смазка деформируется как пластичное тело. После снятия нагрузки течение смазки прекращается, и каркас практически мгновенно восстанавливается.

    В качестве загустителей (веществ, из которых образованы твердые частицы дисперсной фазы) используют вещества органического или неорганического происхождения: мыла, парафин, пигменты и др. Содержание загустителя в пластичных смазках составляет от 5 до 30 %. В небольших количествах в смазках присутствуют другие компоненты: присадки, твердые добавки, свободные щелочи или кислоты, диспергаторы и др. Однако основные эксплуатационные свойства определяются именно загустителем, поэтому смазки обычно называют по типу загустителя.

    Наибольшее распространение получили мыльные смазки, загущенные солями жирных кислот. При производстве смазок мыла получают нейтрализацией высших жирных кислот гидроксидами металлов (щелочами) .

    За рубежом для этой цели применяют индивидуальные жирные кислоты и природные жиры (животные), в СССР - синтетические жирные кислоты, природные жиры. Известны смазки, загущенные мылами лития, натрия, калия, магния, кальция, цинка, стронция, бария, алюминия, свинца. Однако наиболее широко распространены только кальциевые, литиевые, натриевые, бариевые и алюминиевые смазки, загущенные мылами соответствующих металлов.

    Длительное время в нашей стране основными смазками для старых моделей автомобильной техники являлись кальциево-натриевые смазки типа Солидол, 1-13, ЯНЗ -2 и др. Эти смазки недостаточно водостойки, работоспособны в узком интервале температур,.обладают низкой механической стабильностью, быстро выбрасываются, вытекают из подшипников и других узлов трения. Указанными недостатками и обусловливается ограниченная работоспособность данных смазок, а следовательно, частая их смена в автомобильных узлах при эксплуатации.

    С 1970 г. в СССР начато производство комплексных кальциевых, бариевых и других смазок. Для автомобильного транспорта особенно перспективной явилась разработка высококачественных многоцелевых пластичных смазок на оксистеарате лития типа Литол-24. В настоящее время «Ли-тол-24» получил наиболее широкое распространение для смазки узлов легковых автомобилей. Для этого вида техники используются и некоторые другие литиевые смазки, ЛСЦ -15, Фиол-1, Фиол-2, Фиол-2у, ШРУС -4. Среди новых смазок есть бариевая смазка (ШРБ -4), натриевая (КСБ ). Выпускаются также немыльные смазки: углеводородная, ВТВ -1, силикаге-левые Лимол и Силикол.

    При сборке автомобилей на Волжском автозаводе смазками смазывают около 130 различных точек. Подавляющее большинство точек смазывают четырьмя смазками: ЛСЦ -15, Литол-24, ВТВ -1 и Фиол-1. Остальные смазки являются более узкоспециализированными. Например, при сборке автомобилей на ВАЗ е используют 12 смазок:

    Создание новых моделей автомобилей и узлов к ним, а также необходимость повышения ресурса отдельных узлов потребовали внедрения перспективных смазок. Так, при сборке шаровых шарниров с тефлоном на ВАЗ е была применена дисульфидмолибденовая смазка «Лимол», так как другие смазки не выдерживали нагрева, предусмотренного технологией сборки шарнира.

    Недостаточная долговечность игольчатых подшипников карданного вала автомобиля ВАЗ послужила причиной замены в них «Литола-24» на «Фиол-2у». Появление на автомобиле вакуумного усилителя потребовало применения новой смазки «Силикол» и т. д. При подборе смазок для конкретного узла трения решающее значение имеют их эксплуатационные характеристики. Для оценки этих характеристик в СССР имеется около 20 стандартизованных методов испытаний.

    Смазки в первую очередь характеризуются консистенцией. Консистенцию смазок определяют показателем пенетрации по ГОСТ 5346-78 при 25 °С. В сосуд со смазкой погружается металлический конус под действием собственного веса (1 Н). Чем больше глубина погружения, тем «мягче» смазка и тем больше величина (число) пенетрации.

    Кроме консистенции смазки характеризуются температурами каплепа-дения и сползания, пределом прочности на сдвиг, вязкостью при различных температурах, механической стабильностью, испаряемостью, коллоидной стабильностью, окисляемостью, антикоррозионными и защитными

    свойствами, водостойкостью, содержанием кислот, щелочей и механических примесей (абразивы).

    Для того чтобы облегчить подбор смазок и их заменителей, в табл. 1.18 приведены основные марки смазок, применяемые при изготовлении и эксплуатации автомобилей, с оценкой их свойств по пятибалльной системе: 1 балл - характеристики смазки по данному показателю неудовлетворительные; 2 балла - недостаточно удовлетворительные; 3 балла - удовлетворительные; 4 балла - хорошие; 5 баллов - отличные.

    Наибольшим их достоинством является широкий температурный интервал, работоспособность при температуре до 120-130 °С и высокая механическая стабильность. Последнее свойство особенно важно для герметизированных узлов, в частности для подшипников скольжения и шарнирных соединений, т. е. для таких узлов, в которых вся смазка подвергается деформации. Из-за низкой механической стабильности смазка «Солидол С» в процессе эксплуатации разупрочняется и вытекает из узлов, в то время как «Литол-24» сохраняет свои свойства, удерживается в узле и обеспечивает длительную работу подшипников качения и скольжения без смены и пополнения. Поэтому периодичность смены смазки при применении «Литола-24» по сравнению со смазкой «Солидол С» в шарнирах рулевых и реактивных тяг увеличена в 3 раза, а в шлицевых соединениях карданного вала - в 5-6 раз. Срок службы смазки до замены в подшипниках ступиц колес при переходе со смазки 1-13 на «Литол-24» увеличивается в 2-3 раза. Одним из основных видов повреждения подшипников в процессе эксплуатации является пит-тинг поверхностей трения. Появление питтинга зависит от антипиттинго-вых свойств пластичных смазок. Из этих данных следует, что наихудшими антипиттинговыми свойствами обладают смазки «Солидол С», смазки же ЦИАТИМ -201, ЯНЗ -2 и 1-13 близки между собой, а «Литол-24» и особенно смазка № 158 значительно превосходят их по этому показателю.

    Масло Тип передачи Срок смены масла, тыс. км Минимальная температура применения, °С
    ТСгип Ведущие мосты старых моделей легковых автомобилей 24...30 -20
    ТАД-17И Коробки передач и ведущие мосты легковых и грузовых автомобилей 60...80 -30
    ТАп-15В Коробки передач грузовых автомобилей с карбюраторными двигателями; ведущие мосты с негипоидными передачами легковых и грузовых автомобилей 24...72 -25
    ТСп-15К Коробки передач, ведущие мосты грузовых автомобилей с негипоидными передачами 36...72 -30
    ТСп-14гип Ведущие мосты грузовых автомобилей с гипоидными передачами -30
    ТСп-10 Коробки передач грузовых автомобилей с карбюраторными двигателями; ведущие мосты грузовых автомобилей с негипоидными передачами 35...50 -45
    ТСз-9гип Коробки передач и ведущие мосты автомобилей при эксплуатации на Севере Зимний период -50
    ТМ5-12рк Коробки передач и ведущие мосты грузовых автомобилей -50

    За рубежом для маркировки трансмиссионных масел используют классификации SAE и API.

    По классификации SAE масла подразделяются на летние (например, SAE140), зимние (75W) и всесезонные (75W90). Соответствие классов вязкости по ГОСТУ и SAE приведено в табл. 23.

    Таблица 23

    Примерное соответствие классов вязкости трансмиссионных масел по ГОСТ и SAE

    По классификации API трансмиссионные масла подразделяются по уровню противоизносных и противозадирных свойств:

    GL-1 - применяются в зубчатых зацеплениях при невысоких давлениях и скоростях скольжения (не содержат присадок);



    Всего 5 классов, которые соответствуют группам, обозначенным по ГОСТ ТМ-1,-2,-3,-4,-5 .

    Пластичные смазки используют для уменьшения трения и износа узлов, в которых создавать принудительную циркуляцию масла нецелесообразно или невозможно. Легко проникая в зону контакта трущихся деталей, смазки удерживаются на трущихся поверхностях, не стекая с них, как это происходит с маслом. Смазки применяются также в качестве защитных или уплотнительных материалов.

    Достоинства и недостатки смазок

    К достоинствам следует отнести способность удерживаться, не вытекать и не выдавливаться из негерметизированных узлов трения, более широкий, чем у масел, температурный диапазон применения. Перечисленные достоинства позволяют упростить конструкцию узлов трения, следовательно, уменьшить их металлоемкость и стоимость. Некоторые смазки обладают хорошей герметизирующей способностью и хорошими консервационными свойствами.

    Основными недостатками являются удерживание продуктов механического и коррозионного износа, которые увеличивают скорость разрушения трущихся поверхностей, и плохой отвод тепла от смазываемых деталей.

    Состав пластичных смазок. Масло является основой смазки, и на него приходится 70-90 % от ее массы. Свойства масла определяют основные свойства смазки. Загуститель создает пространственный каркас смазки. Упрощенно его можно сравнить с поролоном, удерживающим своими ячейками масло. Загуститель составляет 8-20 % от массы смазки.

    Добавки необходимы для улучшения эксплуатационных свойств. К ним относятся:

    Присадки - преимущественно те же, что используются в товарных маслах (моторных, трансмиссионных и т. п.). Представляют собой маслорастворимые поверхностно-активные вещества и составляют 0,1-5 % от массы смазки;

    Наполнители - улучшают антифрикционные и герметизирующие свойства. Представляют собой твердые вещества, как правило, неорганического происхождения, нерастворимые в масле (дисульфид молибдена, графит, слюда и др.), составляют 1-20 % от массы смазки;

    Модификаторы структуры - способствуют формированию более прочной и эластичной структуры смазки. Представляют собой поверхностно-активные вещества (кислоты, спирты и др.), составляют 0,1- 1 % от массы смазки.

    Основные показатели качества смазок

    Пенетрация (проникновение) - характеризует консистенцию (густоту) смазки по глубине погружения в нее конуса стандартных размеров и массы. Пенетрация измеряется при различных температурах и численно равна количеству миллиметров погружения конуса, умноженному на 10.

    Температура каплепадения - температура падения первой капли смазки, нагреваемой в специальном измерительном приборе. Практически характеризует температуру плавления загустителя, разрушения структуры смазки и ее вытекания из смазываемых узлов (определяет верхний температурный предел работоспособности не для всех смазок).

    Предел прочности при сдвиге - минимальная нагрузка, при которой происходит необратимое разрушение каркаса смазки и она ведет себя, как жидкость.

    Водостойкость - применительно к пластичным смазкам обозначает несколько свойств: устойчивость к растворению в воде, способность поглощать влагу, проницаемость смазочного слоя для паров влаги, смываемость водой со смазываемых поверхностей.

    Механическая стабильность - характеризует тиксотропные свойства, т.е. способность смазок практически мгновенно восстанавливать свою структуру (каркас) после выхода из зоны непосредственного контакта трущихся деталей. Благодаря этому уникальному свойству, смазка легко удерживается в негерметизированных узлах трения.

    Термическая стабильность - способность смазки сохранять свои свойства при воздействии повышенных температур.

    Коллоидная стабильность - характеризует выделение масла из смазки в процессе механического и температурного воздействия при хранении, транспортировке и применении.

    Химическая стабильность - характеризует в основном устойчивость смазок к окислению.

    Испаряемость - оценивает количество масла, испарившегося из смазки за определенный промежуток времени, при ее нагреве до максимальной температуры применения.

    Коррозионная активность - способность компонентов смазки вызывать коррозию металла узлов трения.

    Защитные свойства - способность смазок защищать трущиеся поверхности металлов от воздействия коррозионно-активной внешней среды (вода, растворы солей и др.).

    Вязкость - определяется величинами потерь на внутреннее трение в смазке. Фактически определяет пусковые характеристики механизмов, легкость подачи и заправки в узлы трения.

    Пластичные смазки по консистенции занимают промежуточное положение между маслами и твердыми смазочными материалами (графитами). Несмотря на отсутствие в качестве критериев разбивки на классы других характеристик смазок, эта классификация признана основополагающей во всех странах. Некоторые производители указывают в документации не только класс смазки, но и уровень пенетрации.

    Пластичные смазки (ПС) - это густые мазеобразные продукты. Имеют два основных компонента - масляную основу (дисперсионная среда) и твердый загуститель (дисперсная среда). Для улучшения консервационных, противоизносных свойств, химической стабильности, термостойкости в смазки вводят присадки в количестве 0,001...5 %.

    Следует отметить, что не все нижеперечисленные классификации являются общепринятыми для отечественных и зарубежных производителей.

    В классификационном обозначении указывают:

    Дисперсионную среду;

    Консистенцию.

    Загуститель обозначается первыми двумя буквами входящего в состав мыла металла: "Ка" - кальциевое; "На" - натриевое; "Ли" - литиевое.

    Тип дисперсионной среды и присутствие твердых добавок обозначают строчными буквами: "у" - синтетические углеводороды, "к" -кремнийорганические жидкости, "г" - добавки графита, "д" - добавка дисульфита молибдена. Смазки на нефтяной основе индекса не имеют.

    Классификация по типу масла (основы):

    На нефтяных маслах (полученных переработкой нефти);

    На синтетических маслах (искусственно синтезированных);

    На растительных маслах;

    На смеси вышеперечисленных масел (в основном нефтяных и синтетических).

    Классификация по природе загустителя.

    Мыльные - это смазки, для производства которых в качестве загустителя применяют мыла (соли высших карбоновых кислот). В свою очередь, их подразделяют на натриевые (созданы в 1872 г.), кальциевые и алюминиевые (созданы в 1882 г.), литиевые (созданы в 1942 г.), комплексные (например, комплексные кальциевые, комплексные литиевые) и др. На мыльные приходится более 80 % всего производства смазок.

    Углеводородные - смазки, для производства которых в качестве загустителя используются парафины, церезины, петролатумы и др.

    Неорганические - смазки, для производства которых в качестве загустителя используются силикагели, бентониты и др.

    Органические - смазки, для производства которых в качестве загустителя используются сажа, полимочевина, полимеры и др.

    Классификация по области применения в соответствии с ГОСТ 23258-78 делит смазки на следующие группы.

    Антифрикционные - снижают силу трения и износ различных трущихся поверхностей.

    Консервационные - предотвращают коррозию металлических поверхностей механизмов при их хранении и эксплуатации. Консервационные - предназначены для предотвращения коррозии металлических поверхностей при хранении и эксплуатации, обозначаются индексом "З".

    Уплотнительные - герметизируют и предотвращают износ резьбовых соединений и запорной арматуры (вентили, задвижки, краны). Уплотнительные делятся на три группы: А - арматурные; Р -резьбовые; В - вакуумные.

    Канатные - предотвращают износ и коррозию стальных канатов. Канатные смазки обозначаются индексом "К".

    В свою очередь, антифрикционная группа делится на подгруппы: С - общего назначения для температур до 70 °С, О - для повышенной температуры (до 110 °С), М - многоцелевые (-30...130 °С); Ж - термостойкие (150 "С и выше), Н - морозостойкие (ниже -40 0 С); И - противозадирные и противоизносные; П - приборные; Д - приработочные; Х - химически стойкие.

    Пример. ПС Литол-24 (товарная марка) имеет следующее классификационное обозначение МЛи4/13-3: "М" - многоцелевая антифрикционная, работоспособна в условиях повышенной влажности; "Ли" - загущена литиевыми мылами; "4/13" - работоспособна в интервале температур от -40 до 130 "С, отсутствие индекса дисперсионной среды -приготовлена на нефтяном масле; "3" - условная характеристика густоты смазки.

    Кальциевые смазки (солидолы) - антифрикционные пластические смазки. Они нерастворимы в воде, поэтому в условиях высокой влажности и при контакте с водой хорошо защищают металлические детали от коррозии. Недостаток - работоспособны при температурах до 60 0 С.

    Солидолы синтетические (солидол С) - применяется в подшипниках качения и скольжения, в шарнирах, винтовых и цепных передачах. Их недостатки - низкая механическая стабильность, работоспособность при температурах до 50 °С.

    Применение

    В шарнирах рулевого управления, шкворнях поворотных кулаков, для пальцев рессор, оси педалей сцепления и тормоза, рычагов коробки передач, раздаточной коробки, валов разжимных кулаков тормозов, в механизмах лебедки, буксирных и седельных механизмах, шлицах и подшипниках карданных шарниров используются Литол-24, солидол С, пресс-солидол С.

    Для карданных шарниров равных угловых скоростей используется AM карданная, Униол-1.

    Подшипники ступиц колес, промежуточная опора карданного вала, выжимной подшипник сцепления, подшипники водяного насоса, передний подшипник первичного вала коробки передач, вал привода распределителя зажигания смазываются Литолом-24, ПС 1-13.

    В подшипниках генератора, стартера, электродвигателей стеклоочистителя и отопителя используются Литол-24, N 158.

    Шарниры привода стеклоочистителя, петли дверей смазываются Литолом-24, солидолом С.

    Для рессор используется графитная смазка УСсА.

    Клеммы аккумулятора смазываются Литолом-24, солидолом С, ВТВ-1, пушечной смазкой.

    Для гибкого вала спидометра используются ЦИАТИМ-201, моторное масло.

    Тросы стояночного тормоза, замка капота смазываются Литолом-24, ЦИАТИМ-201 .

    Узлы трения и применяемые в них смазки представлены в табл. 24.


    Таблица 4.1 – Классификация пластичных смазок по числу пенетрации

    Класс

    Диапазон пенетрации

    Визуальная оценка консистенции

    85…115

    Очень мягкая, как очень вязкое масло

    Вазелинообразная

    Почти твёрдая

    Очень твёрдая мылообразная

    Коллоидная стабильность. Способность удерживать масло, сопротивляться его выделению при хранении и эксплуатации характеризует коллоидную стабильность смазок. Выделение масла может быть самопроизвольным вследствие структурных изменений в смазке, например, под действием собственной массы, и может ускоряться или замедляться под действием температуры, давления и др. факторов. Слишком большое выделение масла в процессе работы - более 30 % - приводит к резкому упрочнению смазки и нарушает её нормальное поступление к контактируемым поверхностям.

    Коллоидная стабильность зависит от размеров, формы и прочности связей структурных элементов. Большое влияние оказывает вязкость дисперсной среды: чем выше вязкость масла, тем труднее ему вытекать из объёма смазки.

    Коллоидная стабильность оценивается по объёму масла, отпрессованного из смазки при комнатной температуре в течении 30 минут и выражается в % - для смазок она не должна превышать 30 %. Проводят это на разных приборах, но самым простым и удобным является механическое отпрессовывание масла из некоторого объёма, помещенного между слоями фильтровальной бумаги.

    Химическая стабильность . Под химической стабильностью понимают стойкость смазок против окисления кислородом воздуха, хотя в широком смысле - это отсутствие изменения свойств смазок под воздействием на них химических реагентов (кислот, щелочей, кислорода и т.д.). Окисление приводит к образованию и накоплению в смазках кислородосодержащих, активных веществ, к изменению реологических свойств (как правило, разупрочнению), ухудшению коллоидной стабильности, понижению температуры каплепадения, смазочной способности и т.д.

    Стабильность против окисления особенно важный показатель для смазок, которые

    Заправляют в узлы трения 1...2 раза в течение 10...15 лет;

    Работают при высоких температурах;

    Работают в тонких слоях;

    В контакте с цветными металлами.

    Медь, бронза, олово, свинец и ряд других металлов и сплавов ускоряют окисление смазок.

    Об образовании и накоплении в смазке продуктов окисления судят по данным ИК-спектроскопии. Исследования проводят методом ускоренного окисления под действием высокой температуры в присутствии катализаторов.

    Имеется несколько способов повышения стойкости смазок против окисления:

    Подбор масляной основы;

    Выбор типа и концентрации загустителя;

    Варьирование технологическими режимами производства;

    Введение антиокислительных присадок (амино- и фенолосодержащих соединения, фосфор- и серосодержащие органические продукты и т.д.).

    Термическая стабильность . Способность смазок не изменять свои свойства и прежде всего не упрочняться при кратковременном воздействии высоких температур характеризует их термическую стабильность. Особенно подвержены упрочнению вплоть до потери пластичности при повышенных температурах смазки из мыл синтетических жирных кислот, натриевые, натриево-кальциевые и в меньшей степени кальциевые. Упрочнение затрудняет поступление смазки к узлу трения, ухудшает его адгезионные свойства. Особенность термоупрочнения - полная и многократная обратимость - перетирание затвердевшей смазки приводит к восстановлению её первоначальных свойств.

    Испаряемость - один из показателей смазок, определяющих стабильность состава при хранении и в эксплуатации. Испарение масла из-за высоких температур, вакуума и отсутствия частой смены приводит к повышению концентрации загустителя, что сопровождается увеличением предела прочности и ухудшением низкотемпературных свойств: на поверхности образуются корки и трещины, снижается защитная способность.

    Скорость испарения зависит от условий хранения и эксплуатации, фракционного состава масла. Чем тоньше слой и больше его поверхность, тем выше испаряемость. Тип и концентрация загустителя мало влияют на испаряемость масла.

    Выражается испаряемость в %. Определяется измерением потери массы образца, который выдерживают в стандартных условиях в течение определённого времени при постоянной температуре.

    Температура каплепадения. Минимальная температура, при которой происходит падение первой капли смазки, нагреваемой в приборе Уббелоде. Эта температура зависит от условий оценки и не всегда определяется одними и теми же свойствами смазок. Она условно характеризует температуру плавления загустителя. Считается, что температура каплепадения должна быть на 15...20°С выше максимальной температуры применения смазки. Однако температура каплепадения не всегда позволяет правильно судить о высокотемпературных свойствах смазки. Например, температура каплепадения литиевых смазок лежит в пределах 170...200°С, а работоспособны они до 130°С.

    Микробиологическая стабильность. Под действием микроорганизмов, попавших в смазку и развившихся в ней, происходит изменение состава и свойств смазок. При развитии микроорганизмы потребляют те или иные компоненты смазки, продукты обмена накапливаются и, как правило, увеличивают кислотность смазки. При этом происходит разупрочнение и изменение эксплуатационных свойств.

    Для борьбы с микроорганизмами в смазки вводят антисептики - органические вещества, например, бензойную и салициловую кислоты, фенолы, производные ртути, олова и др. Бактерицидными действиями обладают некоторые антиокислительные, противоизносные присадки и ингибиторы коррозии.

    Радиационная стойкость. Воздействие на смазки излучений высоких энергий приводит к глубоким изменениям их структуры и свойств. В значительной степени стойкость смазок к облучению зависит от состава масла, на основе которого они приготовлены. По дисперсионной стойкости смазки располагаются следующим образом в порядке возрастания: кремнийорганические жидкости -сложные эфиры - нефтяные масла - простые эфиры. Смазки в зависимости от типа загустителя при облучении могут приобретать «наведённую» радиоактивность. Наиболее легко радиоактивность приобретают натриевые смазки.

    Ассортимент смазок

    Автомобильный транспорт один из основных потребителей пластичных смазок. Здесь применяют антифрикционные, защитные и уплотнительные смазки. Более всего при эксплуатации расходуются антифрикционные смазки.

    Основными узлами трения являются:

    - подшипники качения ступиц колёс;

    - подшипники качения насоса системы охлаждения (раньше);

    - шарниры рулевого управления;

    - шаровые опоры независимой подвески;

    - шарниры карданные равных и неравных угловых скоростей и т.д.

    Ассортимент антифрикционных смазок промышленного производства превышает 100 наименований. В инструкциях по эксплуатации для одних и тех же узлов разных автомобилей рекомендуются различные смазки.

    Схема маркировки пластичных смазок представлена на рисунке 4.1.

    Рисунок 4.1 – Схема маркировки пластичных смазок по ГОСТ 23258–78

    Пояснение к рисунку 4.1:
    1 – подгруппа по назначению (таблица 4.2) (например М – многоцелевая);
    2 – тип загустителя (таблица 4.3) (например Ли – литиевое мыло);
    3 – температурный диапазон применения смазки;
    4 – тип дисперсной среды (у – синтетические углеводороды, к – кремнийорганические жидкости, э – сложные эфиры, ф – фторсилоксаны, н – нефтяное масло, ж – галогеноуглеродные жидкости, а – перфторалкилполиэфиры, «-» – нефтяная основа, п – прочие масла и жидкости);
    5 – твердые добавки (г – графит, д – дисульфид молибдена, с – порошки свинца, м – порошки меди, ц – порошки цинка, т – прочие твердые добавки).
    6 – число пенетрации (класс консистенции) (по возрастанию густоты изменяется от 000 до 7).
    Пример маркировки: СКа 2/7-2 – С – антифрикционная смазка общего назначения, применяемая при температуре до 70°С (солидол), Ка – загуститель – калиевое мыло, 2/7 – рекомендуемый температурный диапазон применения от -20°С до +70°С, «-» – смазка приготовлена на нефтяной основе, 2 – число пенетрации (класс консистенции) (пенетрация при 25°С составляет 265…295).

    Таблица 4.2 — Классификация пластичных смазок по назначению

    Основное назначение

    Подгруппа

    Область применения

    Антифрикционные

    Для снижения износа и трения скольжения сопряженных деталей

    Общего назначения для обычных температур (солидолы)

    Узлы трения с рабочей температурой до 70°С

    Общего назначения для повышенных температур

    Узлы трения с рабочей температурой до 100°С

    Многоцелевые

    Узлы трения с рабочей температурой от -30 до 130°С в условиях повышенной влажности

    Термостойкие

    Узлы трения с рабочей температурой 150°С и выше

    Морозостойкие

    Узлы трения с рабочей температурой -40°С и ниже

    Противозадирные и противоизносные

    Подшипники качения при контактных напряжениях выше 2500 МПа и скольжения при нагрузках выше 150 МПа

    Химически стойкие

    Узлы, контактирующие с агрессивными средами

    Приборные

    Узлы трения приборов и точных механизмов

    Редукторные

    Зубчатые и винтовые передачи всех видов

    Приработочные (дисульфидмолибденовые, графитные и другие пасты)

    Сопряженные поверхности для облегчения сборки, предотвращения задиров и ускорения приработки

    Узкоспециальные (отраслевые)

    Узлы трения, смазки для которых должны удовлетворять дополнительным требованиям (прокачиваемость, эмульгируемость, искрогашение и т.д.) автомобильные железнодорожные индустриальные

    Брикетные

    Узлы и поверхности скольжения с устройствами для использования смазки в виде брикетов

    Консервационные

    Для предотвращения коррозии при хранении, транспортировании и эксплуатации

    Металлические изделия, за исключением стальных канатов и в случаях, требующих консервационных масел или твердых покрытий

    Канатные

    Для предотвращения коррозии и износа стальных канатов

    Стальные канаты и тросы, органические сердечники стальных канатов

    Уплотнительные

    Для герметизации, облегчения сборки и разборки арматуры; сальниковых устройств; резьбовых, разъемных и любых подвижных соединений, в то числе вакуумных систем

    Арматурные

    Запорная арматура и сальниковые устройства

    Резьбовые

    Резьбовые соединения

    Вакуумные

    Подвижные и разъемные соединения и уплотнения вакуумных систем

    Таблица 4.3 — Типы загустителей пластичных смазок

    Загуститель

    Загуститель

    Органические вещества:

    алюминиевое

    пигменты

    бариевое

    полимеры

    калиевое

    литиевое

    фтороуглероды

    натриевое

    Неорганические вещества:

    свинцовое

    глины (бентонитовые)

    цинковое

    комплексное

    силикагель

    смесь мыл

    Углеводороды твердые

    Антифрикционные смазки

    Самыми распространёнными мыльными смазками из кальциевых смазок общего назначения являются солидолы. Готовят две марки синтетического солидола – пресс-солидол С и солидол С , и две марки жирового солидола – пресс-солидол УС-1 и солидол УС-2 (УС – универсальная среднеплавкая). Жировые солидолы готовят загущением нефтяных индустриальных масел кальциевыми мылами. Солидолы нерастворимы в воде, обладают высокой коллоидной стабильностью, но не могут использоваться при температурах выше + 75 0 С и ниже – 30 0 С.

    Кроме солидолов выпускают другие кальциевые гидратированные смазки – УссА , ЦИАТИМ-208 и др.

    К комплексным кальциевым смазкам, изготавливаемым на нефтяных или синтетических маслах, относятся – униол-1 , униол-2 , ЦИАТИМ-221 и др. Эти смазки по сравнению с обычными мыльными смазками более термостойки: температура каплепадения у них выше 200 0 С (у солидолов 80…90 0 С), что позволяет использовать их при температурах до 160 0 С. Они обладают хорошими противоизносными и противозадирными свойствами, то есть их можно применять в тяжелонагруженных узлах. Они так же обладают хорошими защитными и противокоррозионными свойствами. К недостаткам этих смазок относится склонность к термоупрочнению.

    Натриевые и натриево-кальциевые смазки. По объёму производства эти смазки занимают второе место после гидратированных кальциевых. Распространёнными натриевыми смазками являются консталины УТ-1 и УТ-2 (УТ – универсальная тугоплавкая), которые в отличии от солидолов работоспособны при температурах до 115 0 С и хорошо удерживаются при таких температурах в тяжелонагруженных узлах. Однако натриевые и натриево-кальциевые смазки растворимы в воде и, следовательно, смываются с металлических поверхностей. При низких температурах (ниже – 20 0 С) применять эти смазки не рекомендуется. Преимущественно консталины используются как железнодорожные смазки.

    Среди натриево-кальциевых смазок самой массовой является смазка 1-13 . Эту смазку и её вариант 1-Л3 или ЛЗ-ЦНИИ применяют в роликовых и шариковых подшипниках.

    Литиевые смазки. Эти смазки работоспособны в широком интервале температур и до – 50 0 С, нагрузок и скоростей. Их свойства стабильны во времени. К недостаткам можно отнести низкую механическуюстабильность и ограниченный верхний предел температуры – не выше 120…130 0 С. Первой литиевой смазкой была ЦИАТИТМ-201 . Сейчас выпускают: литол-24 , фиол-2 или , фиол-3 и др. Литол-24 используется в качестве единой автомобильной смазки.

    Алюминиевые смазки. Наиболее распространённой является смазка АМС-1,3 . Она используется в механизмах, работающих в морской воде или соприкасающихся с ней. Относится к защитно-антифрикционным смазкам. Выпускается смазка МС-70 имеющая такие же свойства.

    В ассортименте антифрикционных смазок имеются также смазки на бариевых и цинковых мылах. Бариевые смазки обладают хорошей стойкостью к воде и нефтепродуктам, повышенной химической и механической стабильностью. В шаровых шарнирах подвески и наконечниках рулевых тяг автомобилей ВАЗ применяется бариевая смазка ШРБ-4 .

    В качестве антифрикционных смазок используют смазки на неорганических загустителях – силикагелевые, бентонитовые и др. У них хорошие высокотемпературные свойства, высокая химическая стабильность и удовлетворительные смазочные свойства. К их недостаткам можно отнести низкую защитную стабильность. Кселикагелевым относятсясмазки–ВНИИНП-262 ,ВНИИНП-264 ,

    ВНИИНП-279 . В основном они предназначены для высокоскоростных подшипников качения, работающих в жёстких режимах трения. Смазки эти дорогие.

    К бентонитовым смазкам для подшипников качения относится смазка ВНИИНП-226 .

    Консервационные смазки

    Ассортимент консервационных смазок значительно уступает ассортименту антифрикционных смазок. Наибольшее распространение получили углеводородные смазки. Их низкая температура плавления (40…75 0 С) позволяет наносить их на поверхность в расплавленном виде путём окунания или распыливания. Можно наносить и при помощи кисти. Предварительно поверхность очищают от следов коррозии и прочих загрязнений.

    К углеводородным смазкам относятся ПВК , ГОИ-54п , УНЗ (пушечная ), вазелин технический волокнистый ВТВ-1 , ВНИИСТ-2 и др.

    Смазка ПВК имеет высокую водостойкость и стабильность, низкую испаряемость, что позволяет использовать её в течение 10 лет. Недостатком её является потеря подвижности при температуре ниже – 10 0 С.

    ГОИ-54п используют для защиты от коррозии машин и механизмов, работающих на открытом воздухе. Смазка сохраняет работоспособность при температуре до – 50 0 С, однако, как большинство углеводородных смазок, её не рекомендую использовать при температурах выше + 50 0 С.

    Смазку ВТВ-1 применяют для смазывания клемм аккумуляторов. От смазки ПВК она отличается лучшими низкотемпературными свойствами.

    ВНИИСТ-2 применяется для защиты от коррозии наземных трубопроводов.

    Удовлетворительные защитные свойства имеют и некоторые мыльные смазки: АМС-1 , АМС-3 , МС-70 , ЗЭС и др.

    Смазки АМС-1 , АМС-3 и МС-70 используют как антифрикционные, обладающие хорошими защитными свойствами в условиях контакта с морской водой. Они обладают высокой липкостью и водостойкостью.

    Смазку ЗЭС применяют для защиты линий электропередач и другой высоковольтной аппаратуры от коррозии.

    Особую группу консервационных смазок составляют канатные смазки: 39у , БОЗ-1 , торсиол-35 , торсиол-55 Е-1 и др. Они занимают промежуточное положение между консервационными и антифрикционными смазками. Предназначены эти смазки для защиты стальных канатов и тросов при эксплуатации и хранении, а так же снижать износ, уменьшать трение, предотвращать обрывы.

    Уплотнительные смазки

    По составу и свойствам эти смазки специфичны, что не позволяет, как правило, заменять их смазками других типов. В качестве дисперсионной среды используют касторовое масло, глицерин, синтетические масла и смеси с нефтяными. Смазки на основе касторового масла и его смеси с нефтяным или синтетическим маслом практически нерастворимы в нефтепродуктах.

    Загустителями могут быть твёрдые углеводороды и неорганические продукты (силикагель, бентонит).

    Большинство уплотнительных смазок содержат наполнители – графит, слюду, тальк, дисульфид молибдена, асбест, оксиды металлов и др. В уплотнительной смазке для запорной арматуры вводят 10…15 % наполнителей.

    Широкое применение уплотнительные смазки нашли в резьбовых соединениях. В таких соединениях, рассчитанных на высокое давление, уплотнительные смазки подвергаются воздействию высоких контактных нагрузок. Роль самой смазки при жёстких условиях работы резьбового соединения сводится только к функции носителя наполнителя. В смазках для резьбовых соединений концентрация наполнителей, как правило, превышает 50 %.

    Твёрдые смазки

    Характерная особенность твёрдых смазок заключается в том, что эти материалы, так же как пластичные смазки, находятся в агрегатном состоянии, исключающем их вытекание из узла трения. Благодаря этому их можно использовать в негерметизированных узлах трения. Достоинства их перед маслами таки же, как у пластичных смазок:

    - уменьшение расхода смазочного материала;

    - уменьшение эксплуатационных расходов.

    Твёрдые слоистые смазки. Это кристаллические вещества, обладающие смазочными свойствами: графит, дисульфиды молибдена и вольфрама, нитрид бора, бромиды олова и кадмия, сульфат серебра, иодиды висмута, никеля и кадмия, фталоцианин, селениды и теллуриды вольфрама, титана и пр.

    Все эти смазки обладают слоистой структурой, характеризующиеся тем, что атомы, лежащие в одной плоскости – одном слое – находятся друг к другу ближе, чем в различных слоях. Это обусловливает различную прочность между атомами в различных направлениях. В результате под действием внешних сил происходит скольжение одних слоёв кристаллов относительно других. Это свойство необходимо, но недостаточно. Нужна также хорошая адгезия твёрдой смазки к материалу поверхности трения, поэтому дисульфид титана и многие алюмосиликаты (слюда, тальк и др.), обладая ярко выраженной слоистой структурой, не отличаются смазочными свойствами, так как имеют плохие адгезионные свойства с металлами.

    Наиболее распространённые твёрдые слоистые смазки.

    Графит обладает антифрикционными свойствами в паре трения со сталью, чугуном и хромом. Несколько хуже эти свойства с медью и алюминием. В присутствии воздуха и воднографитная смазка улучшает свои показатели. Графит адсорбируется на поверхности трения, образуя прочную плёнку, ориентированную в направлении скольжения. Наличие на поверхности металла плёнки оксидов облегчает адсорбцию графита, поэтому использование графита особенно эффективно для металлов, образующих прочную оксидную плёнку – хром, титан, несколько меньше сталь. Предел работоспособности графитной смазки равен 600 0 С. Из-за наличия свободных электронов графит обладает высокой электропроводностью, что способствует отводу электростатических зарядов и сохранению прочности смазочного слоя. С увеличение нагрузки и повышения температуры коэффициент трения графита возрастает. По стали коэффициент трения равен 0,04…0,08.

    Дисульфид молибдена Мо S 2 – синевато-серый порошок с металлическим блеском, обладает хорошими адсорбционными свойствами по отношению к большинству чёрных и цветных металлов. Его смазочная способность обусловлена выраженным слоистым строением кристаллов и сильной поляризацией атомов серы в процессе трения. В отличии от графита при увеличении нагрузки и температуры коэффициент трения Мо S 2 уменьшается. Средняя величина коэффициента трения равна 0,05…0,095.

    Несущая способность граничной смазочной плёнки дисульфида молибдена выше, чем у любых смазочных масел. При температуре выше 500 0 С дисульфид молибдена окисляется с выделением SO 2 . К недостаткам можно отнести высокую химическую активность, в результате чего он легко вступает в реакцию с водой и кислородом. Поэтому максимальная температура ограничена 450 0 С. Водород восстанавливает дисульфид молибдена до металла.

    Дисульфид вольфрама WS 2 по сравнению с дисульфидом молибдена обладает большей термостойкостью. Предельная температура его применения равняется 580 0 С. У него больше стойкость к окислению и в 3 раза большая несущая способность. Химически дисульфид молибдена инертен, коррозионно неагрессивен, нетоксичен. Его применение ограничено высокой стоимостью. Из-за высокой плотности дисульфид молибдена мало используется в качестве добавки к маслам, так как затруднено получение однородной смеси с маслом. Рекомендуется использовать при температуре свыше 450 0 С.

    Нитрид кремния имеет низкий коэффициент трения в парах со стальными деталями и некоторыми металлокерамическими материалами. Обладает хорошими механическими характеристиками и высокой термической и термоокислительной устойчивостью до 1200 0 С. Благодаря сочетанию этих качеств нитрид кремния является перспективным материалом для изготовления деталей цилиндро-поршневой группы.

    Нитрид бора обладает высокой термической и термоокислительной устойчивостью. Разлагается при температуре свыше 1000 0 С.

    Фталоцианины (меди C 32 H 16 N 6 Cu , железа C 32 H 16 N 8 Fe и пр.) – металлосодержащие полициклические органические соединения, обладающие крупными плоскими молекулами со слабыми межмолекулярными связями. Наряду с физической адсорбцией они образуют хемосорбированные плёнки на поверхностях металлов. Фталоцианины имеют хорошую термическую стойкость до 650 0 С, стабильны при контакте с воздухом и водой. При температурах до 300 0 С коэффициент трения у них выше, чем у графита и дисульфида молибдена, но понижается до 0,03…0,05 с увеличением температуры до 500 0 С.

    Из фталоцианинов делают защитный слой на юбках поршней.

    Коэффициенты трения некоторых твёрдых слоистых смазок:

    Дисульфид молибдена – 0,05;

    Иодистый кадмий – 0,06;

    Хлористый кадмий – 0,07;

    Сернокислый вольфрам – 0,08;

    Сернокислое серебро – 0,14;

    Иодистый свинец – 0,28;

    Графит – 0,10;

    Хлористый кобальт – 0,10;

    Иодистая ртуть – 0,18;

    Бромистая ртуть – 0,06;

    Иодистое серебро – 0,25.

    Твёрдые смазки могут использовать и в качестве добавок к маслам. Большинство твёрдых смазок нерастворимы в углеводородах, поэтому их вводят в моторное масло в виде коллоидных дисперсий. При этом увеличивается ресурс узлов трения и снижается вероятность задира в условиях масляной недостаточности.

    Мягкие металлы. Свинец, индий, олово, кадмий, медь, серебро, золото и т.д. обладают низкой прочностью на срез. Благодаря этому они используются как твёрдые смазки в виде тонких плёнок, наносимых на более прочные основы. Плёнки этих металлов ведут себя как масло. Кроме того, они облегчают и ускоряют процесс приработки. Важным требование является высокая адгезия к материалу основы и низкая к материалу пары.

    Полимерные материалы – фторопласт-4 (тефлон), капрон, нейлон, полиэтилен, политетрафторэтилен, полиамид и др. обладают смазывающими свойствами. Их наносят на поверхности трения в виде плёнок различной толщины или используют как прессованные проставки. Применение твёрдых смазок на основе полимеров ограничивается низкой термической стойкостью этих материалов, маленьким коэффициентом теплопроводности и большим коэффициентом теплового расширения.

    Они имеют недостаточные механические свойства, поэтому для обеспечения прочности при средних и высоких нагрузках их армируют. Используемый для армирования материал должен быть мягче материала поверхности трения.

    Композиционные смазочные материалы. Это комбинация отдельных видов твёрдых смазок, обеспечивающая оптимальное сочетание их смазывающих свойств, механической прочности и обрабатываемости.

    Физически композиционные смазочные материалы представляют собой механическую смесь двух или более различных по свойствам твёрдых веществ. При этом одно вещество является основой, может образовывать структурный каркас, обеспечивающий механические свойства. Основа изготавливается из полимерных, металлических или керамических материалов. В основе зафиксирован материал, являющийся наполнителем, обеспечивающим смазочные свойства.

    Полимерная основа имеет хорошие смазочные свойства, химическую инертность, более высокую, чем у металлов, усталостную прочность, малую массу, низкую чувствительность к местным нарушениям структуры – трещинам, надрезам. Наиболее термостойки материалы на основе ароматических полиамидов. Они могут длительное время эксплуатироваться при температуре до 450 0 С. Основными недостатками являются большой коэффициент термического расширения, низкие теплопроводность, термическая стойкость и стабильность.

    В полимерных материалах наиболее часто в качестве наполнителей используются дисульфид молибдена, графит, нитрид бора, порошки алюминия, меди, никеля, молибдена и др.

    Композиционные смазочные материалы на основе металлических материалов получают путём прессования и спекания из порошков металлов с последующей пропиткой полученной пористой основы твёрдыми слоистыми смазками, мягкими металлами или полимерами. Для получения материалов, работающих в особо тяжёлых температурных условиях, в качестве основы используют никель, кобальт и их сплавы. В качестве наполнителя применяют материалы на основе молибдена или вольфрама.

    Например, для получения направляющих втулок клапанов двигателя получили распространение композиционные смазочные материалы на металлической основе, поры которых заполнены фторопластом-4 с добавками сульфидов, селенидов и теллуридов молибдена, вольфрама. Такая смазка кроме смазочного действия обеспечивает высокую несущую способность и износостойкость.

    Композиционные смазочные материалы на керамической основе обладают высокой термической и химической стойкостью. Для этого используют окислы бериллия, циркония и других металлов. Основным недостатков этих материалов является их хрупкость и низкая прочность на растяжение.

    Узлы трения на основе композиционных смазочных материалов могут долгое время работать без дополнительного подвода смазки, вплоть до всего моторесурса узла. Большинство композиционных смазочных материалов хорошо работают совместно с жидкими и консистентными смазками. Это обеспечивает существенное повышение надёжности двигателя, особе в режиме недостатка масла. Для вкладышей коренных и шатунных подшипников можно использовать композиции из медно-молибденового материала CuO + MoS 2 . Для подшипников распределительного вала применяют вкладыши, изготовленные из металлокерамических композиций на основе мягких металлов, насыщенных фталоцианиновой твёрдой смазкой. Изготовляют материал, состоящий из стальной ленты, на которую спеканием нанесён тонкий слой сферических частиц пористой оловянистой бронзы, пропитанной смесью фторопласта со свинцом. Сталь обеспечивает необходимую прочность подшипника, бронза – теплопроводность, смесь тефлона со свинцом – смазочные свойства.