Пассивный фильтр низких частот для трехполосной акустики. Фильтры. Отсекая лишнее. Журнал "Автозвук". Методика расчета активных ФНЧ и ФВЧ

Разделительные фильтры с плоской АЧХ обладают рядом преимуществ перед фильтрами других типов, и являются наиболее употребляемыми в настоящее время в АС класса HI-FI. Поэтому в методике расчета будет рассмотрен только этот тип фильтров. Суть расчета состоит в том, что сначала разделительные фильтры рассчитываются из условия активной нагрузки и источника напряжения с бесконечно малым выходным сопротивлением (что справедливо для современных усилителей звуковой частоты). Затем принимаются меры, направленные на снижение влияния амплитудно-частотных и фазочастотных искажений громкоговорителей и комплексного характера их входного сопротивления на характеристики фильтров.

Расчет разделительных фильтров начинается с определения их порядка и нахождения параметров элементов лестничного фильтра прототипа нижних частот.

Фильтром-прототипом называется лестничный фильтр нижних частот, значения элементов которого нормированы относительно единичной частоты среза и единичной активной нагрузки. Рассчитав элементы фильтра нижних частот определенного порядка при реальной частоте и реальном значении сопротивления нагрузки, можно путем применения преобразования частоты определить схему и рассчитать значения элементов фильтра верхних частот и полосового фильтра соответствующего порядка. Нормированные значения элементов фильтра-прототипа, работающего от источника напряжения, определяются путем разложения в цепную дробь его выходной проводимости. Нормированные значения элементов фильтров-прототипов для расчета разделительных фильтров «всепропускающего типа с плоской АЧХ» 1…6-го порядка сведены в таблицу:

Порядок фильтра Значение нормированных параметров значения z
1 2 3 4 5 6
1 1,0
2 2,0 0,5
3 1,5 1,33 0,5
4 1,88 1,59 0,94 0,35
5 1,54 1,69 1,38 0,89 0,31
6 1,8 1,85 1,47 1,12 0,73 0,5

На рис.1 представлена схема фильтра-прототипа шестого порядка. Схемы фильтров прототипов меньших порядков образуются путем отбрасывания соответствующих элементов – α (начиная с больших) – например, фильтр-прототип 1-го порядка состоит из одной индуктивности α 1 и нагрузки R н .

Рис. 1. Схема односторонне нагруженного фильтра-прототипа нижних частот 6-го порядка

Значение реальных параметров элементов, соответствующих выбранному порядку разделительных фильтров, сопротивлению нагрузки R н (Ом) и частоте среза (разделения) f d (Гц) рассчитываются следующим образом:

а) для фильтра нижних частот:

каждый элемент α -индуктивность фильтра-прототипа переводится в реальную индуктивность (Гн), рассчитываемую по формуле:

L=αR н / 2πf d

каждый элемент α -емкость фильтра-прототипа переводится в реальную емкость (Ф), рассчитываемую по формуле:

C=α/ 2πf d R н

б) для фильтра верхних частот:

каждый элемент α -индуктивность фильтра-прототипа заменяется реальной емкостью рассчитываемой по формуле:

C= 1/ 2πf d αR н

каждый элемент α -емкость фильтра-прототипа заменяется реальной индуктивностью, рассчитываемой по формуле:

L=R н / 2πf d α

в) для полосового фильтра:

каждый элемент α -индуктивность заменяется на последовательный контур, состоящий из реальных L и C -элементов, рассчитываемых по формулам

L=αR н / 2π (f d 2 -f d 1 )

где f d 2 и f d 1 – соответственно нижняя и верхняя частоты среза полосового фильтра,

С= 1/ 4π 2 f 0 2 L

где f 0 =√ f d 1 f d 2 – средняя частота полосового фильтра.

Каждый элемент α -емкость заменяется на параллельный контур, состоящий из реальных L и C -элементов, рассчитываемых по формулам:

С=α/ 2π(f d 2 -f d 1 )R н ,

L= 1/ 4π 2 f 0 2 C

Пример. Требуется рассчитать значения элементов раздельных фильтров для трехполосной АС.

Выбираем разделительные фильтры второго порядка. Пусть выбранные значения частот разделения составляют: между низкочастотным и среднечастотным каналом f d 1 =500 Гц, между среднечастотными и высокочастотными f d 2 =5000 Гц. Сопротивление громкоговорителей на постоянном токе: низкочастотного и среднечастотного – 8 Ом, высокочастотного – 16 Ом.

Рис. 2. Пример расчета разделительных фильтров трехполосной АС а) АЧХ громкоговорителей без фильтров; б) АЧХ громкоговорителей с фильтрами, цепями согласования и коррекции; в) суммарная АЧХ АС на рабочей оси и при смещении микрофона на угол ±10° в вертикальной плоскости

Амплитудно-частотные характеристики громкоговорителей, измеренные в заглушенной камере на рабочей оси АС на расстоянии 1 м, изображены на рис.2, а) (низкочастотный громкоговоритель 100ГД-1 , среднечастотный 30ГД-8 , высокочастотный 10ГД-43 ).

Рассчитаем фильтр нижних частот:

Значение нормированных параметров элементов определим из таблицы: α 1 =2,0, α 2 =0,5.

Из рис.1 определяем схему фильтра-прототипа нижних частот: фильтр состоит из индуктивности α 1 , емкости α 2 и нагрузки R н .

Значения реальных элементов фильтров нижних частот находим по выражениям и :

L 1 НЧ =αR н / 2πf d 1 =2,0·8,0/(2·3,14·500)=5,1 мГн,

C 1 НЧ =α/ 2πf d 1 R н =0,5/(2·3,14·500·8,0)=20 мкФ.

Значения элементов полосового фильтра (для среднечастотного громкоговорителя) определяем в соответствии с выражениями …:

L 1 СЧ 1 R н / 2π (f d 2 -f d 1 )=2,0·8,0/2·3,14(5000-500)=0,566 мГн (сторона ВЧ)

С 1 СЧ = 1/ 4π 2 f 0 2 L 1 СЧ =1/4·3,14 2 ·5000·500·5,66·10 -4 =18 мкФ (сторона НЧ)

С 2 СЧ 2 / 2π(f d 2 -f d 1 )R н =0,5/2·3,14(5000-500)·8,0=2,2 мкФ (сторона ВЧ)

L 2 СЧ = 1/ 4π 2 f 0 2 C 2 СЧ =1/4·3,14 2 ·5000·500·2,2·10 -6 =4,6 мГн (сторона НЧ)

Значения элементов фильтра верхних частот определяем в соответствии с выражениями и :

C 1 ВЧ = 1/ 2πf d 2 α 1 R н =1/(2·3,14·5000·2,0·16)=1,00 мкФ,

L 2 ВЧ =R н / 2πf d 2 α 2 =16/(2·3,14·5000·2,0)=0,25 мГн.

Для согласования фильтров с входным комплексным сопротивлением громкоговорителей может применяться специальная согласующая цепь. При отсутствии этой цепи входное сопротивление громкоговорителя оказывает влияние на АЧХ и ФЧХ разделительных фильтров. Параметры элементов согласующей цепи, включаемой параллельно громкоговорителю, находятся из условия:

Y c (s )+ Y ГР (s )=1/ R E ,

где Y c (s ) – проводимость согласующей цепи, Y ГР (s ) – входная проводимость громкоговорителя, R E – электрическое сопротивление громкоговорителя на постоянном токе.

Схема согласующей цепи изображена на рис.3. Цепь является дуальной по отношению к эквивалентной электрической схеме громкоговорителя. Значения элементов цепи определяем следующим образом:

R K 1 = R E ,

C K 1 = L VC / R E 2

R K = R E 2 /R ES =Q ES R E /Q MS ,

C K =L CES / R E 2 =1/Q ES R E 2 π f s ,

L K =C MES R E 2 =Q ES R E /2 π f s ,

где L VC – индуктивность звуковой катушки, f s , C MES , L CES , R ES – электромеханические параметры громкоговорителя.

Для компенсации входного сопротивления низкочастотного громкоговорителя применяют упрощенную цепь, состоящую из последовательно включенных сопротивления R K1 и емкости C K1 . Это объясняется тем, что механический резонанс громкоговорителя не оказывает влияния на характеристики фильтра нижних частот и компенсируется только индуктивный характер входного сопротивления громкоговорителя. Целесообразность подключения полной согласующей цепи к высокочастотным и среднечастотным громкоговорителям оправдана в том случае, если резонансная частота громкоговорителя находится вблизи частоты среза фильтра верхних частот или нижней частоты среза полосового фильтра. В том случае, если частоты среза фильтров значительно выше резонансных частот громкоговорителей, включение упрощенной цепи является достаточным.

Рис.3 . Схема согласующей цепи для компенсации комплексного характера входного сопротивления громкоговорителя

Влияние входного комплексного сопротивления громкоговорителей можно рассмотреть на примере разделительных фильтров второго порядка верхних и нижних частот (рис.4).

Рис. 4. Электрическая эквивалентная схема громкоговорителя с разделительными фильтрами 2-го порядка: а – с фильтром нижних частот; б – с фильтром верхних частот; (1 – фильтр; 2 – громкоговоритель)

Параметры НЧ громкоговорителя выбраны таким образом, что его АЧХ соответствует аппроксимации по Баттерворту, т.е. полная добротность Q ts =0,707. Частота среза фильтра нижних частот выбрана в 10 раз больше резонансной частоты громкоговорителя f d =10f s . Индуктивность звуковой катушки выбрана из условия: Q VC =0,1, где Q VC – добротность звуковой катушки, определяемая как:

Q VC =L VC 2π f s / R E ,

где f s – резонансная частота громкоговорителя, R E – сопротивление звуковой катушки на постоянном токе, L VC – индуктивность звуковой катушки.

Значение Q VC =0,1 соответствует среднестатистическому значению индуктивности звуковой катушки мощных низкочастотных громкоговорителей. Вследствие этого можно считать, что индуктивность звуковой катушки L VC и активное сопротивление R E включены параллельно емкости фильтра C 1 и образуют в области частоты среза фильтра широкий максимум АЧХ входного сопротивления, за которым следует острый провал (рис.5,а). Соответствующие изменения АЧХ фильтра по напряжению заключаются в небольшом подъеме АЧХ на частоте f 2 f s (вследствие индуктивности звуковой катушки) и плавном провале, за которым следует резкий пик АЧХ из-за резонанса цепи, образуемой индуктивностью звуковой катушки и емкостью разделительного фильтра. Соответствующие изменения АЧХ и Z BX после включения согласующей цепи из последовательно включенного резистора и конденсатора показаны на рис.5,а (кривые 2, 4, 6). Включение согласующей цепи приближает характер входного сопротивления громкоговорителя к активному и АЧХ разделительного фильтра по напряжению к желаемому. Однако вследствие влияния индуктивности звуковой катушки АЧХ по звуковому давлению отличается от желаемой (кривая 4), поэтому даже после согласующей цепи иногда требуется небольшая подстройка элементов фильтров и цепи согласования.

Рис. 5 АЧХ и входное сопротивление разделительных фильтров 2-го порядка, нагруженных на громкоговоритель: а) фильтр нижних частот; б) фильтр верхних частот;

  1. АЧХ по напряжению на выходе фильтра без согласующей цепи;
  2. АЧХ по напряжению на выходе фильтра с согласующей цепью;
  3. АЧХ по звуковому давлению без согласующей цепи;
  4. АЧХ по звуковому давлению с согласующей цепью;
  5. входное сопротивление фильтра с громкоговорителем без согласующей цепи;
  6. входное сопротивление фильтра с громкоговорителем с согласующей цепью.

В случае фильтра верхних частот влияние комплексного характера входного сопротивления громкоговорителя на входное сопротивление и АЧХ фильтра носит иной характер. Если частота среза фильтра верхних частот находится вблизи частоты резонанса громкоговорителя f s (случай, иногда встречающийся в фильтрах для среднечастотных громкоговорителей, но практически невозможный для высокочастотных громкоговорителей), входное сопротивление фильтра верхних частот с громкоговорителем без согласующей цепи может иметь глубокий провал вследствие того, что на частоте резонанса громкоговорителя f s его входное сопротивление значительно возрастает и имеет чисто активный характер. Фильтр оказывается как бы на холостом ходу, из-за резкого возрастания сопротивления нагрузки и его входное сопротивление определяется последовательно включенными элементами C 1 , L 1 . Чаще встречается ситуация, когда частота среза фильтра верхних частот f d значительно выше частоты резонанса громкоговорителя f s . На рис.5,б дан пример влияния входного сопротивления громкоговорителя и его компенсации на АЧХ фильтра верхних частот по напряжению и звуковому давлению. Частота среза фильтра выбрана значительно выше частоты резонанса громкоговорителя f d ≈8 f s , параметры громкоговорителя Q TS =1,5 , Q MS =10, Q VC =0,08. Подъем АЧХ по звуковому давлению и напряжению в высокочастотной области, сопровождаемый провалом входного сопротивления, объясняется влиянием индуктивности звуковой катушки L VC . На более высоких частотах АЧХ падает, а входное сопротивление растет за счет возрастания индуктивного сопротивления звуковой катушки.

Кривые 2, 4, 6 на рис.5,б показывают влияние согласующей RC -цепи.

Выходное сопротивление разделительного фильтра верхних частот, растущее с понижением частоты, оказывает влияние на электрическую добротность громкоговорителя, увеличивая ее, и соответственно увеличивает полную добротность и форму АЧХ по звуковому давлению. Иными словами, имеет место эффект «раздемпфирования» громкоговорителя. Для набежания этого необходимо выбирать крутизну спада АЧХ фильтра и частоту среза фильтра верхних частот f d >> f s так, чтобы на частоте резонанса f s ослабление сигнала было не менее 20 дБ.

При расчете разделительных фильтров в примере, рассмотренном выше, принималось, что характер нагрузки – активный, поэтому рассчитаем согласующие цепи, компенсирующие комплексный характер входного сопротивления громкоговорителя.

Частота разделения низкочастотного и среднечастотного каналов f d 1 выбрана примерно на две октавы выше резонансной частоты среднечастотного громкоговорителя, а частота разделения среднечастотного и высокочастотного каналов f d 2 – на две октавы выше резонансной частоты высокочастотного громкоговорителя. Кроме того, можно принять, что индуктивность звуковой катушки высокочастотного громкоговорителя пренебрежимо мала в рабочем диапазоне частот и ей можно пренебречь (это справедливо для большинства высокочастотных громкоговорителей). В этом случае можно ограничиться применением упрощенной согласующей цепи для низкочастотного и среднечастотного громкоговорителей.

Пример . Измеренные (или определенные из кривой АЧХ входного сопротивления) индуктивности звуковых катушек: низкочастотного громкоговорителя L VC =3·10 -3 Г =3 мГн , среднечастотного громкоговорителя L VC =0,5·10 -3 Г=0,5 мГн . Тогда значение элементов компенсирующих цепей рассчитывают по формулам и :

для НЧ: R K 1 R π =8 Ом; С К1 =L VC /R 2 E =3 ·10 -3 /64=47 мкФ

для СЧ: R’ K 1 = R E -8 Ом; С’ К1 =L VC /R 2 E =0,5 ·10 -3 /64=8,0 мкФ.

На АЧХ среднечастотного громкоговорителя имеется пик, увеличивающий неравномерность суммарной АЧХ АС (рис.2,а); в этом случае целесообразно включить амплитудный корректор. Режектирующее звено (рис.6) применяется для коррекции пиков АЧХ громкоговорителей или всей АС. Это звено имеет чисто активное входное сопротивление, равное сопротивлению нагрузки R H и поэтому может быть включено между фильтром и громкоговорителем с скомпенсированным входным сопротивлением. В случае включения режектирующего звена на входе АС схема может быть упрощена, так как отпадает необходимость в элементах C q , L q , R q , обеспечивающих активный характер входного сопротивления звена. Значения элементов рассчитываются по формулам:

R K R H (10 -0,05 N -1),

L K = R K f /2π f 0 2 ,

C K =1/L K 4π 2 f 0 2 ,

C q = L K / R H 2 ,

L q = C K R H 2 ,

R q = R H (1+ R H / R K ),

где R H – сопротивление громкоговорителя (скомпенсированное) или входное сопротивление АС (Ом) в области резонансной частоты режектирующего звена;

f – полоса частот корректируемого пика АЧХ (отсчитывается по уровню – 3 дБ), Гц;

f 0 – резонансная частота режектора, Гц;

N – величина пика АЧХ, дБ.

Рис. 6. Режектирующее звено: а) принципиальная схема; б) АЧХ

Применим режектирующее звено, включенное между фильтром и среднечастотным громкоговорителем с согласующей цепью.

Из АЧХ среднечастотного громкоговорителя определяем f =1850 Гц, f 0 =4000 Гц, N =6 дБ. Сопротивление среднечастотного громкоговорителя с согласующей цепью R H =8 Ом.

Значения элементов режектирующего звена следующее:

R K R H (10 -0,05 N -1)=8(10 -0,05·6 -1)=7,96 Ом,

L K = R K f /2π f 0 2 =7,96·1850/2π (4000) 2 =0,147 мГн,

C K =1/L K 4π 2 f 0 2 =1/1,47·10 -4 (2π 4000) 2 =11мкФ,

C q = L K / R H 2 =1,47·10 -4 /64=2,3 мкФ,

L q = C K R H 2 =10,8·10 -6 ·64=0,7 мГн,

R q = R H (1+ R H / R K )=8(1+8/7,96)≈16,0 Ом.

В рассматриваемом примере АЧХ высокочастотного и среднечастотного громкоговорителя имеют средние уровни примерно на 6 дБ и соответственно 3 дБ выше, чем АЧХ низкочастотного громкоговорителя (запись звукового давления осуществлялась при подаче на все громкоговорители синусоидального напряжения одинаковой величины). В этом случае для уменьшения неравномерности суммарной АЧХ АС необходимо ослабить уровень среднечастотных и высокочастотных составляющих. Это можно сделать либо с помощью корректирующего высокочастотного звена первого порядка (рис.7), элементы которого рассчитываются по формулам:

R K R H (10 -0,05 N -1),

L K = R K /2π f d √(10 0,1 N -2), N ≥3 дБ,

Либо с помощью Г-образных пассивных аттенюаторов, обеспечивающих заданный уровень ослабления N (дБ) и заданное входное сопротивление R BX (рис.8). Значение элементов аттенюатора рассчитываем по формулам:

R 1 R BX (1-10 -0,05 N ),

R 2 R H R BX 10 -0,05 N /(R H R BX 10 -0,05 N ).

Рис. 7. Звено 1-го порядка, корректирующее высокие частоты: а) принципиальная схема; б) АЧХ

Рис. 8. Пассивный Г-образный аттенюатор

Рассчитаем для примера значения элементов аттенюатора для ослабления на 6 дБ сигнала высокочастотного громкоговорителя. Пусть входное сопротивление громкоговорителя с включенным аттенюатором равняется входному сопротивлению громкоговорителя, т.е. 16 Ом, тогда:

R 1 ≈16(1-10 -0,05·6)≈8,0 Ом, R 2 ≈16·10 -0,05·6 /(1-10 -0,05·6)≈16,0 Ом.

Аналогично рассчитаем значения элементов аттенюатора для среднечастотного громкоговорителя: R 1 =4,7 Ом, R 2 =39 Ом. Аттенюаторы включаются сразу после громкоговорителей с согласующими цепями.

Полная схема разделительных фильтров изображена на рис.9, АЧХ АС с рассчитанными фильтрами – на рис.2,в.

Как было сказано выше, фильтры четных порядков допускают только один вариант полярности включения громкоговорителей, в частности, фильтры второго порядка требуют включения в противофазе. Для рассматриваемого примера низкочастотный и высокочастотный громкоговоритель должны иметь идентичную полярность включения, а среднечастотный – обратную. Требования к полярности включения громкоговорителей рассматривались выше на модели АС с идеальными громкоговорителями. Поэтому при включении реальных громкоговорителей, имеющих собственную ФЧХ≠0, (в случае выбора частот разделения вблизи граничных частот рабочего диапазона громкоговорителей или при большой неравномерности АЧХ громкоговорителей) условие согласования реальных ФЧХ каналов может не соблюдаться. Поэтому для контроля реальной ФЧХ по звуковому давлению громкоговорителей с фильтрами необходимо пользоваться фазометром с линией задержки или определять условие согласования косвенно по характеру суммарной АЧХ АС в полосах разделения каналов. Правильной полярностью включения громкоговорителей можно считать ту, которая соответствует меньшей неравномерности суммарной АЧХ в полосе разделения каналов. Точное согласование ФЧХ разделяемых каналов при удовлетворении всем остальным требованиям (плоская АЧХ и т.д.) осуществляется численными методами синтеза оптимальных разделительных фильтров-корректоров на компьютере.

Рис.9. Принципиальная электрическая схема АС с рассчитанными разделительными фильтрами (емкости в микрофарадах, индуктивности – в миллигенри, сопротивления – в омах).

В разработке пассивных разделительных фильтров важную роль играет их конструкция, а также выбор типа конкретных элементов – конденсаторов, катушек индуктивности, резисторов, в частности, большое влияние на характеристики АС с фильтрами оказывает взаимное размещение катушек индуктивности, при их неудачном расположении вследствие взаимной связи возможны наводки сигнала между близко расположенными катушками. По этой причине их рекомендуется располагать взаимно перпендикулярно, только такое расположение позволяет свести к минимуму их влияние друг на друга. Катушки индуктивности являются одним из важнейших компонентов пассивных разделительных фильтров. В настоящее время многие зарубежные фирмы применяют катушки индуктивности на сердечниках из магнитных материалов, обеспечивающих большой динамический диапазон, низкий уровень нелинейных искажений и малые габариты катушек. Однако конструирование катушек с магнитными сердечниками связано с применением специальных материалов, поэтому до настоящего времени многие разработчики применяют катушки с воздушными сердечниками, основные недостатки которых – большие габариты при условии малых потерь (особенно в фильтре низкочастотного канала), а также большой расход меди; достоинства – пренебрежимо малые нелинейные искажения.

Конфигурация катушки индуктивности с воздушным сердечником, изображенная на рис.10, является оптимальной, так как она обеспечивает максимальное отношение L /R , т.е. катушка с заданной индуктивностью L , намотанная проводом выбранного диаметра, имеет при данной конфигурации намотки наименьшее сопротивление R или наибольшую добротность по сравнению с любой другой. Отношение L /R , имеющее размерность времени, связано с размерами катушки соотношением :

L /R =161,7alc /(6a +9l +10c );

L – в микрогенри, R – в омах, a , l , c – в миллиметрах.

Рис.10. Катушка индуктивности с воздушным сердечником оптимальной конфигурации: а) в разрезе; б) внешний вид.

Расчетные соотношения для данной конфигурации катушки: a =1,5с , l =c ; конструктивный параметр катушки c =√(L /R 8,66) , число витков N =19,88√(L / c ), диаметр провода в миллиметрах, d =0,841c /√ N , масса провода (материал – медь) в граммах, q = c 3 /21, длина провода в миллиметрах, B=187,3√ Lc . В том случае, если катушка индуктивности рассчитывается, исходя из провода данного диаметра, основные расчетные соотношения выглядят следующим образом:

конструктивный параметр c = 5 √(d 4 19,88 2 L /0,841 4)=3,8 5 √(d 4 L ) , сопротивление провода R =L /c 2 8,66 .

Найдем, для примера параметры катушки индуктивности рассчитанного ранее фильтра нижних частот. Индуктивность катушки составляет L 1НЧ =5,1 мГ . Сопротивление R катушки на постоянном токе определим из допустимого затухания сигнала, вносимого реальной катушкой на низких частотах. Пусть ослабление сигнала за счет потерь R в катушке составляет N ≤1дБ . Поскольку сопротивление низкочастотного громкоговорителя на постоянном токе составляет R E =8 Ом, то допустимое сопротивление катушки, определяемое из выражения R R E (10 0,05N -1), составляет R ≤0,980 Ом ; тогда конструктивный параметр катушки c =√5100/0,98·8,66=24,5 мм ; количество витков N =19,8√(5100/24,5)=287 витков ; диаметр провода d =0,841·24,5/√287=1,2 мм ; масса провода q =24,5 3 /21,4≈697 г ; длина провода B =187,3√(85,1·24,5)≈46 м.

Другим важным элементом пассивных разделительных фильтров являются конденсаторы. Обычно в фильтрах используют бумажные или пленочные конденсаторы. Из бумажных наиболее употребляемые отечественные конденсаторы МБГО. Достоинством этих типов конденсаторов являются малые потери, высокая температурная стабильность, недостатком – большие габариты, снижение допустимого максимального напряжения на высоких частотах. В настоящее время в фильтрах ряда зарубежных АС используют электролитические неполярные конденсаторы с малыми внутренними потерями, объединяющие достоинства рассмотренных конденсаторов и свободные от их недостатков.

По материалам из книги: «Высококачественные акустические системы и излучатели»

(Алдошина И.А., Войшвилло А.Г.)

В этой статье будет рассказано о том, как сделать фильтр высокой частоты своими руками. Но прежде чем мы с вами начнем в этом разбираться, мы должны кое-что понять. То, что же из себя представляют сами фильтры высоких и низких частот.

Определение

Фильтры можно поделить на верхние (высокие) и нижние (низкие) частоты. Почему люди часто говорят “верхние”, а не “высокие” частоты? Происходит это из-за того, что с двух килогерц начинаются высокие в звукотехнике. Но два килогерца в радиотехнике — это частота звука, и поэтому ее называют “низкой”.

Также существует такое понятие, как средняя частота. Относится оно к звукотехнике. Так что же такое фильтр средней частоты? Это комбинация из нескольких вышеперечисленных устройств. Также это может быть полосовой фильтр.

Фильтр высокой частоты - это электронный или какой-нибудь прочий аппарат, который пропускает верхние частоты сигнала, и который на входе подавляет частоту сигнала в соответствии с ранее заданным срезом. Степень подавленности будет также зависеть от определенного типа фильтра.

Низкочастотный отличается тем, что он может пропускать входящий сигнал, который будет ниже заданного среза, при этом подавляя верхние частоты.

Область применения

Фильтр высокой частоты можно использовать для того, чтобы выделять высокочастотные сигналы. Также часто его применяют при обработке аудиосигналов, например, в раздельных фильтрах, которые еще называют кроссоверными. Также они используются для обрабатывания изображений, чтобы можно было осуществить преобразование в частотной области.

Вот из чего состоит простейший фильтр высоких частот:

  • Резистор.
  • Конденсатор.

Работа сопротивления на емкость (R х С) есть постоянной времени (длительность протекания процесса) для данного фильтра, которая будет обратно пропорциональна частоте среза в герцах (единица измерения процессов колебаний).

Расчет фильтра высоких частот

Итак, как же мы можем провести расчет? Чтобы выполнить все действия на дому, нужно сделать одну из самых простых таблиц автоматического расчета в Microsoft Excel, но для этого нужно уметь пользоваться формулами в этой программе.

Можно пользоваться такой формулой:

Где f - это частота среза; R - это Ом; С - это емкость конденсатора, Ф (фарады).

Типы

Представленные устройства бывают пяти видов, и сейчас мы с вами их поочередно рассмотрим.

  • П-образные — по виду напоминают букву П;
  • Т-образные — напоминают букву Т;
  • Г-образные — напоминают букву Г;
  • одноэлементные (конденсатор служит фильтром для высоких частот);
  • многозвенные - это те же самые Г-образные фильтры, только в этом случае они соединены последовательно.

П-образные

Можно сказать, что эти фильтры такие же, как и Г-образные, но к ним присоединяется вдобавок еще одна часть вначале. Все, что будет написано для Т-образных, будет верно и для П-образных. Отличия лишь заключаются в том, что у них увеличится шунтирующее действие на радиоцепь, стоящую спереди.

Вот вам примеры перехода Г-образного RC фильтра в П-образный RC также высоких частот:

На изображении можно заметить, что к исходной цепи добавляется еще один резистор 2R, расположенный параллельно первому.

Вот пример преобразования в RL:

Здесь вместо резисторра выстпает катушка индуктивности. Так же добавляется вторая (2L), расположенная параллельно первой.

И третий пример — преобразования в LC:

Т-образные

Т-образный фильтр — это тот же самый Г-образный, только с добавлением еще одного элемента.

Они будут рассчитываться таким же образом как и делитель напряжения, который будет состоять из двух частей с нелинейным АЧХ. Далее к полученному значению необходимо прибавить число реактивного сопротивления третьего элемента.

Также можно использовать и другой метод расчета, однако на практике он менее точен. Его суть заключается в том, что после полученного значения первой рассчитанной части Г-образного фильтра переменная растет или падает в двойне и распределяется на два элемента.

Если это будет конденсатор, тогда значение емкости катушек растет вдвойне, если же это резистор или дроссель, тогда значение сопротивления катушек, наоборот, падает вдвойне.

Примеры преобразования приведены ниже.

Переход Г-образного RC фильтра в Т-образный:

На изображении видено, что для перехода необходимо добавить второй конденсатор (2C).

Переход RL:

В данном случае все по аналогии. Для успешного перехода необходимо добавить второй резистор, подключенный последовательно.

Переход LC:

Г-образные

Г-образный фильтр - это делитель напряжения, который состоит из двух составляющих с нелинейной АЧХ (амплитудно-частотная характеристика). Для данного фильтра разрешается использовать схему и все формулы делителя напряжения.

Его можно представить так:

Если мы заменим сопротивление R1 на конденсатор, то у нас получится фильтр верхних частот. Фото измененной схеме вы можете наблюдать ниже:

Формулы для расчета:

U вх=U вых*(R1+R2)/R2; U вых=U вх*R2/(R1+R2); R общ=R1+R2

R1=U вх*R2/U вых - R2; R2=U вых*R общ/U вх

Сейчас давайте наглядно рассмотрим, как провести расчет.

Фильтр высоких частот для пищалок

Строение такого фильтра довольно простое. Он будет состоять всего лишь из двух деталей - конденсатора и сопротивления.

Роль фильтра, который будет отсеивать среднечастотные и низкочастотные составляющие в аудиосигнале, будет исполнять непосредственно роль самого конденсатора. И простите за тавтологию, сопротивление будет выполнять роль сопротивления, то есть уменьшать уровень громкости.

Важно: высокие частоты эквалайзером с главного устройства не отрезаются - это будет вести к плохому звучанию. Лучше уменьшать их количество при помощи сопротивления.

Затрачиваемые материалы для создания

Для создания фильтра высокой частоты для пищалки вам будут необходимы следующие материалы:

  • одно сопротивление 5,5 Ом;
  • одно сопротивление 4,0 Ом;
  • два конденсатора МБМ 1,0 мкФ;
  • изолента либо термоусадочная трубка.

Активный фильтр высоких частот

Активные фильтры обладают огромным преимуществом перед их пассивными "сородичами", тем более на частотах, значение которых меньше 10 кГЦ. Дело в том, что пассивные содержат катушки повышенной индуктивности и конденсаторы, которые обладают большой емкостью. Из-за этого они получаются громоздкими и дорогостоящими, и поэтому их характеристика по итогу выходит далеко не идеальной.

Большой индуктивности достигают благодаря увеличенному количеству витков катушки и использования ферромагнитного сердечника. Это освобождает ее свойства чистой индуктивности, потому что длинный провод катушки с большим числом витков имеет значимое сопротивление, а ферромагнитный сердечник подвергается влиянию температуры, что в значительной мере сказывается на его магнитных свойствах. Из-за того, что необходимо использовать большую емкость, приходится применять конденсаторы, которые обладают не лучшей стабильностью. К ним можно отнести электролитические конденсаторы. Фильтры, именуемые активными, во-многом лишены указанных выше недостатков.

Дифференциаторные и интеграторные схемы построены с применением операционных усилителей, они собой представляют простейшие активные фильтры. Когда выбирают элементы схемы по четкой инструкции, соблюдая зависимость от частоты дифференциатора, они становятся высокочастотными фильтрами, а от частоты интеграторов, напротив, - низкочастотными. Фото, объясняющие все сказанное, приведено ниже:

Фильтр высоких частот на усилителе

Рассмотрим настройку усилителя в машине.

Перед тем в машине, нужно сбросить все настройки главного устройства на нули. Величину частоты среза кроссовера нужно выставить в диапазоне 50-70 Гц. Фронтальный фильтр канала на усилителе в автомобиле устанавливают в положение высоких частот. Частота среза в данном случае выставляется в диапазоне 70-90 Гц.

Если конструкция будет предусматривать поканальное усиление фронтальных колонок, то нужно провести отдельную настройку высокочастотных динамиков. Для этого фильтр нужно установить в соответствующем положении и частоту среза выбрать в районе 2500 Гц.

Помимо прочего, нужно настроить чувствительность усилителя. Для этого его изначально необходимо сбросить на ноль, главное — устройство перевести в режим максимальной громкости, а следом начать увеличивать чувствительность. В тот момент, когда появится искажение звука, нужно прекратить вращение регулятора, а также стоит немного убавить саму чувствительность.

Еще есть незатейливый способ, как можно проверить качество звука: если после включения в сабвуфере слышны щелчки, а в динамике треск - это означает то, что имеются помехи для сигнала.

Басы не должны быть привязаны к сабвуферу. Для этого нужно повернуть регулятор фазы на сабвуфере на 180 градусов. Если этого регулятора нет, то нужно поменять местами положительный и отрицательный провода подключения.

Настроить звуковой процессор. Для этого необходимо отрегулировать временные задержки по каждому из каналов. Нужно установить временную задержку по левому каналу для того, чтобы звук, исходящий из левых динамиков достигал водителя в одно время с правым. Должно создаваться ощущение, что звук исходит из центральной части салона.

Кроме всего вышеперечисленного, звуковым процессором можно убрать привязку басов к задней части салона. Для того чтобы это сделать, нужно задать одинаковые задержки в правом и левом канале фронтальной акустики. Вследствие этого устранится локализация басов в районе сабвуфера.

Практически все современные высококачественные акустические системы являются многополосными, то есть состоящими из нескольких громкоговорителей, каждый из которых работает в своем диапазоне частот. Это обусловлено тем, что практически невозможно создать динамический громкоговоритель, который обеспечивал бы излучение в широком диапазоне частот с малым уровнем искажений (в первую очередь, интермодуляционных, а также переходных, нелинейных и др.) и широкой характеристикой направленности. Поэтому в акустических системах (как профессиональных, так и бытовых) используют несколько громкоговорителей (низкочастотные, среднечастотные, высокочастотные, иногда супервысокочастотные), а для распределения энергии звукового сигнала между ними включают электрические разделительные фильтры.

Влияние разделительных фильтров на формирование характеристик акустических систем в предыдущие годы недооценивалось: им отводилась лишь роль ослабления сигнала за пределами рабочей полосы частот громкоговорителей. Однако развитие техники акустических систем категории Hi-Fi заставило пересмотреть взгляд на роль разделительных фильтров в акустических системах и на методику их проектирования. Многочисленные теоретические и экспериментальные работы, посвященные влиянию разделительных фильтров на коррекцию характеристик излучателей и формирование объективных и субъективных характеристик акустических систем, заставили считать разделительные фильтры одним из важнейших компонентов акустических систем, с помощью которого можно синтезировать многие необходимые электроакустические характеристики и добиться значительного прогресса в обеспечении естественности звучания.

Прежде чем переходить к анализу различных типов фильтров, применяемых в акустических системах, и методам их расчета, остановимся на определении основных параметров фильтров.

Параметры фильтров
Фильтром называется устройство, пропускающее определенные спектральные составляющие в сигнале и не пропускающее (ослабляющее) остальные. Фильтр может быть реализован в виде аналоговой схемы (пассивные и активные фильтры), а также реализован программно или в виде цифрового устройства (цифровые фильтры).

В современных акустических системах применяются как пассивные, так и активные фильтры (кроссоверы). Первые включаются после общего усилителя в каждом канале, вторые включаются до усилителя. Общая схема включения показана на рис.1. Активные фильтры имеют ряд преимуществ перед пассивными фильтрами, поскольку их значительно легче перестраивать, можно реализовать различными способами, в них отсутствуют потери мощности и т. д. Однако активные фильтры проигрывают пассивным по таким параметрам, как динамический диапазон, нелинейные искажения, уровень шумов и др. Методы проектирования активных фильтров широко освещены в специальной литературе, поэтому здесь остановимся только на методах проектирования пассивных фильтров, которые широко используются в современных акустических системах.

Основными параметрами, определяющими свойства фильтров, являются:
- полоса пропускания — область частот, в которой фильтры пропускают сигнал;
- полоса задерживания — область частот, где фильтры существенно подавляют сигнал;
- частота среза f ср — частота, на которой сигнал ослабляется на 3 дБ по отношению к среднему уровню в полосе пропускания.

По характеру расположения полосы пропускания и полосы задерживания фильтры разделяются на четыре основных типа.

Фильтры нижних частот (ФНЧ) пропускают низкочастотные составляющие в спектре сигнала (от нуля до частоты среза) и подавляют высокочастотные. Используются для низкочастотных громкоговорителей. Форма частотной характеристики показана на рис. 2.

Фильтры высоких частот (ФВЧ) пропускают высокочастотные составляющие (от частоты среза и выше) и подавляют низкочастотные. Применяются для высокочастотных громкоговорителей. Форма АЧХ показана на рис. 2.

Полосовые фильтры (ПФ) пропускают определенные полосы частот (от f ср1 до f ср2) и подавляют нижние и верхние частоты. Применяются для среднечастотных громкоговорителей, рис. 2.

Существуют также режекторные фильтры, которые представляют собой комбинацию низкочастотного и высокочастотного фильтров. Они подавляют спектральные составляющие сигнала в определенной полосе частот и пропускают в других полосах. Применяются иногда в акустических системах для вырезания отдельных пиков и провалов на АЧХ.

Кроме того, каждый из перечисленных фильтров характеризуется следующими параметрами: крутизной спада АЧХ при переходе от полосы пропускания к полосе задерживания, неравномерностью в полосе пропускания и задерживания, резонансной частотой и добротностью (Q). В зависимости от структуры фильтра и количества элементов в нем может быть обеспечена разная крутизна спада АЧХ. Обычно в акустических системах используются фильтры с крутизной спада 12 дБ/окт, 18 дБ/окт и 24 дБ/окт (рис. 3), которые, соответственно, называются фильтрами второго, третьего и четвертого порядков.

Простейшая структура LC-фильтра низких частот второго порядка показана на рис. 4. Она включает в себя следующие элементы: индуктивность L, реактивное сопротивление которой прямо пропорционально частоте (XL = 2πfL), и емкость C, реактивное сопротивление которой обратно пропорционально частоте (ХС = 1/2πfC). Поэтому представленная на рис. 4а цепь пропускает низкие частоты (поскольку сопротивление индуктивности L мало на низких частотах) и обеспечивает затухание высоких частот. Фильтр высоких частот имеет обратную структуру (рис. 4б) и, соответственно, пропускает высокие частоты и задерживает низкие.

Вид АЧХ фильтров высоких частот второго порядка при разных значениях добротности показан на рис. 5. Резонансная частота такого фильтра определяется как f=1/(LC)1/2, а добротность как Q = [(R2C)/L]1/2.

Из рис. 5 видно, что изменения значения добротности меняет характер спада АЧХ от гладкого (при Q = 0.707) до спада с подъемом на частоте резонанса (Q = 1).

По имени ученых, которые математически описали передаточные функции фильтров (то есть их формы частотных характеристик), они получили разное название: фильтры с добротностью Q = 1 называются фильтрами Чебышева, Q = 0.707 — Баттерворта, Q = 0.58 — Бесселя, Q = 0.49 — Линквица-Риле. Каждый из указанных типов фильтров имеет свои преимущества и недостатки.

ПЕРЕДАТОЧНАЯ ФУНКЦИЯ

Под передаточной функцией фильтра понимается отношение комплексной амплитуды напряжения на выходе фильтра к комплексной амплитуде напряжения на входе. Обычно передаточные функции физически реализуемых и устойчивых линейных цепей описываются в виде математических формул, знаменатели которых являются выражениями следующего вида (полиномами): Gn(s) = ansn+a n-1sn-1+…….+a1s+1. Порядок фильтра определяется степенью n от комплексной частоты s, которая связана с обычной круговой частотой как s = jω. (величина j называется мнимой единицей). Выбор вида коэффициентов аn определяет принадлежность фильтров к типу Баттерворта, Чебышева и др. Например, полиномы Баттерворта разных порядков имеют вид В1 (s) = (1+s); B2 (s) = (1+1,414s+s2) и т. д.

В акустических системах проблема выбора фильтров усложняется тем, что необходимо выбрать три или два (в зависимости от количества полос) типа фильтров одинаковых или разных порядков, которые совместно с громкоговорителями обеспечивали бы суммарные характеристики акустической системы (такие как амплитудно-частотная характеристика — АЧХ, фазочастотная характеристика — ФЧХ, групповое время задерживания — ГВЗ, и др.) с требуемыми параметрами внутри эффективно-воспроизводимого диапазона частот.

История создания фильтров
История создания разделительных фильтров начинается одновременно с появлением многополосных акустических систем. Одну из первых теорий разработали в 30-е годы инженеры G. A. Campbell и О. J. Zobel из фирмы Bell Labs (США). Первые публикации относятся к этому же периоду, их авторы K. Hilliard и H. Kimball работали в звуковом отделе фирмы Metro Goldwin Meyer. В 1936 году в мартовском номере Academy Research Council Technical Bulletin была опубликована их статья "Разделительные фильтры для громкоговорителей". В январе 1941 года K. Hilliard в журнале Electronics Magazine также опубликовал работу "Разделительные фильтры громкоговорителей", содержавшую все необходимые формулы для создания цепей Баттерворта первого и третьего порядков (как для параллельных, так и для последовательных схем). К 50-м годам фильтры Баттерворта были признаны предпочтительными для разделительных целей акустических систем. Тогда же в 60-х J. R. Ashley и R. Small впервые описали свойства "всепропускающих" фильтрующих схем, а также линейно-фазовых цепей.

Выяснению количественного соотношения затухания, вносимого фильтрами вне полосы пропускания, и величины интермодуляционных искажений вследствие перекрывания полос акустических систем, была посвящена статья "Фильтрующие цепи и модуляционные искажения" (автор R. Small), опубликованная в JAES в 1971 году. В ней было показано, что минимальная величина затухания должна быть 12 дБ/окт, чтобы предотвратить искажения в полосе перекрытия. Тогда же Ashley и L. М. Неnnе исследовали "всепропускающие" и "фазокогерентные" свойства фильтров Баттерворта третьего порядка. В 1976 году S. Linkwitz исследовал полярную диаграмму направленности для двухполосных систем с разнесенными излучателями и убедился, что акустические системы с разделительными фильтрами Линквитца-Риле обеспечивают ее симметричность.

Чуть позднее P. Garde дал полное описание всепропускающих фильтров и их разновидностей. Используя его идеи, D. Fink в соавторстве с Е. Long развил метод коррекции горизонтального (то есть глубинного) смещения головок громкоговорителей в акустических системах путем введения линий задержки в фильтр. Существенный вклад в теорию фильтрации внесли W. Marshall-Leach и R. Bullock, которые впервые ввели понятие оптимизации фильтров по типу и порядку с учетом смещения головок по двум осям. В продолжение этих работ R. Bullock описал свойства трехполосных симметричных фильтров и доказал, что трехполосная система фильтров не может быть получена как простая комбинация двухполосных, вопреки бытовавшему мнению. S. Lipshitz и J. Vanderkooy в серии статей рассмотрели различные варианты построения фильтров с минимально фазовыми характеристиками.

Новый этап в исследовании и проектировании многополосных акустических систем с разделительными фильтрами наступил с началом активной компьютеризации расчетов на основе программ ХОРТ, CACD, CALSOB, Filter Designer, LEAP 4.0 и др.

До недавнего времени конструирование разделительных фильтров в акустических системах шло практически методом "проб и ошибок". Это объясняется тем, что все теоретические работы прошлых лет, посвященные расчету разделительных фильтров в акустических системах, исходили из условия идеальности самих громкоговорителей. При анализе свойств разделительных фильтров того или иного типа и рассмотрении их влияния на характеристики акустических систем пренебрегали направленными свойствами громкоговорителей и условиями их физического размещения в корпусе акустической системы. Считали, что громкоговорители обладают плоской АЧХ, не вносят фазовых сдвигов в воспроизводимый сигнал и имеют активное входное сопротивление. Вследствие сказанного разработчики часто сталкивались с тем, что разделительные фильтры, обеспечивающие в идеализированных условиях требуемые характеристики, оказывались неприемлемыми при работе с реальными громкоговорителями, имеющими собственные амплитудно-частотные и фазочастотные искажения, комплексное входное сопротивление и обладающими направленными свойствами. Это и явилось причиной интенсификации в последние годы работ по созданию оптимизационных методов расчета разделительных фильтров-корректоров.

Выбор частот разделения
Как уже было отмечено, разделительные фильтры оказывают существенное влияние на такие характеристики многополосных акустических систем, как АЧХ, ФЧХ, ГВЗ, характеристики направленности, распределение мощности входного сигнала между излучателями, входное сопротивление акустической системы, уровень нелинейных искажений.

Начальным этапом в проектировании разделительных фильтров в многополосных акустических системах является обоснованный выбор частот разделения (частот среза) низкочастотного, средне-частотного и высокочастотного каналов. При выборе частот разделения обычно используют следующие предпосылки.

1. Обеспечение возможно более равномерных характеристик направленности, то есть отсутствия "скачков" ширины диаграммы направленности при переходе от низкочастотного к среднечастотному и от средне- к высокочастотному громкоговорителю, поскольку в той области частот, где они работают вместе, при отсутствии фильтра, диаграмма направленности резко сужается за счет расширения площади излучения.

2. Сохранение плавного изменения ширины характеристики направленности (по той же причине). Громкоговорители стараются размещать как можно ближе друг к другу и располагать их друг над другом в вертикальной плоскости (что позволяет избежать искажений характеристики направленности в горизонтальной плоскости, так как это отрицательно сказывается на воспроизведении стереопанорамы). Если выбор частоты разделения и расстояния между громкоговорителями влияет на ширину характеристики направленности, то соотношение фаз и амплитуд сигналов разделяемых частотных каналов влияет на ориентацию характеристики направленности в пространстве. Различные типы фильтров, как будет показано далее, в разной степени влияют на наклон характеристики направленности в пространстве в области частот разделения.

3. Ослабление пиков и провалов на АЧХ громкоговорителей, возникающих из-за потери поршневого характера движения диффузора. Выбор частоты среза и крутизны спада АЧХ фильтров для низкочастотных и среднечастотных громкоговорителей стараются осуществлять таким образом, чтобы первые резонансные пики и провалы ослаблялись не менее, чем на 20 дБ.

4. Ограничение амплитуды смещения подвижных систем средне- и высокочастотных громкоговорителей в низкочастотной части излучаемого ими спектра (и, соответственно, подводимой мощности) до значений, определяемых их механической и тепловой прочностью, что повышает надежность их работы и снижает уровень нелинейных искажений. Эти задачи регулируются как выбором частоты среза, так и выбором крутизны среза, которая должна составлять не менее 12 дБ/окт.

5. Обеспечение требуемого уровня звукового давления, поскольку с повышением частоты среза в области высоких частот можно увеличить уровень подаваемого напряжения, например, на высокочастотный громкоговоритель (поскольку амплитуды смещения диффузора с повышением частоты понижаются). Это позволяет увеличить, соответственно, уровень звукового давления в высокочастотной части АЧХ.

6. Снижение уровня нелинейных искажений, в частности, за счет эффекта Доплера (возникающих при модуляции высокочастотных составляющих низкочастотными компонентами сигнала).

Как правило, частоты среза в современных трехполосных акустических системах находятся в пределах: для низкочастотного громкоговорителя — 500...1000 Гц, для среднечастотного — от 500...1000 Гц до 5000...7000 Гц, для высокочастотного — 2000...5000 Гц.

Влияние на суммарные характеристики
Анализ влияния разделительных фильтров на формирование суммарных АЧХ, ФЧХ и других характеристик акустических систем удобно производить на некоторой идеализированной модели, в которой предполагается, что громкоговорители имеют активное сопротивление и идеальные характеристики (плоская АЧХ, линейная ФЧХ, постоянный сдвиг фаз между излучателями и др.). При расчете фильтров необходимо предварительно выбрать частоту среза (как уже было показано ранее), порядок и тип фильтра (Баттерфорта, Чебышева, Линквитца-Риле или др.).

По получаемым суммарным характеристикам фильтры, обычно применяемые в акустических системах, можно разделить на три группы: фильтры линейно-фазовые (in-phase), фильтры всепропускающие-(all-pass) и все остальные.

Фильтры линейно-фазовые (in-phase) обеспечивают частотно-независимую суммарную АЧХ, линейную ФЧХ (точнее, равную нулю на всех частотах), а также равную нулю ГВЗ. Примером могут служить фильтры Баттерворта первого порядка. Суммарные характеристики для двухполосной системы с такими фильтрами показаны на рис. 6. Опыт их использования в акустических системах показал, что они обладают рядом недостатков: плохой избирательной способностью, большой неравномерностью характеристик мощности сигнала, плохой характеристикой направленности в полосе раздела и др. Поэтому в настоящее время они в акустических системах категории Hi-Fi не применяются.

Фильтры всепропускающие (all-pass) обеспечивают плоскую суммарную АЧХ, частотно-зависимые ФЧХ и ГВЗ. Требования к линейности ФЧХ является избыточным для акустических систем — достаточно, чтобы их ГВЗ были ниже порогов слышимости (как показывают результаты измерений, фильтры такого типа вносят искажения ГВЗ в полосе раздела, удовлетворяющие этим требованиям). К этому типу фильтров относятся фильтры Баттерворта нечетких порядков и фильтры Линквица-Риле четных порядков. При этом свойства фильтров реализуются при разной полярности включения каналов: для 2, 6, 10 порядков требуется включение каналов в противофазе, для 4, 8, 12 — нет. Для нечетных порядков: 1, 5, 9 должны включаться синфазно, 3,7… —противофазно. Суммарные и поканальные характеристики фильтров Линквица-Риле второго порядка и Баттерворта третьего порядка для двухканальной идеализированной акустической системы показаны на рис. 7 и рис. 8. Следует отметить (будет показано далее), что фильтры нечетких порядков создают поворот главного лепестка характеристики направленности в области частоты раздела.

Существует довольно большой класс фильтров, которые применяются в акустических системах, но они не относятся к "всепропускающему" типу. Сюда включаются фильтры второго и четвертого порядка Баттерворта, второго и четвертого порядка Бесселя, группа ассиметричных фильтров четвертого порядка Лежандра, Гаусса и др. Они не дают суммарную плоскую характеристику, но этот недостаток можно частично исправить, если сделать частоты среза между громкоговорителями несовпадающими. Например, на рис. 9а показаны характеристики фильтра Баттерворта четвертого порядка с пиком АЧХ в 3 дБ на частоте раздела, равной 1000 Гц. Если несколько разнести частоты, то есть сделать частоту раздела для НЧ 885 Гц, а для ВЧ 1138 Гц, то пик на АЧХ исчезает (рис. 9б).



Как уже было сказано, выбор типов фильтров для низко-, средне- и высокочастотного громкоговорителя кроме обеспечения плоской АЧХ в полосах раздела, определяется требованием к обеспечению симметричности характеристики направленности акустической системы.

Внутри полосы пропускания каждого фильтра характеристика направленности акустической системы определяется характеристикой направленности каждого громкоговорителя, но внутри полосы раздела (полосы перекрытия фильтров) они работают совместно, то есть имеются два излучателя (например, средне и высокочастотный), которые разнесены в пространстве и работают на одной и той же частоте раздела. Пример такой системы показан на рис. 10. Пусть для простоты это будут два одинаковых излучателя, работающих в поршневом режиме с одинаковыми характеристиками направленности. На оси OA сигналы приходят в одинаковой фазе и складываются. Если оценить звуковое давление на оси OA", где фазовый сдвиг за счет разности пути от одного и другого громкоговорителя составит φ=π (то есть 180 град), то сигналы будут складываться в противофазе и на характеристике направленности появится провал. При дальнейшем сдвиге от оси в точках, где разница фаз составит 2π (то есть 360 град), опять появится пик. В целом характеристика направленности будет иметь трехлепестковый характер (рис. 10).

Ширина главного лепестка характеристики направленности на частоте раздела зависит от отношения расстояния между громкоговорителями к длине волны, а наклон лепестка зависит от соотношения амплитуд и фаз разделяемых каналов, что определяется также и типом выбранных фильтров.

Для уменьшения этого явления надо стараться уменьшить расстояние между громкоговорителями (например, за счет применения коаксиальных громкоговорителей), уменьшить ширину полосы раздела (за счет выбора фильтров более высоких порядков) и, наконец, выбрать соответствующий тип фильтра, поскольку каждый фильтр вносит свои частотно-зависимые фазовые сдвиги.

Например, при использовании фильтров третьего порядка типа Баттерворта происходит поворот главного лепестка характеристики направленности вниз (при включении громкоговорителей в одинаковой фазе), рис. 11. При включении громкоговорителей в противофазе (то есть изменении их полярности) лепесток характеристики направленности смещается в другую сторону относительно оси.

Анализ фильтров различных типов и порядков показал, что фильтры четных порядков (всепропускающего типа) не изменяют симметричности направления лепестков, фильтры нечетных порядков поворачивают лепесток вниз или вверх. Симметричные характеристики направленности обеспечивают наибольшую равномерность излучаемой акустической мощности.

Помимо влияния на характеристику направленности по АЧХ фильтры могут оказывать влияние на фазочастотные характеристики и ГВЗ в полосе раздела. То есть характер переходных процессов, несмотря на симметрию АЧХ, может отличаться при одинаковых углах смещения в верхней и нижней полуплоскости, и ГВЗ, будучи ниже порогов слышимости на оси, могут превосходить пороги слышимости в других точках пространства, тем самым ухудшая качество звучания.

Следует еще раз напомнить, что все сделанные выводы относятся только к случаю идеальных характеристик громкоговорителей. Учет реальных характеристик производится с помощью современных компьютерных программ.

Расчет пассивных акустических фильтров
Приступая к расчету пассивных акустических фильтров, необходимо уже четко определиться с конфигурацией системы (количеством полос воспроизведения, типами головок громкоговорителей и их параметрами, видом оформления — корпуса), а также выбрать порядок и тип фильтров в зависимости от основных задач, которые должны решаться при проектировании акустической системы: плоская АЧХ, линейная ФЧХ, симметричная характеристика направленности и др.

Поскольку в настоящее время в акустических системах чаще всего применяются фильтры типа "всепропускающих" (all-pass) с плоской АЧХ, то приведем приближенный расчет такого типа фильтров (более точные расчеты выполняются компьютерными методами).

Сначала разделительные фильтры рассчитываются из условия, что они нагружены на чисто активное сопротивление и питаются от генератора напряжения с малым выходным сопротивлением. Затем принимаются меры для учета влияния комплексной частотно-зависимой нагрузки громкоговорителей.

Расчет начинается с определения порядка фильтров и расчета элементов фильтра-прототипа. Фильтром-прототипом называется фильтр лестничного типа, элементы которого нормированы относительно единичной частоты среза и единичной нагрузки. Затем рассчитывается фильтр нижних частот для реальной частоты среза и реальной нагрузки, а из него путем преобразования частоты находятся элементы фильтра верхних частот и полосового фильтра.

Нормированные значения элементов фильтров-прототипов с первого по шестой порядок приведены в таблице 1.

Значения этих элементов даны только для фильтров "всепропускающего" типа, для других типов фильтров значения элементов в таблице будут другими. Схема фильтра-прототипа шестого порядка представлена на рис. 12. Фильтры меньших порядков получаются путем отбрасывания соответствующих элементов α (начиная с больших).

Значения реальных параметров фильтров для заданного порядка, сопротивления нагрузки R н (Ом) и частоты среза f i (Гц) определяются следующим образом.

1. Для фильтра нижних частот:
- каждая индуктивность-прототип α1, α3, α5 (рис. 12) заменяется на реальную индуктивность по формуле L=αi Rн/2πf1,(1) где i=1,3,5, f1 — частота среза фильтра нижних частот;
- каждая емкость-прототип α2, α4, α6 заменяется на реальную емкость по формуле C=αi /2πf1Rн,(2) где i=2,4,6.

2. Для фильтра верхних частот (расчет происходит наоборот):
- каждая индуктивность-прототип α1, α3, α5 заменяется на реальную емкость C=1/2πf2Rнαi,(3) где i=1,3,5, f2 — частота среза фильтра верхних частот;
- каждая емкость-прототип заменяется на реальную индуктивность L=Rн/2πf2αi,(4) где i=2,4,6.

3. Для полосового фильтра:
- каждая индуктивность-прототип α1, α3, α5 заменяется на последовательный контур из реальных L- и C-элементов, рассчитываемых по формулам:
L=αiRн/2π(f2-f1),(5) С=1/4π2f02L,(6)
где — средняя частота полосового фильтра;
- каждая емкость-элемент α2, α4, α6 заменяется на параллельный контур из реальных L- и C-элементов, рассчитываемым по формулам:
С=αi/2π(f2-f1)Rн,(7) L=1/4π2f02C.(8)

ПРИМЕР РАСЧЕТА РАЗДЕЛИТЕЛЬНЫХ ФИЛЬТРОВ ДЛЯ ТРЕХПОЛОСНОЙ АС

Для расчета выбираем следующие параметры: фильтры всепропускающего типа второго порядка, то есть схема фильтра-прототипа будет включать только элементы α1, α2, Rн (рис. 12). Частоты раздела между низкочастотным и среднечастотным каналами равны 500 Гц, между средне- и высокочастотным каналами равны 5000 Гц. Сопротивление громкоговорителей (на постоянном токе): низкочастотного и среднечастотного Re=8 Ом, высокочастотного Re=16 Ом. Значение нормированных параметров элементов определим из табл. 1: α1=2,0, α2=0,5.

Значения реальных элементов фильтра нижних частот находим по выражениям (1) и (2):
L1НЧ = α1 Rн/2πf1 = 2,0∙8,0/(2∙3,14∙500) = 5,1 мГн,
C1НЧ = α1 /2πf1Rн = 0,5/(2∙3,14∙500∙8,0) = 20 мкФ.

Значения элементов полосового фильтра (для среднечастотного громкоговорителя) определяем в соответствии с выражениями (5)... (8):
L1СЧ = α1Rн/2π(f2-f1) = 2,0∙8,0/2∙3,14 (5000 — 500) = 0,566 мГн,
C1СЧ =1/4π2f02L = 1/4∙3,142∙5000∙500∙5,66∙10-4= 18 мкФ,
С2СЧ = α2/2π(f2-f1) Rн = 0,5/2∙3,14 (5000—500) ∙8,0 = 2,2 мкФ,
L2СЧ=1/4π2f02C2СЧ = 1/4∙3,142∙5000∙500∙2,2∙I0-6 = 4,6 мГн.

Значения элементов фильтра верхних частот определяем в соответствии с выражениями (3,4):
С1ВЧ = 1/2πf2 Rн α1 = 1/(2∙3,14∙5000∙2,0∙16) = 1,00 мкФ,
L2BЧ = Rн/2πf2 α2 = 16/(2∙3,14∙5000∙2,0) = 0,25 мГн.

Расчеты, выполненные по этим формулам, корректны, только если фильтры нагружены на активное (омическое) сопротивление. Чтобы согласовать параметры фильтров с реальным комплексным сопротивлением громкоговорителей, надо включить дополнительно параллельно каждому громкоговорителю согласующую цепь. Параметры такой цепи находятся из условия, чтобы комплексное сопротивление этой цепи Zсогл и комплексное сопротивление громкоговорителя Zгг компенсировали друг друга при параллельном включении и обеспечивали бы в сумме активное сопротивление, то есть 1/ Zсогл+1/ Zгг=1/Re.

Для расчета элементов такой цепи строится эквивалентная электрическая схема громкоговорителя (см. предыдущую статью в декабрьском номере МО за 2008 год), и по отношению к ней создается дуальная компенсирующая цепь. Схема эквивалентной цепи громкоговорителя и соответствующей компенсирующей цепи показаны на рис. 13. Для компенсации входного сопротивления низкочастотного громкоговорителя можно использовать упрощенную цепь (поскольку резонанс громкоговорителя находится значительно ниже частоты среза фильтра и не оказывает влияния на его параметры), состоящую из двух элементов Rk1=Re и Ck1=Lvc/Re2, где Re и Lvc — сопротивление и индуктивность звуковой катушки громкоговорителя.

Для средне- и высокочастотного громкоговорителя полная компенсирующая цепь включается, только если частота среза и резонансы громкоговорителей находятся близко друг от друга — в противном случае достаточно применять упрощенную цепь (расчет параметров полной цепи приведен в книге Алдошина И. А., Войшвилло А. Г. "Высококачественные акустические системы"). Кроме того, в схему иногда включаются дополнительно режекторные фильтры, чтобы убрать отдельные пики на амплитудно-частотной характеристике.

Пример схемы фильтров для трехполосной акустической системы с учетом согласующих цепей режекторного звена для среднечастотного громкоговорителя и дополнительного Г-образного аттенюатора, состоящего из двух резисторов для выравнивания уровней по звуковому давлению между НЧ-, СЧ- и ВЧ-громкоговорителями, показан на рис. 14.

В настоящее время для расчета фильтрующе-корректирующих цепей используются компьютерные методы оптимального синтеза линейных электронных схем. Для этого задаются структура фильтра и начальные значения элементов, затем производится расчет суммарных выходных значений АЧХ, ФЧХ и ГВЗ с учетом реальных измеренных параметров громкоговорителей, размещенных в корпусе, и путем целенаправленного изменения элементов схемы минимизируется разница между реальными и заданными параметрами. Применение методов оптимального проектирования позволяет обеспечить наилучшее широкополосное согласование параметров фильтров и громкоговорителей и получить оптимально достижимое значение параметров акустической системы.

Сейчас активно проводятся исследования по применению цифровых фильтров-процессоров в акустических системах, что позволяет перестраивать параметры системы в реальном времени в зависимости от вида звукового сигнала, а также обеспечивать оптимальное согласование характеристик акустической системы с параметрами помещения, но эта техника находится еще в начале своего развития и пока не нашла широкого применения в промышленных разработках.

Фильтры низких и высоких частот являются неотъемлемой частью любого усилителя. Устанавливаются они, как правило, рядом с электрической катушкой. Подвижные элементы в данном случае отсутствуют. К основным параметрам таких устройств относится показатель полосы пропускания. Дополнительно специалистами может быть рассчитан перехват сигнала. Если говорить про фильтры низких колебаний, то их чаще всего можно встретить в сабвуферах. В данном случае преобразователь занимается изменением высокочастотных волн.

Как сделать простой фильтр?

Для того чтобы собрать фильтр низких частот своими руками, сетку лучше всего изначально подбирать магнитную. Электрическая катушка в данном случае должна располагаться за резисторами. Чтобы увеличить полосу пропускания тока, используют специальный преселектор. Дополнительно он в устройстве исполняет роль проводника. Перехват сигнала у фильтра зависит исключительно от типов конденсаторов.

Наиболее распространенными на сегодняшний день принято считать полевые модели. Емкость у них в среднем колеблется в районе 3 пФ. Все это в конечном счете позволит стабилизировать коротковолновые импульсы в цепи. Для создания искусственных сигналов применяется ревербератор. Преобразование в данном случае должно происходить без изменения показателя предельной частоты.

Расчет фильтра

Расчет фильтра низких частот осуществляется через колебания среза. Дополнительно в формуле учитывается коэффициент передачи постоянного сигнала. Если говорить про активные типы фильтров, то емкость конденсаторов также берется во внимание. Для учета амплитуды колебаний дополнительно рассчитывается передаточная функция. Если частота выходного сигнала в конечном счете превышает первоначальные параметры, то коэффициент постоянного сигнала будет положительным.

Активные типы фильтров

Активный фильтр низких частот в первую очередь выделяется высокой полосой пропускания на уровне 5 Гц. Дополнительно в системе устанавливаются элементы для перехвата сигнала. Конденсаторы в данном случае припаиваются на специальной магнитной сетке. Для регулировки предельной частоты применяются транзисторы. Расширение возможностей устройства может осуществляться путем добавления в цепь конденсаторов. Емкость их должна составлять минимум 40 пФ.

Для положительной обратной связи применяется аналоговый модулятор. Устанавливается он в цепи только за конденсаторами. Колебательные контуры в системе можно стабилизировать при помощи стабилитронов. Пропускная способность их обязана составлять минимум 5 Гц. В данном случае параметр отрицательного сопротивления напрямую зависит от перекрытия диапазона частот.

Пассивные типы фильтров

Пассивный фильтр низких частот работает по принципу искажения колебаний. Происходит это путем установки ревербератора. Все элементы цепи в этом случае располагаются на магнитной сетке. Модуляторы в фильтрах используются самые разнообразные. Наиболее распространенными на сегодняшний день принято считать двухсторонние аналоги.

Периодическое изменение колебаний дополнительно может происходить путем изменения положения транзисторов. Конденсаторов всего у фильтра должно иметься три. В данном случае многое зависит от полосы пропускания непосредственно усилителя. Если этот параметр превышает 10 Гц, то конденсаторов в устройстве должно быть как минимум четыре.

Дополнительно перед их установкой рассчитывается предельное напряжение. Для этого необходимо взять номинальный ток блока питания и с учетом емкости конденсаторов соотнести его к поперечному траверсу. Чтобы минимизировать чувствительность фильтра, применяются специальные тетроды. Данные элементы являются довольно дорогими, однако качество прохождения сигнала значительно улучшается.

Устройства на резисторах ПР1

Фильтр низких частот первого порядка с указанными резисторами способен справляться с предельным сопротивлением на уровне 4 Ом. Все элементы цепи, как правило, располагаются на магнитной сетке. Конденсаторы можно устанавливать в систему самые разнообразные. В данном случае важно заранее просчитать показатель полосы пропускания. Если емкость конденсаторов превышает 2 пФ, то стабилитрон необходимо использовать обязательно.

Дополнительно некоторыми специалистами устанавливается ревербератор, который способен значительно снизить амплитуду колебаний. Промежуточная частота в данном случае довольно сильно зависит от сопряжения контуров. Номинальное напряжение блока питания обязано быть не ниже 20 В. Чтобы фильтр низких частот успешно справлялся с помехами, диоды в системе применяются кремниевого типа. Если блок питания устанавливается свыше 30 В, то транзисторы в конечном счете могут сгореть.

Как собрать модель с резисторами ПР2?

Простой фильтр низких частот с резисторами данного типа способен довольно успешно эксплуатироваться с блоком питания на 30 В. В этом случае параметр полосы пропускания обязан находиться на уровне не ниже 40 Гц. Положительная обратная связь в системе обеспечивается за счет стабильности колебаний.

Параметр отрицательного сопротивления во многом зависит от скважности импульсов. Расчет фильтра низких частот в данном случае необходимо проводить с учетом показателя концентрации. Конденсаторы в системе целесообразнее устанавливать емкостного типа. Диодные мосты в устройствах используются довольно редко. Обусловлено это именно отсутствием резонансных частот.

Модели с мощными преобразователями

Фильтры с мощными преобразователями позволяют значительно повысить коэффициент пропускания - до уровня 33 Гц. При этом отрицательное сопротивление в системе не будет превышать 4 Ом. Катушки в данном случае используются электрические. Подвижные элементы, в свою очередь, не применяются. Преселектор в фильтре, как правило, располагается сразу за катушкой. Чтобы минимизировать риски различных сбоев, используют специальные стабилитроны.

Резисторы в данном случае следует подбирать аналогового типа. Чтобы уменьшить обратную связь в устройстве, конденсаторы устанавливают попарно. В некоторых случаях стабилитроны применяются двухстороннего действия. Однако недостатки у них также имеются. В первую очередь среди них следует отметить довольно резкое повышение чувствительности устройства.

Устройства с емкостными конденсаторами

Фильтры с емкостными конденсаторами отличаются стабильностью настройки контура. При этом параметр полосы пропускания напрямую зависит от типа электрической катушки. Если рассматривать хроматические аналоги, то они выделяются высоким параметром предельной частоты. Дополнительно важно учитывать объем конденсаторов в фильтре. Скважность последовательности импульсов зависит только от типа преобразователя.

В некоторых случаях фильтр низких частот не работает из-за резкого повышения температуры. В данном случае необходимо дополнительно установить тиристор возле катушки. С инерционными усилителями фильтры данного типа не способны работать. Дополнительно следует учитывать, что блок питания предельное напряжение обязан выдерживать как минимум 30 В.

Модели с полевыми конденсаторами

Фильтр низких частот с использованием полевых конденсаторов является довольно распространенным. Во многом это связано с его дешевизной. В данном случае параметр полосы пропускания будет находиться на уровне 5 Гц. В свою очередь, отрицательное сопротивление цепи зависит от установленных транзисторов. Если использовать одноканальные элементы, то они позволят значительно сократить образцовое напряжение.

Отклонение фактической индуктивности у фильтра зависит от чувствительности прибора. Стабилитроны в системе применяются довольно редко. Однако если параметр отрицательного сопротивления превышает 5 Ом, то их следует использовать. Дополнительно можно задуматься над применением тиристоров. Во многом данные элементы позволят справиться с дипольностью в системе. Таким образом, чувствительность прибора значительно снизится.

Как использовать продольный резонатор?

Продольные резонаторы в фильтрах устанавливаются довольно редко. Предназначены данные устройства для повышения сопряжения контуров. В результате параметр полосы пропускания может увеличиться до 40 Гц. Чтобы система работала должным образом, дополнительно устанавливаются стабилитроны. Преселекторы в данном случае будут бесполезными. Также перед установкой стабилитрона необходимо задуматься о параметре отрицательного сопротивления.

Если он превышает 5 Ом, то необходимо использовать емкостные конденсаторы. Минимизация сбоев в системе может осуществляться несколькими способами. Наиболее популярными из них принято считать установку триггеров. Дополнительно многие специалисты советуют возле катушек размещать специальные ограничители. Данные устройства в конечном счете позволят резонатору работать более стабильно.

Применение диэлектрических резисторов в схеме

Диэлектрические резисторы в фильтрах не являются большой редкостью. Предназначены они для того, чтобы понижать параметр отрицательного сопротивления. При этом использовать мощные блоки питания есть возможность. Диоды в данном случае применяются в основном опорного типа. Согласование резонансных частот зависит исключительно от отдачи резистора.

Конденсаторы для фильтра подбираются с емкостью не менее 5 пФ. Это необходимо для того, чтобы повысить параметр полосы пропускания как минимум до 3 Гц. Все это в конечном счете позволит привести в норму чувствительность прибора. Дополнительно для расчета фильтра применяется показатель образцового напряжения. В среднем он находится на уровне 30 В. Если тиристоры в системе не использовать, то резисторы в конечном счете могут пострадать.

Модели с модуляторами

Фильтр низких частот с модулятором необходим для того, чтобы у пользователя была возможность настраивать прибор. При этом параметр полосы пропускания у таких устройств может быть различным. Устанавливается модулятор, как правило, на магнитной сетке. Преселектор на пару с вышеуказанным элементом использоваться может. Дополнительно следует отметить, что модулятор в некоторых случаях способен создавать низковолновые помехи. Обусловлено это повышением образцового напряжения. Чтобы минимизировать риски, в данном случае лучше рядом с модулятором устанавливать средней мощности стабилитрон.

Широкополосные резисторы для фильтров

Усилитель-фильтр низких частот с широкополосными резисторами имеет как преимущества, так и явные недостатки. Если рассматривать достоинства, то важно отметить его высокую пропускную способность. Соединение катода в данном случае осуществляется через маленькую пластину. Недостатком таких резисторов принято считать повышенную чувствительность.

В результате работа конденсаторов значительно усложняется. В некоторых случаях дополнительно оказывается нагрузка на электрическую катушку. В любом случае, чтобы минимизировать риски, важно сделать расчет фильтра. Для этого учитывается не только коэффициент пропускания, но и емкость конденсаторов, которые установлены в системе.

Расчет кроссовера для акустики75

Расчет кроссовера для акустики, как известно, очень важная операция. На свете не существует идеальных акустических систем, способных воспроизводить частотный диапазон полностью.
И тогда на помощь приходят отдельные участки спектра динамиков. К примеру, если надо воспроизводить НЧ, применяют сабвуфер, а чтобы воспроизвести ВЧ, устанавливают мидбасы.
Когда все эти динамики вместе взятые начинают играть, то может произойти путаница перед поступлением на тот или иной излучатель. По этой причине и необходим бывает активный или пассивный кроссовер для акустики.
В этой статье мы узнаем, для чего нужен расчет фильтра, рассмотрим пассивные кроссоверы, узнаем как они строятся на катушках индуктивности и конденсаторах.

Расчет кроссовера

Чтобы подключить 2-полосную(см.) или другую акустику с большим количеством полос к 1 каналу усилителя или ГУ, нужно некое отдельное устройство, разделяющее сигнал. При этом оно должно выделять для каждой полосы свои частоты. Именно такие устройства и называются фильтрами или кроссоверами.

Примечание. В комплекте с компонентной акустикой, как правило, уже идет пассивный кроссовер. Его готовил производитель и он рассчитан уже изначально.

Но что делать, если нужно разделить частоты по иной схеме (к примеру, если комплект акустики собран из отдельных компонентов)?
В этом случае речь идет о расчете кроссовера.Отметим сразу, что рассчитать кроссовер совершенно не сложно и даже можно самостоятельно изготовить его.

Ниже приводится инструкция о том, как рассчитать кроссовер:

  • Скачиваем специальную программу. Это может быть Crossover Elements Calculator на компьютер;
  • Вводим сопротивления низкочастотного и высокочастотного динамиков. Сопротивление – это номинальное значение сопротивления акустики, выражаемое в Ом. Как правило, средним значением является 4 Ом;
  • Вводим частоту раздела кроссовера. Здесь полезно будет знать, что частоту надо вводить в Гц, но ни в коем случае не в кГц.

Примечание. Если кроссовер второго порядка, то надо еще ввести тип кроссовера.

  • Получить ожидаемый результат можно, нажав на кнопку расчета.

Кроме того, надо знать следующее:

  • Емкость конденсаторов, а вернее их значение вводится в Фарадах;
  • Индуктивность рассчитывается в Генри (mH).

Схема расчета фильтра выглядит примерно так:

Фильтры разного порядка

Чтобы ясно понимать схему расчета кроссовера(см.), нужно понимать разницу между фильтрами разного порядка. Об этом и пойдет речь ниже.

Примечание. Существуют несколько порядков кроссовера. В данном случае порядок означает параметр кроссовера, который характеризует его способность ослаблять не нужные частотные сигналы.

Первый порядок

Схема 2-х полосного кроссовера этого порядка выглядит следующим образом:

По схеме видно, что ФНЧ или фильтр низких частот построен на катушке индуктивности, а фильтр высоких частот – на конденсаторе.

Примечание. Такой выбор компонентов не случаен, так как сопротивление катушки индуктивности повышается прямо пропорционально увеличению частоты. А вот что касается конденсатора, то здесь обратно пропорционально. Получается, что такая катушка отлично пропускает НЧ, а конденсатор отвечает за пропуск ВЧ. Все просто и оригинально.

Следует также знать, что кроссоверы первого порядка, а вернее их номинал, зависит от выбранной частоты разделения и величины сопротивления колонки. Проектируя ФНЧ, надо в первую очередь обратить внимание на частоту среза НЧ и СЧ динамиков(см.).
А вот проектируя ФВЧ, надо аналогичным образом поступить уже с ВЧ.

Пассивный кроссовер

Наиболее доступной на сегодня считается именно пассивная фильтрация, так как она сравнительно проста в реализации. С другой стороны, не все так просто.
Речь идет о следующих недостатках:

  • Согласовать параметры и значение фильтров с характеристиками излучателей колонок очень сложная штука;
  • В процессе эксплуатации может наблюдаться нестабильность параметров . К примеру, если повысится сопротивление звуковой катушки при нагреве. В связи с этим значительно ухудшится достигнутое в процессе разработки согласование;
  • Фильтр, обладая внутренним сопротивлением, забирает некоторую часть выходной мощности усилителя. Одновременно с этим ухудшается демпфирование, а это сказывается на качестве звучания и четкости передачи нижнего регистра.

Как известно, на сегодняшний день самыми распространенными акустическими системами считаются 2-х компонентные варианты.
В них фильтр разделяет звуковой сигнал на два диапазона:

  • Первый диапазон предназначается исключительно для низких и средних частот. В данном случае используется кроссовер для нижних частот или ФНЧ;
  • Второй диапазон предназначен для ВЧ. Здесь уже используется другой фильтр ФВЧ.

Примечание. Вариантов реализации фильтра может быть несколько, но он все должно отвечать определенным канонам.

Ниже приводится список требований, которым обязательно должен соответствовать кроссовер:

  • Фильтр не должен оказывать влияния на частотный спектр и волну выходящего аудиосигнала;
  • Должен создавать для усилителя, независимую от частоты нагрузку активного характера;
  • Должен суметь обеспечивать вместе с акустическими системами формирование диаграммы направленности. Это должно быть реализовано так, чтобы до слушателя доходило максимум излучения.

Из статьи мы узнали, как проводится расчет кроссовера акустических систем своими руками. В процессе работ будет полезно также изучить схемы, посмотреть видео обзор и фото – материалы.
Если научиться самостоятельно рассчитывать фильтр, платить за услуги специалистам не придется. Таким образом, цена операции сводится к минимуму, ведь надо только приложить немного терпения и уделить некоторое время изучению.