Первый двигатель внутреннего сгорания: с чего все началось. История двигателя внутреннего сгорания История изобретения двигателя внутреннего сгорания

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Общая часть

Двигатель внутреннего сгорания ДВС - это тип двигателя, тепловая машина, в которой химическая энергия топлива преобразуется в механическую работу.

Несмотря на то, что ДВС являются относительно несовершенным типом тепловых машин, благодаря своей автономности ДВС очень широко получили свое распространение в авто транспорте.

Основными видами топлива для автомобильных двигателей внутреннего сгорания служит бензин, газ и дизельное топливо. Автомобильный двигатель может работать и на других видах топлив, на первый взгляд достаточно экзотичных, например: на растительном масле, спирте, водороде, сырой нефти, мазуте.

Бензин и газ относиться к легким топливам, с внешним смесеобразованием. Топливо воздушная смесь образуется вне цилиндров, например в карбюраторе, или во впуском трубопроводе.

Дизельное топливо принадлежит к тяжелым видам топлив, которое воспламеняется от высоких температур и давления, эти параметры достигаются в камере сгорания цилиндре двигателя в конце такта сжатия при повышении давления до 30 атмосфер и более.

Двигатели которые работают на «тяжелых» топливах, относятся к двигателям с внутренним «смесеобразованием».

1. 1 История создания ДВС

В 1799 году французский инженер Филипп Лебон открыл светильный газ и получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля. Это открытие имело огромное значение, прежде всего для развития техники освещения. Очень скоро во Франции, а потом и в других странах Европы газовые лампы стали успешно конкурировать с дорогостоящими свечами. Однако светильный газ годился не только для освещения. Изобретатели взялись за конструирование двигателей, способных заменить паровую машину, при этом топливо сгорало бы не в топке, а непосредственно в цилиндре двигателя.

1.2 Филипп Лебон

В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения стремительно расширялись, оказывая сильное давление на окружающую среду. Создав соответствующие условия, можно использовать выделяющуюся энергию в интересах человека. В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой -- сжатый светильный газ из газогенератора. Газовоздушная смесь поступала потом в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебон вынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он погиб, не успев воплотить в жизнь своё изобретение.

1.3 Жан Этьен Ленуар

В последующие годы несколько изобретателей из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровой машиной. Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит бельгийскому механику Жану Этьену Ленуару. Работая на гальваническом заводе, Ленуар пришёл к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры, и решил построить двигатель на основе этой идеи.

Ленуар не сразу добился успеха. После того как удалось изготовить все детали и собрать машину, она проработала совсем немного и остановилась, так как из-за нагрева поршень расширился и заклинил в цилиндре. Ленуар усовершенствовал свой двигатель, продумав систему водяного охлаждения. Однако вторая попытка запуска также закончилась неудачей из-за плохого хода поршня. Ленуар дополнил свою конструкцию системой смазки. Только тогда двигатель начал работать.

1.4 Август Отто

В 1864 году было выпущено уже более 300 таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над усовершенствованием своей машины, и это предопределило её судьбу -- она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Августом Отто.

В 1864 году тот получил патент на свою модель газового двигателя и в том же году заключил договор с богатым инженеромЛангеном для эксплуатации этого изобретения. Вскоре была создана фирма «Отто и Компания».

На первый взгляд, двигатель Отто представлял собой шаг назад по сравнению с двигателем Ленуара. Цилиндр был вертикальным. Вращаемый вал помещался над цилиндром сбоку. Вдоль оси поршня к нему была прикреплена рейка, связанная с валом. Двигатель работал следующим образом. Вращающийся вал поднимал поршень на 1/10 высоты цилиндра, в результате чего под поршнем образовывалось разрежённое пространство и происходило всасывание смеси воздуха и газа. Затем смесь воспламенялась. Ни Отто, ни Ланген не владели достаточными знаниями в области электротехники и отказались от электрического зажигания. Воспламенение они осуществляли открытым пламенем через трубку. При взрыве давление под поршнем возрастало примерно до 4 атм. Под действием этого давления поршень поднимался, объём газа увеличивался и давление падало. При подъёме поршня специальный механизм отсоединял рейку от вала. Поршень сначала под давлением газа, а потом по инерции поднимался до тех пор, пока под ним не создавалось разрежение. Таким образом, энергия сгоревшего топлива использовалась в двигателе с максимальной полнотой. В этом заключалась главная оригинальная находка Отто. Рабочий ход поршня вниз начинался под действием атмосферного давления, и после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Из-за более полного расширения продуктов сгорания КПД этого двигателя был значительно выше, чем КПД двигателя Ленуара и достигал 15 %, то есть превосходил КПД самых лучших паровых машин того времени.

Поскольку двигатели Отто были почти в пять раз экономичнее двигателей Ленуара, они сразу стали пользоваться большим спросом. В последующие годы их было выпущено около пяти тысяч штук. Отто упорно работал над усовершенствованием их конструкции. Вскоре зубчатую рейку заменила кривошипно-шатунная передача. Но самое существенное из его изобретений было сделано в 1877 году, когда Отто взял патент на новый двигатель с четырёхтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей. В следующем году новые двигатели уже были запущены в производство.

Четырёхтактный цикл был самым большим техническим достижением Отто. Но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Бо де Роша . Группа французских промышленников оспорила в суде патент Отто. Суд счёл их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырёхтактный цикл.

Хотя конкуренты наладили выпуск четырёхтактных двигателей, отработанная многолетним производством модель Отто всё равно была лучшей, и спрос на неё не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности. Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно суживало область применения первых двигателей внутреннего сгорания. Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два - в Москве и Петербурге.

2. Поиски нового горючего

Поэтому не прекращались поиски нового горючего для двигателя внутреннего сгорания. Некоторые изобретатели пытались применить в качестве газа пары жидкого топлива. Ещё в 1872 году американец Брайтон пытался использовать в этом качестве керосин. Однако керосин плохо испарялся, и Брайтон перешёл к более лёгкому нефтепродукту -- бензину. Но для того, чтобы двигатель на жидком топливе мог успешно конкурировать с газовым, необходимо было создать специальное устройство для испарения бензина и получения горючей смеси его с воздухом.

Брайтон в том же 1872 году придумал один из первых так называемых «испарительных» карбюраторов, но он действовал неудовлетворительно.

2 .1 Бензиновый двигатель

Работоспособный бензиновый двигатель появился только десятью годами позже. Изобретателем его был немецкий инженер Готлиб Даймлер. Много лет он работал в фирме Отто и был членом её правления. В начале 80-х годов он предложил своему шефу проект компактного бензинового двигателя, который можно было бы использовать на транспорте. Отто отнёсся к предложению Даймлера холодно. Тогда Даймлер вместе со своим другом Вильгельмом Майбахом принял смелое решение -- в 1882 году они ушли из фирмы Отто, приобрели небольшую мастерскую близ Штутгарта и начали работать над своим проектом.

Проблема, стоявшая перед Даймлером и Майбахом была не из лёгких: они решили создать двигатель, который не требовал бы газогенератора, был бы очень лёгким и компактным, но при этом достаточно мощным, чтобы двигать экипаж. Увеличение мощности Даймлер рассчитывал получить за счёт увеличения частоты вращения вала, но для этого необходимо было обеспечить требуемую частоту воспламенения смеси. В 1883 году был создан первый калильный бензиновый двигатель с зажиганием от раскалённой трубочки, вставляемой в цилиндр.

Процесс испарения жидкого топлива в первых бензиновых двигателях оставлял желать лучшего. Поэтому настоящую революцию в двигателестроении произвело изобретение карбюратора. Создателем его считается венгерский инженер Донат Банки. В 1893 году он взял патент на карбюратор с жиклёром, который был прообразом всех современных карбюраторов. В отличие от своих предшественников Банки предлагал не испарять бензин, а мелко распылять его в воздухе. Это обеспечивало его равномерное распределение по цилиндру, а само испарение происходило уже в цилиндре под действием тепла сжатия. Для обеспечения распыления всасывание бензина происходило потоком воздуха через дозирующий жиклёр, а постоянство состава смеси достигалось за счёт поддержания постоянного уровня бензина в карбюраторе. Жиклёр выполнялся в виде одного или нескольких отверстий в трубке, располагавшейся перпендикулярно потоку воздуха. Для поддержания напора был предусмотрен маленький бачок с поплавком, который поддерживал уровень на заданной высоте, так что количество всасываемого бензина было пропорционально количеству поступающего воздуха.

Первые двигатели внутреннего сгорания были одноцилиндровыми, и, для того чтобы увеличить мощность двигателя, обычно увеличивали объём цилиндра. Потом этого стали добиваться увеличением числа цилиндров.

Первая модель бензинового двигателя предназначалась для промышленной стационарной установки.

В конце XIX века появились двухцилиндровые двигатели, а с начала XX столетия стали распространяться четырёхцилиндровые.

2.2 С оздания дизельного двигателя внутреннего сгорания

В 1824 году Сади Карно формулирует идею цикла Карно, утверждая, что в максимально экономичной тепловой машине нагревать рабочее тело до температуры горения топлива необходимо «изменением объёма», то есть быстрым сжатием. В 1890 году Рудольф Дизель предложил свой способ практической реализации этого принципа. Он получил патент на свой двигатель 23 февраля 1892 года (в США в 1895 году), в 1893 году выпустил брошюру. Ещё несколько вариантов конструкции были им запатентованы позднее. После нескольких неудач первый практически применимый образец, названый Дизель-мотором, был построен Дизелем к началу1897 года, и 28 января того же года он был успешно испытан. Дизель активно занялся продажей лицензий на новый двигатель. Несмотря на высокий КПД и удобство эксплуатации по сравнению с паровой машиной практическое применение такого двигателя было ограниченным: он уступал паровым машинам того времени по размерам и весу.

Первые двигатели Дизеля работали на растительных маслах или лёгких нефтепродуктах. Интересно, что первоначально в качестве идеального топлива он предлагал каменноугольную пыль. Эксперименты же показали невозможность использования угольной пыли в качестве топлива -- прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, получающейся при сгорании; также возникали большие проблемы с подачей пыли в цилиндры. автомобильный двигатель бензиновый

Инженер Экройд Стюарт (англ.)русск. ранее высказывал похожие идеи и в 1886 году построил действующий двигатель (см. полудизель). Он предложил двигатель, в котором воздух втягивался в цилиндр, сжимался, а затем нагнетался (в конце такта сжатия) в ёмкость, в которую впрыскивалось топливо. Для запуска двигателя ёмкость нагревалась лампой снаружи, и после запуска самостоятельная работа поддерживалась без подвода дополнительного тепла. Экройд Стюарт не рассматривал преимущества работы от высокой степени сжатия, он просто экспериментировал с возможностями исключения из двигателя свечей зажигания, то есть он не обратил внимания на самое большое преимущество -- топливную эффективность.

Независимо от Дизеля в 1898 году на Путиловском заводе в Петербурге инженером Густавом Тринклером был построен первый в мире «бескомпрессорный нефтяной двигатель высокого давления», то есть дизельный двигатель в его современном виде сфоркамерой, который назвали «Тринклер-мотором». При сопоставлении двигателей постройки «Дизель-мотора» и «Тринклер-мотора» русская конструкция, появившаяся на полтора года позднее немецкой и испытанная на год позднее, оказалась гораздо более совершенной и перспективной. Использование гидравлической системы для нагнетания и впрыска топлива позволило отказаться от отдельного воздушного компрессора и сделало возможным увеличение скорости вращения. «Тринклер-моторы» не имели воздушного компрессора, а подвод тепла в них был более постепенным и растянутым по времени по сравнению с двигателем Дизеля. Российская конструкция оказалась проще, надежнее и перспективнее немецкой. Однако под давлением Нобелей и других обладателей лицензий Дизеля работы над двигателем в 1902 году были прекращены.

В 1898 г. Эммануэль Нобель приобрел лицензию на двигатель внутреннего сгорания Рудольфа Дизеля. Двигатель приспособили для работы на нефти, а не на керосине. С 1899 г. Механический завод «Людвиг Нобель» в Петербурге развернул массовое производство дизельных двигателей. В 1900 г на Всемирной выставке в Париже дизельный двигатель получил Гран-при, чему способствовало известие, что завод Нобеля в Петербурге наладил выпуск двигателей, работавших на сырой нефти. Этот двигатель получил в Европе название «русский дизель». Выдающийся русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции -- с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой (В. Т. Цветков, «Двигатели внутреннего сгорания», МАШГИЗ, 1954 г.).

В настоящее время для обозначения ДВС с воспламенением от сжатия используется термин «двигатель Дизеля», «дизельный двигатель» или просто «дизель», так как теория Рудольфа Дизеля стала основой для создания современных двигателей этого типа. В дальнейшем около 20--30 лет такие двигатели широко применялись в стационарных механизмах и силовых установках морских судов, однако существовавшие тогда системы впрыска топлива с воздушными компрессорами не позволяли применять дизельные двигатели в высокооборотных агрегатах. Небольшая скорость вращения, значительный вес воздушного компрессора, необходимого для работысистемы впрыска топлива сделали невозможным применение первых дизельных двигателей на автотранспорте.

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, устройство, которое широко применяется и в наше время. Он же создал удачную модификацию бескомпрессорной форсунки. Востребованный в таком виде высокооборотный дизельный двигатель стал пользоваться всё большей популярностью как силовой агрегат для вспомогательного и общественного транспорта, однако доводы в пользу карбюраторных двигателей (традиционный принцип работы, лёгкость и небольшая цена производства) позволяли им пользоваться большим спросом для установки на пассажирских и небольших грузовых автомобилях: с 50-х -- 60-х годов XX века дизельный двигатель устанавливается в больших количествах на грузовые автомобили и автофургоны, а в 70-е годы после резкого роста цен на топливо на него обращают серьёзное внимание мировые производители недорогих маленьких пассажирских автомобилей.

В дальнейшие годы происходит рост популярности дизельных двигателей для легковых и грузовых автомобилей, не только из-за их экономичности и долговечности, но также из-за меньшей токсичности выбросов в атмосферу. Все ведущие европейские производители автомобилей в настоящее время имеют модели с дизельным двигателем.

Дизельные двигатели применяются также на железной дороге. Локомотивы, использующие дизельный двигатель -- тепловозы -- являются основным видом локомотивов на неэлектрифицированных участках, дополняя электровозы за счёт автономности. Тепловозы перевозят до 40 % грузов и пассажиров в России, они выполняют 98 % маневровой работы. Существуют также одиночные автомотрисы, дрезины и мотовозы, которые повсеместно используются на электрифицированных и неэлектрифицированных участках для обслуживания и ремонта пути и объектов инфраструктуры. Иногда автомотрисы и небольшие дизель-поезда называют рельсовыми автобусами.

Заключение

Таким был путь развития двигателей внутреннего сгорания, принесший в нашу жизнь комфорт и скорость перемещения. ДВС в настоящее время широко применяются в автомобиле строении, авиации, лодочной техники и т.д. Дальнейшее развитие этого направления покажет время, но уже сейчас конструкторы предлагают достаточно интересные альтернативные варианты ДВС.

Список используемой литературы

1. It-day.ru/technic/65-dvs/html

2. Pro-tank.ru/nachalo-tankostroeniya/253-dvidateli

3. Autology/jimdo.com

4. «Автомобиль. Устройство. Эксплуатация и ремонт» Авторы: Милушин, Надеждин, Плеханов, Шестопалов. Москва. «Транспорт» 1966

6. «Техническая эксплуатация автомобилей» Авторы: Кузнецов. Москва. «Транспорт» 1991

Размещено на Allbest.ru

Подобные документы

    Общие сведения о двигателе внутреннего сгорания, его устройство и особенности работы, преимущества и недостатки. Рабочий процесс двигателя, способы воспламенения топлива. Поиск направлений совершенствования конструкции двигателя внутреннего сгорания.

    реферат , добавлен 21.06.2012

    Характеристика дизельного топлива двигателей внутреннего сгорания. Расчет стехиометрического количества воздуха на 1 кг топлива, объемных долей продуктов сгорания и параметров газообмена. Построение индикаторной диаграммы, политропы сжатия и расширения.

    курсовая работа , добавлен 15.04.2011

    Рассмотрение термодинамических циклов двигателей внутреннего сгорания с подводом теплоты при постоянном объёме и давлении. Тепловой расчет двигателя Д-240. Вычисление процессов впуска, сжатия, сгорания, расширения. Эффективные показатели работы ДВС.

    курсовая работа , добавлен 24.05.2012

    Общая характеристика судового дизельного двигателя внутреннего сгорания. Выбор главных двигателей и их основных параметров в зависимости от типа и водоизмещения судна. Алгоритм теплового и динамического расчета ДВС. Расчет прочности деталей двигателя.

    курсовая работа , добавлен 10.06.2014

    Описание двигателя внутреннего сгорания как устройства, в котором химическая энергия топлива превращается в полезную механическую работу. Сфера использования этого изобретения, история разработки и усовершенствования, его преимущества и недостатки.

    презентация , добавлен 12.10.2011

    История развития турбокомпрессоров и постройка образцов двигателей внутреннего сгорания. Использование турбонаддува у дизельных двигателей тяжёлых грузовиков. Основная задача промежуточного охладителя. Система зажигания и электронного впрыска топлива.

    контрольная работа , добавлен 15.02.2012

    Общие сведения об устройстве двигателя внутреннего сгорания, понятие обратных термодинамических циклов. Рабочие процессы в поршневых и комбинированных двигателях. Параметры, характеризующие поршневые и дизельные двигатели. Состав и расчет горения топлива.

    курсовая работа , добавлен 22.12.2010

    Двигатель внутреннего сгорания (ДВС) – устройство, преобразующее тепловую энергию, получаемую при сгорании топлива в цилиндрах, в механическую работу. Рабочий цикл четырехтактного карбюраторного двигателя.

    реферат , добавлен 06.01.2005

    Общее местоположение описываемого предприятия, его организационная структура. Поршень двигателя внутреннего сгорания: конструкция, материалы и принцип работы. Описание конструкции и служебное назначение детали. Выбор режущего и мерительного инструментов.

    отчет по практике , добавлен 14.05.2012

    Расчет основных параметров двигателя ЗИЛ-130. Детали, механизмы, модели основных систем двигателя. Количество воздуха, участвующего в сгорании 1 кг топлива. Расчет параметров процесса впуска, процесса сгорания. Внутренняя энергия продуктов сгорания.

Он получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля. Это открытие имело огромное значение, прежде всего для развития техники освещения. Очень скоро во Франции , а потом и в других странах Европы газовые лампы стали успешно конкурировать с дорогостоящими свечами. Однако светильный газ годился не только для освещения.

Патент на конструкцию газового двигателя

Ленуар не сразу добился успеха. После того как удалось изготовить все детали и собрать машину, она проработала совсем немного и остановилась, так как из-за нагрева поршень расширился и заклинил в цилиндре. Ленуар усовершенствовал свой двигатель, продумав систему водяного охлаждения. Однако вторая попытка запуска также закончилась неудачей из-за плохого хода поршня. Ленуар дополнил свою конструкцию системой смазки. Только тогда двигатель начал работать.

Август Отто

Поиски нового горючего

Поэтому не прекращались поиски нового горючего для двигателя внутреннего сгорания. Некоторые изобретатели пытались применить в качестве газа пары жидкого топлива. Ещё в 1872 году американец Брайтон пытался использовать в этом качестве керосин. Однако керосин плохо испарялся, и Брайтон перешёл к более лёгкому нефтепродукту - бензину. Но для того, чтобы двигатель на жидком топливе мог успешно конкурировать с газовым, необходимо было создать специальное устройство для испарения бензина и получения горючей смеси его с воздухом.

Брайтон в том же 1872 году придумал один из первых так называемых «испарительных» карбюраторов, но он действовал неудовлетворительно.

Бензиновый двигатель

Работоспособный бензиновый двигатель появился только десятью годами позже. Изобретателем его был немецкий инженер Готлиб Даймлер . Много лет он работал в фирме Отто и был членом её правления. В начале 80-х годов он предложил своему шефу проект компактного бензинового двигателя, который можно было бы использовать на транспорте. Отто отнёсся к предложению Даймлера холодно. Тогда Даймлер вместе со своим другом Вильгельмом Майбахом принял смелое решение - в 1882 году они ушли из фирмы Отто, приобрели небольшую мастерскую близ Штутгарта и начали работать над своим проектом.

Проблема, стоявшая перед Даймлером и Майбахом была не из лёгких: они решили создать двигатель, который не требовал бы газогенератора, был бы очень лёгким и компактным, но при этом достаточно мощным, чтобы двигать экипаж. Увеличение мощности Даймлер рассчитывал получить за счёт увеличения частоты вращения вала, но для этого необходимо было обеспечить требуемую частоту воспламенения смеси. В 1883 году был создан первый бензиновый двигатель с зажиганием от раскалённой полой трубочки, открытой в цилиндр.

Первая модель бензинового двигателя предназначалась для промышленной стационарной установки.

Процесс испарения жидкого топлива в первых бензиновых двигателях оставлял желать лучшего. Поэтому настоящую революцию в двигателестроении произвело изобретение карбюратора. Создателем его считается венгерский инженер Донат Банки. В 1893 году он взял патент на карбюратор с жиклёром , который был прообразом всех современных карбюраторов. В отличие от своих предшественников Банки предлагал не испарять бензин, а мелко распылять его в воздухе. Это обеспечивало его равномерное распределение по цилиндру, а само испарение происходило уже в цилиндре под действием тепла сжатия. Для обеспечения распыления всасывание бензина происходило потоком воздуха через дозирующий жиклёр, а постоянство состава смеси достигалось за счёт поддержания постоянного уровня бензина в карбюраторе. Жиклёр выполнялся в виде одного или нескольких отверстий в трубке, располагавшейся перпендикулярно потоку воздуха. Для поддержания напора был предусмотрен маленький бачок с поплавком, который поддерживал уровень на заданной высоте, так что количество всасываемого бензина было пропорционально количеству поступающего воздуха.

Первые двигатели внутреннего сгорания были одноцилиндровыми, и, для того чтобы увеличить мощность двигателя, обычно увеличивали объём цилиндра. Потом этого стали добиваться увеличением числа цилиндров.

В конце XIX века появились двухцилиндровые двигатели, а с начала столетия стали распространяться четырёхцилиндровые.

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "История создания двигателей внутреннего сгорания" в других словарях:

    Схема: Двухтактный двигатель внутреннего сгорания с глушителем … Википедия

    Дельтообразный двигатель в Национальном железнодорожном музее, Йорк, Великобритания Дельтообразный двигатель (Napier Deltic) это британский двигатель со встречным дви … Википедия

    Чертёж Паровой телеги Кюньо (Jonathan Holguinisburg) (1769) История автомобиля началась ещё в 1768 году вместе с созданием паросиловых машин, способных перевозить челов … Википедия

    Проверить информацию. Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье. На странице обсуждения должны быть пояснения … Википедия

    Содержание 1 Изобретение мотоцикла 2 Мотоцикл в XX веке и в начале XXI века … Википедия

    Запуск космического корабля Аполлон 11 с Космического центра Кеннеди на Луну в 1969 г. Технологическая и индустриальная история США описывает формирование наиболее мощной и техно … Википедия

История автомобиля неразрывно связана с историей двигателя, приводимого в движение автомобиль. Первые автомобили снабжались паровыми машинами, которые были весьма несовершенны в смысле затрат топлива и поначалу полезная отдача едва доходила до 1%. Лишь через несколько лет она достигла 8%, поэтому паровая машина не удовлетворяла конструкторов.

Тогда вновь начали интересоваться другими видами двигателей.

Первыми тепловыми двигателями были ДВС, изобретенные приблизительно в начале ХVIII века – Гюйгенсом была предложена машина, работавшая взрывами пороха, который выгонял воздух из цилиндра, а затем при охлаждении поршень передвигался давлением наружного воздуха.

Серьезное соревнование паровых машин, которые можно назвать двигателями «с наружным сгоранием, и двигателей «с внутренним сгоранием» топлива началось только тогда, когда перешли на газообразное, а затем жидкое топливо.

С 1860 года применяют горение газа внутри цилиндра, но потребление газа было весьма велико.

Первый поршневой двигатель внутреннего сгорания появился в 1860 году, изобретен он был французским инженером Ленуаром. В связи с отсутствием предварительного сжатия рабочего тела и неудачным конструктивным решением двигатель Ленуара представлял собой крайне несовершенную тепловую установку, которая не могла конкурировать даже с паровыми машинами того времени.

Исходя из предложенного в 1862 г. французским инженером Бо де Роша рабочего цикла ДВС с предварительным сжатием рабочего тела и сгоранием при постоянном объеме, немецкий механик Николаус Август Отто в 1870 г. создал четырехтактный газовый двигатель, явившийся прообразом современных карбюраторных двигателей. По своим показателям двигатель Отто значительно превзошел паровые машины и в течение ряда лет использовался в качестве стационарного двигателя.

Необходимо было перейти на жидкое топливо, чтобы сделать ДВС применимым для передвижения. Одновременно необходимо было уменьшить вес двигателя.

Жидкое топливо требовало предварительного обращения его в газ, что и происходило во многих типах машин в самом цилиндре. Неудобство подобного способа заставило применять особый прибор – карбюратор , в котором горючая жидкость превращалась раньше, чем поступала в цилиндр.

Начали применять легко испаряемый вид жидкого топлива – бензин, потому что нелегко было предварительно нагревать топливо на передвижной машине.

Параллельно велись работы по увеличению мощности за счет увеличения числа цилиндров.

Впервые бензиновый двигатель транспортного типа был предложен в 1879 г. и затем выполнен в 1881 г. в металле русским инженером И.С. Костовичем.



Двигатель Костовича по своему времени имел оригинальную конструкцию и отличался очень высокими показателями. В этом восьмицилиндровом было применено электрическое зажигание с оригинальной системой и использованы противолежащие цилиндры. При мощности 80 л.с. двигатель весил 240 кг, опережая по удельному весу на 2-3 десятилетия все получившие в последующем распространение карбюраторные двигатели.

Уменьшение веса было достигнуто резким скачком опытов Г. Даймлера в Германии в 80 х годах ХIХ века, когда впервые был построен двигатель с большим числом оборотов, что позволило движущимся частям производить большую работу.

Паровые машины в этом отношении были окончательно побеждены.

1890 год, когда впервые появились автомобили с быстроходными двигателями, можно считать началом широкого распространения а/м.

Начало развития двигателей с самовоспламенением от сжатия относится к 90-м годам ХIХ века. В 1894 г. немецкий инженер Р. Дизель теоретически разработал рабочий цикл двигателя с самовоспламенением от сжатия. Сделав ряд отступлений от своих теоретических предпосылок, в 1897 г. Р. Дизель выполнил в металле первый образец работоспособного стационарного компрессорного двигателя.

В дальнейшем вследствие ряда конструктивных недостатков этот двигатель не получил широкого распространения и был снят с производства.

Внеся ряд оригинальных изменений в двигатель Дизеля, в 1899 г. русский инженер Г.В. Тринклер предложил конструкцию двигателя с самовоспламенением от сжатия, работающего без особого компрессора для распыливания топлива.

Двигатели Г.В. Тринклера и Я.В. Мамина представляли собой первые модели транспортных двигателей с самовоспламенением от сжатия и явились прообразами всех используемых в настоящее время дизелей.

Появившиеся в середине прошлого века роторные двигатели при их неоспоримых преимуществах перед поршневыми двигателями в области мощностей не могут конкурировать с существующими двигателями и практически не имеют перспектив широкого применения в качестве силовых агрегатов автомобилей.

Основными силовыми установками для автомобилей в настоящее время по-прежнему остаются поршневые двигатели как карбюраторные, так и дизели.

В последнее время появились двигатели, занимающие промежуточное положение между карбюраторными двигателями и дизелями – двигатели с впрыском топлива и принудительным воспламенением рабочей смеси (инжекторные). Эти двигатели в зависимости от организации процесса смесеобразования и конструктивных особенностей в той или иной степени сочетают в себе положительные свойства и карбюраторных двигателей и дизелей.

В настоящее время двигателестроение развивается быстрыми темпами, но, к сожалению, осуществляется только модернизация двигателей. При этом основное внимание при разработке конструкций новых и перспективных двигателей уделяется повышению их удельных мощностных показателей, экономичности, надежности и долговечности.

Раздел I. Двигатель

Тема 1.1 Общие сведения

Двигатель - это агрегат, преобразующий какой-либо вид энергии в механическую работу.

Двигатель, у которого механическая работа получается за счет тепловой энергии, называется тепловым двигателем.

Двигатель внутреннего сгорания (ДВС) - тепловой двигатель, у которого рабочая смесь сгорает внутри цилиндра.

На отечественных автомобилях устанавливаются поршневые двигатели внутреннего сгорания, в которых тепловая энергия, получаемая при сгорании топлива преобразуется в механическую работу, используемую для передвижения автомобиля. Расширяющиеся при сгорании рабочей смеси в цилиндрах двигателя газы воздействуют на поршни, поступательное движение которых преобразуется кривошипно-шатунным механизмом во вращательное движение коленчатого вала, которое в свою очередь передается при помощи агрегатов трансмиссии на ведущие колеса автомобиля, приводя его в движение.

Требования, предъявляемые к двигателям

· Низкий уровень шума;

· Соответствие требованиям международных норм по токсичности отработавших газов;

· Высокая экономичность;

· Компактность;

· Простота и безопасность обслуживания;

· Высокие мощностные показатели.

Классификация двигателей внутреннего сгорания

ДВС могут быть классифицированы по следующим признакам:

По типу схемы и конструкции рабочих органов – поршневые и роторные;

По применяемому топливу – двигатели, работающие на легком жидком топливе (бензиновые); работающие на тяжелом жидком топливе (дизельные); работающие на газе (газовые);

По способу смесеобразования – с внешним смесеобразованием (карбюраторные), с внутренним смесеобразованием (дизельные);

По способу воспламенения горючей смеси – с самовоспламенением от сжатия (дизельные) и с принудительным воспламенением от электрической свечи (карбюраторные, инжекторные)

По способу осуществления рабочего цикла – четырехтактные и двухтактные;

По способу подачи топлива – с карбюрацией (карбюраторные), под давлением впрыска (дизельные, инжекторные).

Основные механизмы и системы двигателя

Поршневой двигатель внутреннего сгорания состоит из следующих механизмов и систем:

· кривошипно-шатунный механизм (КШМ);

· газораспределительный механизм (ГРМ);

· система охлаждения;

· смазочная система;

· система питания;

· система зажигания (в бензиновых и газовых двигателях);

· система электрического пуска двигателя.

Основные определения и параметры двигателей

Поршень, свободно перемещаясь в цилиндре, занимает два крайних положения (см. рис.1).

Мертвыми точками называются крайние положения поршня, где он меняет направление движения и его скорость равна нулю. При нахождении в верхней мертвой точке (ВМТ) поршень наиболее удален от оси коленчатого вала, а в нижней мертвой точке (НМТ) – наиболее приближен к ней.


Рис.1 Схема кривошипно-шатунного механизма

а – продольный разрез; б – поперечный разрез

Ход поршня S – расстояние между крайними положениями поршня, равное удвоенному радиусу кривошипа коленчатого вала. Каждому ходу поршня соответствует поворот коленчатого вала на угол 180 0 (пол-оборота).

Ход поршня S и диаметр цилиндра D обычно определяют размеры двигателя.

Даже при равномерном вращении коленчатого вала поршень в цилиндре движется неравномерно: приближаясь к мертвой точке, он уменьшает свою скорость, а, удаляясь от нее – увеличивает. В результате неравномерного движения поршня возникают неуравновешенные силы инерции возвратно-поступательно движущихся поршня и связанных с ним деталей, что вызывает вибрацию двигателя и всего автомобиля, снижает надежность и долговечность его работы.

Уменьшение неравномерности движения поршня и величины сил инерции достигается различными мерами, в том числе выбором оптимального отношения радиуса кривошипа r к длине шатуна

2. История создания и развития двигателей внутреннего сгорания

Вот уже около 120 лет человек не может представить жизни без автомобиля. Попытаемся заглянуть в прошлое, - к самому появлению основы основ современного автомобилестроения.

Первые попытки создания двигателя внутреннего сгорания относятся к XVII столетию. Опыты Э. Торичелли, Б. Паскаля и О. Герике побудили изобретателей использовать давление воздуха как движущую силу в атмосферных машинах. Одни из первых предложили подобные машины аббат Оттефель (1678-1682) и Х.Гюйгенс (1681). Для перемещения поршня в цилиндре они предлагали использовать взрывы пороха. Поэтому Оттефель и Гюйгенс могут рассматриваться как пионеры в области двигателей внутреннего сгорания.

Усовершенствованием пороховой машины Гюйгенса занимался и французский ученый Дени Папен - изобретатель центробежного насоса, парового котла с предохранительным клапаном, первой поршневой машины, работающей на водяном паре. Первым, кто попытался реализовать принцип ДВС, был англичанин Роберт Стрит(пат. № 1983,1794 г.). Двигатель состоял из цилиндра и подвижного поршня. В цилиндр в начале перемещения поршня поступала смесь летучей жидкости (спирт) и воздуха, жидкость и пары жидкости смешивались с воздухом. На середине хода поршня смесь воспламенялась и подбрасывала поршень.

В 1799 году французский инженер Филипп Лебон открыл светильный газ и получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля. Это открытие имело огромное значение, прежде всего, для развития техники освещения, которые очень скоро стали успешно конкурировать с дорогостоящими свечами. Однако светильный газ годился не только для освещения. В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения стремительно расширялись, оказывая сильное давление на окружающую среду. Создав соответствующие условия, можно использовать выделяющуюся энергию в интересах человека. В двигателе Лебона были предусмотрены два компрессора и камера смешения. Один компрессор должен был накачивать в камеру сжатый воздух, а другой -- сжатый светильный газ из газогенератора. Газовоздушная смесь поступала потом в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебон вынашивал мысль о двигателе внутреннего сгорания, однако Р. Стрит и Ф. Лебон не предпринимали попыток реализовать свои идеи.

В последующие годы (до 1860) немногочисленные попытки создания двигателя внутреннего сгорания также не увенчались успехом. Основные трудности создания двигателя внутреннего сгорания были обусловлены отсутствием подходящего топлива, трудностями организации процессов газообмена, топливоподачи, воспламенения топлива. Обойти эти трудности в значительной степени удалось Роберту Стирлингу, создавшему в 1816-1840 гг. двигатель с внешним сгоранием и регенератором. В двигателе Стирлинга преобразование возвратно-поступательного движения поршня во вращательное движение осуществлялось с помощью ромбического механизма, а в качестве рабочего тела использовался воздух.

Одним из первых обратил внимание на реальную возможность создания двигателя внутреннего сгорания французский инженер Сади Карно (1796-1832), занимавшийся вопросами теории теплоты, теории тепловых машин. В сочинении «Размышление о движущей силе огня и о машинах, способных развивать эту силу» (1824) он писал: «Нам казалось бы более выгодным сперва сжать воздух насосом, затем пропустить его через вполне замкнутую топку, вводя туда маленькими порциями топливо, при помощи приспособления, легко осуществимого; затем заставить воздух выполнить работу в цилиндре с поршнем или в любом другом расширяющемся сосуде, и, наконец, выбросить его в атмосферу или заставить пойти к паровому котлу для использования оставшейся температуры. Главные трудности, встречаемые в этого рода операциях: заключить топку в помещение достаточной крепости и поддерживать при этом горение в должном состоянии, поддерживать различные части аппарата при умеренной температуре и мешать быстрой порче цилиндра и поршня; мы не думаем, чтобы эти трудности были бы непреодолимы». Карно Сади. Размышление о движущей силе огня и о машинах, способных развивать эту силу/ С. Карно. - М. - Петр.: Государственное издательство, 1953. - 76 с. Однако идеи С. Карно не были оценены его современниками. Только через 20 лет впервые обратил на них внимание французский инженер Э. Клапейрон (1799-1864), автор известного уравнения состояния. Благодаря Клапейрону, использовавшему метод Карно, популярность Карно начинает быстро расти. В настоящее время Сади Карно общепризнан, как основоположник теплотехники.

В последующие годы несколько изобретателей из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровой машиной. Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит французскому изобретателю (бельгийского происхождения) Жану Этьену Ленуару. Работая на гальваническом заводе, Ленуар пришёл к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры. 24 января 1860 г. Ленуар получил патент на двигатель внутреннего сгорания, и к концу 1860 г. двигатель был построен. Двигатель работал на светильном газе без предварительного сжатия. На части хода поршня от ВМТ к НМТ в цилиндр поступала смесь воздуха и газа, а затем смесь воспламенялась электрической искрой (Приложение 2).

Ленуар не сразу добился успеха. После того как удалось изготовить все детали и собрать машину, она проработала совсем немного и остановилась, так как из-за нагрева поршень расширился и заклинил в цилиндре. Ленуар усовершенствовал свой двигатель, продумав систему водяного охлаждения. Однако вторая попытка запуска также закончилась неудачей из-за плохого хода поршня. Ленуар дополнил свою конструкцию системой смазки. Только тогда двигатель начал работать. Уже первые несовершенные конструкции продемонстрировали существенные преимущества двигателя внутреннего сгорания по сравнению с паровой машиной. Спрос на двигатели быстро рос, и в течение нескольких лет Ж. Ленуар построил свыше 300 двигателей. Он первым использовал двигатель внутреннего сгорания в качестве силовой установки различного назначения. Однако эта модель была несовершенная, КПД не превышал 4%.

В 1862 г. французский инженер А.Ю. Бо де Роша подал в патентное ведомство Франции прошение на выдачу патента (дата приоритета - 1 января 1862 г.), в котором уточнил идею, высказанную Сади Карно с точки зрения конструкции двигателя и его рабочих процессов. (Об этом прошении вспомнили только при патентных спорах относительно приоритета изобретения Н. Отто). Бо де Роша предлагал осуществлять впуск горючей смеси в течение первого хода поршня, сжатие смеси - в течение второго хода поршня, сгорание смеси - при крайнем верхнем положении поршня и расширение продуктов сгорания - в течение третьего хода поршня; выпуск продуктов сгорания - в течение четвертого хода поршня. Однако из-за отсутствия средств не смог осуществить.

Этот цикл, спустя 18 лет, был осуществлен немецким изобретателем Отто Николауса Августа в двигателе внутреннего сгорания, который работал по четырёхтактной схеме: впуск, сжатие, рабочий ход, выпуск отработанных газов. Именно модификации этого двигателя и получили наибольшее распространение. За более чем столетний период, который по справедливости именуют «автомобильной эрой», менялось все - формы, технологии, решения. Исчезали одни марки и взамен приходили другие. Несколько витков развития прошла автомобильная мода. Неизменным осталось одно - число тактов, по которым работает двигатель. И в истории автомобилестроения это число навсегда связано с именем немецкого изобретателя-самоучки Отто. Совместно с видным промышленником Ойгеном Лангеном изобретатель основал в Кёльне фирму «Отто и Ко» - и сосредоточился на поиске наилучшего решения. 21 апреля 1876 года он получил патент на очередную версию двигателя, который годом позже был представлен на Парижской выставке 1867 г., где и был отмечен Большой золотой медалью. В конце 1875 г. Отто закончил разработку проекта принципиально нового первого в мире 4-тактного двигателя. Преимущества четырёхтактного двигателя были очевидны, и 13 марта 1878 года Н. Отто был выдан патент Германии № 532 на четырёхтактный двигатель внутреннего сгорания (Приложение 3).В течение первых 20 лет завод Н. Отто построил 6000 двигателей.

Эксперименты по созданию такого агрегата производились и раньше, но авторы сталкивались с рядом проблем, в первую очередь с тем, что вспышки горючей смеси в цилиндрах происходили в настолько неожиданных последовательностях, что обеспечить ровную и постоянную передачу мощности было невозможно. Но именно ему удалось найти единственно верное решение. Опытным путем он установил, что неудачи всех прежних попыток были связаны как с неправильным составом смеси (пропорции горючего и окислителя), так и с ложным алгоритмом синхронизации системы впрыска топлива и его сгорания.

Значительный вклад в развитие двигателей внутреннего сгорания был сделан также американским инженером Брайтоном, предложившим компрессорный двигатель с постоянным давлением сгорания, карбюратор.

Итак, приоритет Ж. Ленуара и Н. Отто в создании первых работоспособных двигателей внутреннего сгорания бесспорен.

Производство двигателей внутреннего сгорания неуклонно нарастало, совершенствовалась их конструкция. В 1878-1880 гг. начинается производство двухтактных двигателей, предложенных немецкими изобретателями Виттигом и Гессом, английским предпринимателем и инженером Д. Клерком, а с 1890 г. - двухтактных двигателей с кривошипно-камерной продувкой (патент Англии № 6410, 1890). Использование кривошипной камеры как продувочного насоса несколько раньше было предложено немецким изобретателем и предпринимателем Г. Даймлером. В 1878 г. Карл Бенц оснастил трёхколесный велосипед двигателем мощностью 3 л.с., который развивал скорость свыше 11 км/ч. Им же созданы первые автомобили с одно- и двухцилиндровыми двигателями. Цилиндры располагались горизонтально, крутящий момент на колеса передавался с помощью ременной передачи. В 1886 г. К. Бенцу был выдан на автомобиль патент Германии №37435 с приоритетом от 29 января 1886 г. На Парижской всемирной выставке в 1889 г. автомобиль Бенца был единственным. С этого автомобиля начинается интенсивное развитие автомобилестроения.

Другим выдающимся событием в истории двигателей внутреннего сгорания было создание двигателя внутреннего сгорания с воспламенением топлива от сжатия. В 1892 г. немецкий инженер Рудольф Дизель (1858-1913) запатентовал, а в 1893 г. описал в брошюре «Теория и конструкция рационального теплового двигателя для замены паровых машин и известных в настоящее время тепловых двигателей» двигатель, работающий по циклу Карно. В патенте Германии №67207 с приоритетом от 28 февраля 1892 г. «Рабочий процесс и способ выполнения одноцилиндрового и многоцилиндрового двигателя» принцип работы двигателя излагался следующим образом: Там же.

1. Рабочий процесс в двигателях внутреннего сгорания характеризуется тем, что поршень в цилиндре настолько сильно сжимает воздух или какой-нибудь индифферентный газ (пар) с воздухом, что получающаяся при этом температура сжатия находится значительно выше температуры воспламенения топлива. При этом сгорание постепенно вводимого после мертвой точки топлива совершается так, что в цилиндре двигателя не происходит существенного повышения давления и температуры. Вслед за этим, после прекращения подачи топлива, в цилиндре происходит дальнейшее расширение газовой смеси.

2. Для осуществления рабочего процесса, описанного в п.1, к рабочему цилиндру присоединяется многоступенчатый компрессор с ресивером. Равным образом возможно соединение нескольких рабочих цилиндров между собой или же с цилиндрами для предварительного сжатия и последующего расширения.

Первый двигатель Р.Дизель построил уже к июлю 1893 г. Предполагалось, что сжатие будет осуществляться до давления 3 МПа, температура воздуха в конце сжатия будет достигать 800 С, а топливо (угольный порошок) - вводиться непосредственно в цилиндр. При запуске первого двигателя произошел взрыв (в качестве топлива был использован бензин). В течение 1893 г. было построено три двигателя. Неудачи с первыми двигателями вынудили Р.Дизеля отказаться от изотермического сгорания и перейти к циклу со сгоранием при постоянном давлении.

В начале 1895 г. был успешно испытан первый компрессорный двигатель с воспламенением от сжатия, работающий на жидком топливе (керосине), а в 1897 г. начался период широких испытаний нового двигателя. Эффективный КПД двигателя составлял 0,25, механический КПД - 0,75. Первый двигатель внутреннего сгорания с воспламенением от сжатия для промышленных целей был построен в 1897 г. Аугсбургским машиностроительным заводом. На выставке в Мюнхене в 1899 г. уже было представлено 5 двигателей Р.Дизеля заводами Отто-Дейтц, Круппа и Аугсбургского машиностроительного. Успешно демонстрировались двигатели Р. Дизеля и на Всемирной выставке в Париже (1900). В дальнейшем они нашли широкое применение и по имени изобретателя получили название «дизельные двигатели» или просто «дизели».

В России первые керосиновые двигатели начали строиться в 1890 г. на заводе Е.Я. Бромлея (четырехтактные калоризаторные), а с 1892 г. и на механическом заводе Э. Нобеля. В 1899 г. Нобель получил право на производство двигателей Р. Дизеля и в том же году завод приступил и их выпуску. Конструкцию двигателя разработали специалисты завода. Двигатель развивал мощность 20-26 л.с., работал на сырой нефти, соляровом масле, керосине. Специалисты завода выполнили также разработки двигателей с воспламенением от сжатия. Они построили первые безкрейцкопфные двигатели, первые двигатели с V-образным расположением цилиндров, двухтактные двигатели с прямоточно-клапанной и петлевой схемами продувки, двухтактные двигатели, в которых продувка осуществлялась за счет газодинамических явлений в выпускном канале. Производство двигателей с воспламенением топлива от сжатия было начатоВ 1903-1911 гг. на Коломенском, Сормовском, Харьковском паровозостроительном заводах, на заводах Фельзера в Риге и Нобеля в Петербурге, на Николаевском судостроительном заводе. В 1903-1908 гг. русский изобретатель и предприниматель Я.В. Мамин создал несколько работоспособных быстроходных двигателей с механическим впрыском топлива в цилиндр и воспламенением от сжатия, мощность которого в 1911 г., составляла уже 25 лс. Впрыск топлива производился в предкамеру, выполненную из чугуна с медной вставкой, что позволяло получить высокую температуру поверхности предкамеры и надежное самовоспламенение. Это был первый в мире бескомпрессорный дизель.Шепелев А.Н. Очерк о жизни и творчестве изобретателя Я.В. Мамина/ А.Н. Шепелев, А.А Деревянченко, Я. Мамин. - Челябинск: Юж-Урал. кн. издательство, 1988. В 1906 г. профессор МВТУ В.И. Гриневецкий предложил конструкцию двигателя с двойным сжатием и расширением - прототипа комбинированного двигателя. Им же разработан метод теплового расчета рабочих процессов, который впоследствии был развит Н.Р. Брилингом и Е.К. Мазингом и не потерял своего значения и сегодня. Как видим, специалисты дореволюционной России выполнили несомненно крупные самостоятельные разработки в области двигателей с воспламенением топлива от сжатия. Успешное развитие дизелестроения в России объясняется тем, что Россия имела свою нефть, а двигатели Дизеля наиболее отвечали потребностям небольших предприятий, поэтому производство дизельных двигателей в России началось практически одновременно со странами Западной Европы.

Успешно развивалось отечественное двигателестроение и в послереволюционный период. К 1928 г. в стране уже выпускалось свыше 45 типов двигателей суммарной мощностью около 110 тыс. кВт. В годы первых пятилеток был освоен выпуск автомобильных и тракторных двигателей, судовых и стационарных двигателей мощностью до 1500 кВт, созданы авиадизель, танковый дизель В-2, в значительной степени предопределивший высокие тактико-технические характеристики бронетанковой техники страны. Значительный вклад в развитие отечественного двигателестроения внесли выдающиеся советские ученые: Н.Р. Брилинг, Е.К. Мазинг, В.Т. Цветков, А.С. Орлин, В.А. Ваншейдт, Н.М. Глаголев, М.Г. Круглов и др.

Из разработок в области тепловых двигателей последних десятилетий ХХ века следует отметить три важнейшие: создание немецким инженером Феликсом Ванкелем работоспособной конструкции роторно-поршневого двигателя, комбинированного двигателя с высоким наддувом и конструкции двигателя с внешним сгоранием, конкурентоспособного с быстроходным дизелем. Появление двигателя Ванкеля было встречено с воодушевлением. Имея малую удельную массу и габариты, высокую надёжность, РПД достаточно быстро получили широкое распространение главным образом на легковом автотранспорте, в авиации, на судах и стационарных установках. Лицензиюна производство двигателя Ф. Ванкеля приобрелоболее чем 20 фирм, в их числе и такие как «Дженерал Моторс», «Форд. К 2000 г. было изготовлено более двух миллионов автомобилей с РПД. Пятов И. Феликс Ванкель - изобретатель роторно-поршневого двигателя / И.Пятов // Двигатель. - 2001. - №4.

В последние годы продолжается процесс совершенствования и улучшения показателей бензиновых двигателей и дизелей. Развитие бензиновых двигателей идёт по пути улучшения их экологических характеристик, экономичности и мощностных показателей путем более широкого применения и совершенствования системы впрыска бензина в цилиндры; применения электронных систем управления впрыском, расслоения заряда в камере сгорания с обеднением смеси на частичных нагрузках; увеличения энергии электрической искры при зажигании и т. д. В результате экономичность рабочего цикла бензиновых двигателей становится близкой к экономичности дизелей.

Для повышения технико-экономических показателей дизелей используют повышение давления впрыскивания топлива, применяют управляемые форсунки, форсирование по среднему эффективному давлению путём наддува и охлаждения наддувочного воздуха, используют мероприятия по снижению токсичности отработавших газов.

Таким образом, непрерывное совершенствование двигателей внутреннего сгорания обеспечило им господствующее положение, и только в авиации двигатель внутреннего сгорания уступил свои позиции газотурбинному двигателю. Для других отраслей народного хозяйства альтернативных энергетических установок малой мощности, столь же универсальных и экономичных, как двигатель внутреннего сгорания, еще не предложено. Поэтому и на отдаленную перспективу двигатель внутреннего сгорания рассматривается как основной тип энергетической установки средней и малой мощности для транспорта и других отраслей народного хозяйства.

Анализ деятельности нефтяной компании ОАО "Самотлорнефтегаз"

ТНК-ВР является одной из ведущих нефтяных компаний России и входит в десятку крупнейших частных нефтяных компаний в мире по объемам добычи нефти...

Анализ деятельности унитарного муниципального предприятия "Нижнеудинский хлебозавод"

Унитарное муниципальное предприятие "Нижнеудинский ХЛЕБОЗАВОД" и его предшественники. Объединённый архивный фонд. В 1931 году 20-го столетия в г. Нижнеудинске между рекой Уда и ее протокой Застрянка была построена кустарная пекарня...

Анализ деятельности Уральского центра стандартизации, метрологии и сертификации (ФГУ "Уралтест")

В 1899 году Урал и Сибирь посетил великий русский ученый Дмитрий Иванович Менделеев (1834-1907 гг.) Приехав на Урал в качестве главы экспедиции, задачей которой было изучение горнорудного дела...

Анализ эффективности работы двигателя внутреннего сгорания

Двигателем внутреннего сгорания называют поршневой тепловой двигатель, в котором процессы сгорания топлива, выделение теплоты и превращение ее в механическую работу происходят непосредственно в цилиндре двигателя...

Исследование влияния концентрации щелочи на структуру диспергированных порошков и свойства керамических материалов, спеченных из них

Доокисление отработанных газов двигателей внутреннего сгорания (ДВС) является одной из наиболее сложных и актуальных проблем защиты окружающей среды от загрязнения токсичными веществами...

История возникновения современных бульдозеров

Слово "бульдозер" появилось в конце XIX века - оно относилось к любой силе, способной сдвинуть большую массу. В 1929 году появился именно первый бульдозер - огромная и шумная машина...

История создания и развития двигателей внутреннего сгорания

В настоящее время наибольшее распространение получили двигатели внутреннего сгорания (ДВС) - тип двигателя, тепловая машина, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо)...

Коррозийно-механическое изнашивание оборудования

Поршневые кольца и цилиндровые втулки (гильзы) двигателей, изготовленные из литейных чугунов, при наличии электролита образуют гальванические пары как друг с другом, так и между структурными составляющими чугуна - перлитом, графитом...

Проект реконструкции моторного участка в условиях ООО "Автоэкспресс"

ООО «Автоэкспресс» организовано в 1997 году с целью продвижения торговой марки Subaru на украинском рынке. Находится по адресу: г. Донецк, пр. Ильича, 65...

Проектирование рабочего органа скрепера

Первые землеройно-транспортные машины выполнялись на катках, позже -- на деревянных и металлических колесах. По мере увеличения мощности и массы машин давление на грунт возрастало...

Создание максимально легкого и мощного двигателя - первоочередная задача для инженеров всех автомобильных компаний, которою они с тем или иным успехом пытаются решить уже более ста лет. Гильза цилиндров -- это важная часть блока цилиндров...

Разработка и исследование автоматизированного устройства для лазерного термоупрочнения гильз цилиндров на базе двигателей с полым ротором

Блок цилиндров или блок-картер является основой двигателя. На нем и внутри него расположены основные механизмы и детали систем двигателя. У большинства современных двигателей жидкостного охлаждения цилиндр, где перемещается поршень...

Поршневым двигателем внутреннего сгорания называют такую тепловую машину, в которой превращение химической энергии топлива в тепловую, а затем в механическую энергию, происходит внутри рабочего цилиндра...

Тепловой расчет двигателя внутреннего сгорания Д-240

Технология переработки мясного сырья в ООО КМП "Мясная сказка" г. Тюмени

Комбинат мясных полуфабрикатов «Мясная сказка» зарегистрирован по адресу город Тюмень, улица Бабарынка, 20а/2. Участок расположения производства находится в черте города, что обеспечивает эффективную реализацию готовой продукции...

Люди производят автомобили уже более века, и почти под каждым капотом стоит двигатель внутреннего сгорания. В течение последних принцип его работы оставался неизменным: кислород и топливо поступают в цилиндры мотора, где происходит взрыв (воспламенение), в результате чего внутри силового агрегата образовывается сила, которая и двигает автомобиль вперед. Но с момента первого появления двигателя внутреннего сгорания (ДВС) каждый год инженеры оттачивают его, чтобы сделать быстрее, надежнее, экономичнее, эффективнее.

Благодаря этому сегодня все современные автомобили стали мощнее и экономичнее. Некоторые обычные автомобили сегодня имеют такую мощность, которая еще недавно была только в мощных дорогих суперкарах. Но без огромных прорывов мы бы сегодня до сих пор владели маломощными прожорливыми автомобилями, на которых не уедешь далеко от заправки. К счастью, время от времени подобные прорывные технологии уже не раз открывали новый этап в развитии двигателей внутреннего сгорания. Мы решили вспомнить самые важные даты в эволюции развития ДВС. Вот они.

1955 год: впрыск топлива


До появления системы впрыска процесс попадания топлива в камеру сгорания двигателя был неточным и плохо регулируемым, поскольку подавалась с помощью карбюратора, который постоянно нуждался в очистке и периодической сложной механической регулировке. К сожалению, на эффективность работы карбюраторов влияли погодные условия, температура, давление воздуха в атмосфере и даже на какой высоте над уровнем моря находится автомобиль. С появлением же электронного впрыска топлива (инжектора) процесс подачи топлива стал более контролируемым. Также с появлением инжектора владельцы автомобилей избавились от необходимости вручную контролировать процесс прогрева двигателя, регулируя дроссельную заслонку с помощью "подсоса". Для тех, кто не знает, что такое подсос:

Подсос - это ручка управления пусковым устройством карбюратора, с помощью которой на карбюраторных машинах было необходимо регулировать обогащение топлива кислородом. Так, если вы запускаете холодный двигатель, то на карбюраторных машинах необходимо открыть "подсос", обогатив топливо кислородом больше, чем необходимо на прогретом моторе. По мере прогревания двигателя нужно постепенно закрывать ручку регулировки пускового устройства карбюратора, возвращая обогащение топлива кислородом к нормальным значениям.

Сегодня подобная технология, естественно, выглядит допотопно. Но еще совсем недавно большинство автомобилей в мире оснащались карбюраторными системами подачи топлива. И это несмотря на то, что технология впрыска топлива с помощью инжектора пришла в мир в 1955 году, когда инжектор впервые был применен на автомобиле (ранее эта система подачи топлива использовалась в самолетах).


В этом году было проведено испытание инжектора на спорткаре Mercedes-Benz 300SLR, который смог проехать, не сломавшись, почти 1600 км. Это расстояние автомобиль преодолел за 10 часов 7 минут и 48 секунд. Испытание проходило в рамках очередной автогонки "Тысяча миль". Эта машина установила мировой рекорд.

Кстати, Mercedes-Benz 300SLR стал не только самым первым серийным автомобилем с инжекторным впрыском топлива, разработанным компанией Bosch, но и самым быстрым автомобилем в мире в те годы.

Два года спустя компания Chevrolet представила спорткар Corvette с впрыском топлива (система Rochester Ramjet). В итоге этот автомобиль стал быстрее первооткрывателя Mercedes-Benz 300SLR.

Но, несмотря на успех с уникальной системой впрыска топлива Rochester Ramjet, именно электронные инжекторные системы Bosch (с электронным управлением) начали свое наступление по миру. В результате за короткое время впрыск топлива, разработанный компанией Bosch, начал появляться на многих европейских автомобилях. В 1980-е годы электронные системы впрыска топлива (инжектор) охватили весь мир.

1962 год: турбонаддув


Турбокомпрессор является одним из самых драгоценных камней в двигателях внутреннего сгорания. Дело в том, что турбина, которая подает больше воздуха в цилиндры двигателя, когда-то позволяла

12-цилиндровым истребителям во время Второй мировой войны взлетать выше, лететь быстрее, дальше и меньше расходовать дорогое топливо.

В итоге, как и многие технологии, система турбин из авиатехники пришла в автопромышленность. Так, в 1962 году в мире были представлены первые серийные автомобили с турбокомпрессором. Ими стали , или Saab 99.


После чего компания General Motors попыталась развить дальше эту технологию турбирования двигателей внутреннего сгорания на легковых автомобилях. Так, на автомобиле Oldsmobile Jetfire появилась технология «Turbo Rocket Fluid», которая помимо турбины использовала резервуар с газом и дистиллированную воду для увеличения мощности двигателя. Это была настоящая фантастика. Но затем компания GM отказалась от этой сложной и дорогой, а также опасной технологии. Все дело в том, что уже к концу 1970-х годов такие компании, как MW, Saab и Porsche, заняв первые места во многих мировых автогонках, доказали ценность турбин в автоспорте. Сегодня же турбины пришли на обычные автомобили и в ближайшем будущем отправят обычные атмосферные моторы на пенсию.

1964 год: роторный двигатель


Единственным двигателем, который по-настоящему смог сломать форму обычного двигателя внутреннего сгорания, стал роторный чудо-мотор инженера Феликса Ванкеля. Форма его ДВС ничего общего не имела с привычным нам двигателем. представляет собой треугольник внутри овала, вращающийся с дьявольской силой. По своей конструкции роторный двигатель легче, менее сложный и более крутой, чем обычный двигатель внутреннего сгорания с поршнями и клапанами.

Первыми роторные двигатели на серийных авто начали использовать компания Mazda и ныне уже не существующий немецкий автопроизводитель NSU.

Самым же первым серийным автомобилем с роторным двигателем Ванкеля стал NSU Spider, который начал выпускаться в 1964 году.

Затем компания Mazda наладила производство своих автомобилей, оснащенных роторным мотором. Но в 2012 году она отказалась от использования роторных двигателей. Последней с роторным мотором стала модель .

Но недавно, в 2015 году, Mazda на Токийском автосалоне представила концепт-кар RX-Vision-2016, который использует роторный мотор. В итоге в мире начали появляться слухи, что японцы планируют в ближайшие годы возродить роторные автомобили. Предполагается, что в настоящий момент специализированная группа инженеров Mazda где-то в Хиросиме сидит за закрытыми дверями и создает новое поколение роторных моторов, которые должны стать основными двигателями во всех будущих новых моделях Mazda, открыв новую эру возрождения компании.

1981 год: технология дезактивации цилиндров двигателя


Идея проста. Чем меньше цилиндров работает в двигателе, тем меньше . Естественно, что двигатель V8 намного прожорливее, чем четырехцилиндровый. Также известно, что при эксплуатации автомобиля большую часть времени люди используют машину в городе. Логично, что если автомобиль оснащен 8- или 6-цилиндровыми моторами, то при поездках в городе все цилиндры в двигателе в принципе не нужны. Но как можно просто превратить 8-цилиндровый мотор в четырехцилиндровый, когда вам не требуется задействовать для мощности все цилиндры? На этот вопрос в 1981 году решила ответить компания Cadillac, которая представила двигатель с системой дезактивации цилиндров 8-6-4. Этот мотор использовал электромагнитные управляемые соленоиды для закрытия клапанов на двух или четырех цилиндрах двигателя.

Эта технология должна была повысить эффективность двигателя, например, . Но последующая ненадежность и неуклюжесть этого мотора с системой дезактивации цилиндров напугала всех автопроизводителей, которые в течение 20 лет боялись использовать эту систему в своих моторах.

Но теперь эта система снова начинает завоевывать автомир. Сегодня уже несколько автопроизводителей используют эту систему на своих серийных автомобилях. Причем технология зарекомендовала себя очень и очень хорошо. Самое интересное, что эта система продолжает развиваться. Например, уже скоро эта технология может появиться на четырехцилиндровых и даже на трехцилиндровых моторах. Это фантастика!

2012 год: двигатель с высокой степенью сжатия - воспламенение бензина от сжатия


Наука не стоит на месте. Если бы наука не развивалась, то сегодня мы бы до сих пор жили в Средневековье и верили в колдунов, гадалок и что земля плоская (хотя сегодня все равно есть немало людей, которые верят в подобную чушь).

Не стоит на месте наука и в автопромышленности. Так, в 2012 году в мире появилась очередная прорывная технология, которая, возможно, совсем скоро перевернет весь .

Речь идет о двигателях с высокой степенью сжатия.

Мы знаем, что чем меньше сжимать воздух и топливо внутри двигателя внутреннего сгорания, тем меньше мы получим энергии в тот момент, когда топливная смесь воспламеняется (взрывается). Поэтому автопроизводители всегда старались делать двигатели с немаленькой степенью сжатия.

Но есть проблема: чем выше степень сжатия, тем больше риска самовоспламенения топливной смеси.

Поэтому, как правило, ДВС имеют определенные рамки в степени сжатия, которая на протяжении всей истории автопромышленности была неизменяемой. Да, каждый двигатель имеет свою степень сжатия. Но она не меняется.

В 1970-х годах в мире был распространен неэтилированный бензин, который при сгорании дает огромное количество смога. Чтобы как-то справиться с ужасной экологичностью, автопроизводители начали использовать V8 моторы с низким коэффициентом сжатия. Это позволило снизить риск самовоспламенения топлива низкого качества в двигателях, а также повысить их надежность. Дело в том, что при самовоспламенении топлива двигатель может получить непоправимый урон.