Основные детали в механизмах. Детали машин и основы конструирования. Использование вероятностных методов расчета

Любая машина, механизм или прибор состоит из отдельных деталей, объединяемых в сборочные единицы.

Деталью называют такую часть машины, изготовление которой не требует сборочных операций. По своей геометрической форме детали могут быть простыми (гайки, шпонки и т. п.) или сложными (корпусные детали, станины станков и т. п.).

Сборочной единицей (узлом) называют изделие, составные части которого подлежат соединению между собой свинчиванием, сваркой, клепкой, склеиванием и т. п. Детали, входящие в состав отдельных сборочных единиц, соединяются между собой подвижно или неподвижно.

Из большого разнообразия деталей, применяемых в машинах различного назначения, можно выделить такие, которые встречаются почти во всех машинах. Эти детали (болты, валы, детали передач и т. п.) называются деталями общего назначения и являются предметом изучения курса «Детали машин».

Другие детали, являющиеся специфичными для определенного типа машин (поршни, лопатки турбин, гребные винты и т. п.) называются деталями специального назначения и изучаются в соответствующих специальных дисциплинах.

Курс «Детали машин» устанавливает общие требования, предъявляемые к конструкции деталей машин. Эти требования должны учитываться три конструировании и изготовлении различных машин.

Совершенство конструкции деталей машин оценивается по их работоспособности и экономичности. Работоспособность объединяет такие требования, как прочность, жесткость, износостойкость и теплостойкость. Экономичность определяется стоимостью машины или отдельных ее деталей и эксплуатационными расходами. Поэтому основными требованиями, обеспечивающими экономичность, являются минимальная масса, простота конструкции, высокая технологичность, применение недефицитных материалов, высокий механический КПД и соответствие стандартам.

Кроме того, в курсе «Детали машин» даются рекомендации по выбору материалов для изготовления деталей машин. Выбор материалов зависит от назначения машины, назначения деталей, способов их изготовления и ряда других факторов. Правильный выбор материала в значительной мере влияет на качество детали и машины в целом.

Соединения деталей в машинах делятся на две основные группы - подвижные и неподвижные. Подвижные соединения служат для обеспечения относительного вращательного, поступательного или сложного движения деталей. Неподвижные соединения предназначены для жесткого скрепления деталей между собой или для установки машин на основаниях и фундаментах. Неподвижные соединения могут быть разъемными и неразъемными.

Разъемные соединения (болтовые, шпоночные, зубчатые и др.) допускают многократную сборку и разборку без разрушения соединительных деталей.

Неразъемные соединения (заклепочные, сварные, клеевые и др.) могут быть разобраны лишь путем разрушения соединяющих элементов - заклепок, сварного шва и др.

Рассмотрим разъемные соединения.

Для механических и машиностроительных специальностей

Составил

к.т.н., доц. Еремеев В.К.

Иркутск 2008г.

ВВЕДЕНИЕ

Настоящий конспект лекций по курсу "Детали машин" следует рассматривать как краткое изложение программных вопросов курса, облегчающее усвоение учебного материала и подготовку к экзаменам. Конспект изложен на базе основных учебников Д.Н.Решетова,

М.И. Иванова, П.Г. Гузенкова "Детали машин" и методического пособия В.К. Еремеева и Ю.Н. Горнова « Детали машин. Курсовое проектирование». Пользование конспектом ни в коем случае не исключает подготовки по учебникам, а лишь выделяет основные положения, соответствующие курсу "Детали машин" по машиностроительным и механическим специальностям. В ряде мест конспекта приводятся указания на те вопросы, которые необходимо подготовить только по учебникам, так как, за краткостью изложения, в конспект они не вошли. Это касается главным образом описательной стороны курса и конструктивных особенностей отдельных узлов и деталей машин.

Конспект рассчитан на сокращенную программу - 70 лекционных часов, поэтому в него не вошли такие разделы курса, как: заклепочные соединения, клиновые соединения и специальные виды зубчатых передач. Предполагается, что с этими вопросами студенты могут ознакомиться самостоятельно. Изложение учебного материала в конспекте соответствует программе курса "Детали машин" и содержанию экзаменационных билетов. Порядок изложения отдельных разделов несколько изменен в сравнении с основными учебниками по опыту преподавания предмета автором данного конспекта и с целью возможности досрочной подготовки студентов на практических занятиях к началу курсового проектирования.

«Детали машин» являются первым из расчетно-конструкторских курсов, в котором изучают основы проектирования машин и механиз мов.

Любая машина (механизм) состоит из деталей.

Деталь - такая часть машины, которую изготовляют без сборочных операций. Детали могут быть простыми (гайка, шпонка, и т. п.), или сложными (коленчатый вал, корпус редуктора, станина станка и т. п.). Детали (частично или полностью) объединяют в узлы.

Узел- представляет собой законченную сборочную единицу, состоящую из ряда деталей, имеющих общее функциональное назначение (подшипник качения, муфта, редуктор и т. п.). Сложные узлы могут включать несколько простых узлов (подузлов); например, редуктор включает подшипники, валы с насаженными на них зубчатыми колесами и т. п.

Среди большого разнообразия деталей и узлов машин выделяют такие, которые применяют почти во всех машинах (болты, валы, муфты, механические передачи и т. п.). Эти детали (узлы) называют дета­ лями общего назначения и изучают в курсе «Детали машин». Все другие детали, применяющиеся только в одном или нескольких типах машин (поршни, лопатки турбин, гребные винты и т. п.), относят к деталям специального назначения и изучают в специальных курсах.

Детали общего назначения применяют в машиностроении в очень больших количествах (например, в СССР до 1992г. ежегодно изготавливали около миллиарда зубчатых колес). Поэтому любое усовершенствование методов расчета и конструкции этих деталей, позволяющее уменьшить затраты материала, понизить стоимость производства, повысить долговечность, приносит большой экономический эффект.

Основные требования к конструкции деталей машин .

Совершенство конструкции детали оценивают по ее надежности и экономичности . Под надежностью понимают свойство изделия сохранять во времени свою работоспособность. Экономичность определяют стоимостью материала, затратами на производство и эксплуатацию.

Основные критерии работоспособности и расчета деталей машин : прочность, жесткость, износостойкость, теплостойкость, виброус тойчивость. Значение того или иного критерия для данной детали зависит от ее функционального назначения и условий работы. Например, для крепежных винтов главным критерием является прочность, а для ходовых винтов - износостойкость. При конструировании деталей их работоспособность обеспечивают в основном выбором соот­ветствующего материала, рациональной конструктивной формой и расчетом размеров по одному или нескольким критериям.

Прочность является главным критерием работоспособности боль шинства деталей. Непрочные детали не могут работать. Следует помнить, что разрушения частей машины приводят не только к простоям, но и к несчастным случаям.

Различают разрушение деталей вследствие потери статической прочности или сопротивления усталости. Потеря статической проч­ности происходит тогда, когда значение рабочих напряжений превы­шает предел статической прочности материала (например, σ в ). Это связано обычно со случайными перегрузками, не учтенными при расчетах, или со скрытыми дефектами деталей (раковины, трещины и т. п.). Потеря сопротивления усталости происходит в результате дли­тельного действия переменных напряжений, превышающих предел выносливости материала (например, σ -1 ). Сопротивление усталости значительно понижается при наличии концентраторов напряжений, связанных с конструктивной формой детали (галтели, канавки и т. п.) или с дефектами производства (царапины, трещины и пр.).

Основы расчетов на прочность изучают в курсе сопротивления материалов. В курсе деталей машин общие методы расчетов на проч­ность рассматривают в приложении к конкретным деталям и придают им форму инженерных расчетов.

Жесткость характеризуется изменением размеров и формы детали под нагрузкой.

Расчет на жесткость предусматривает ограничение упругих перемещений деталей в пределах, допустимых для конкретных условий работы. Такими условиями могут быть: условия работы сопряжённых деталей (например, качество зацепления зубчатых колес и условия работы подшипников ухудшаются при больших прогибах валов); технологические условия (например, точность и производительность обработки на металлорежущих станках в значительной степени определяются жесткостью станка и обрабатываемой детали).

Нормы жесткости деталей устанавливают на основе практики эксплуатации и расчетов. Значение расчетов на жесткость возрастает в связи с широким внедрением высокопрочных сталей, у которых увеличиваются характеристики прочности (σ в и σ -1), а модуль упругости

Е (характеристика жесткости) остается почти неизменным. При этом чаще встречаются случаи, когда размеры, полученные из расчета на прочность, оказываются недостаточными по жесткости.

Изнашивание - процесс постепенного изменения размеров деталей в результате трения. При этом увеличиваются зазоры в подшипниках, в направляющих, в зубчатых зацеплениях, в цилиндрах поршневых машин и т. п. Увеличение зазоров снижает качественные характеристики механизмов: мощность, к. п. д., надежность, точность и пр. Детали, изношенные больше нормы, бракуют и заменяют при ремонте. Несвоевременный ремонт приводит к поломке машины, а в некоторых случаях и к аварии.

Интенсивность изнашивания и срок службы детали зависят от давления, скорости скольжения, коэффициента трения и износостойкости материала. Для уменьшения изнашивания широко используют смазку трущихся поверхностей и защиту от загрязнения, применяют антифрикционные материалы, специальные виды химико-термической обработки поверхностей и т. д.

Следует отметить, что изнашивание выводит из строя большое число деталей машины. Оно значительно увеличивает стоимость эксплуатации, вызывая необходимость проведения периодических ремонтных работ. Высокая стоимость ремонта обусловлена значительными затратами ручного, высококвалифицированного труда, который трудно механизировать и автоматизировать. Для многих типов машин за весь период их эксплуатации затраты на ремонт и техническое обслуживание в связи с изнашиванием в несколько раз превышают стоимость новой машины. Износостойкость деталей машин существенно уменьшается при наличии коррозии. Коррозия является причиной преждевременного разрушения многих машин. Из-за коррозии ежегодно теряется до 10% выплавляемого металла. Для защиты от коррозии применяют антикоррозийные покрытия или изготовляют детали из специальных коррозийно-устойчивых материалов. При этом особое внимание уделяется деталям, работающим в присутствии воды, пара, кислот, щелочей и других агрессивных сред.

Теплостойкость . Нагрев деталей машин может вызвать следующие вредные последствия: понижение прочности материала и появление ползучести; понижение защищающей способности масляных пленок и следовательно увеличение изнашивания деталей; изменение зазоров в сопряженных деталях, которое может привести к заклиниванию или заеданию; понижение точности работы машины (например, прецизионные станки).

Чтобы не допустить вредных последствий перегрева на работу машины, выполняют тепловые расчеты и, если необходимо, вносят соответствующие конструктивные изменения (например, искусственное охлаждение).

Виброустойчивость . Вибрации вызывают дополнительные переменные напряжения и, как правило, приводят к усталостному разрушению деталей. В некоторых случаях вибрации снижают качество работы машин. Например, вибрации в металлорежущих станках снижают точность обработки и ухудшают качество поверхности обрабатываемых деталей. Особенно опасными являются резонансные колебания. Вредное влияние вибраций проявляется также и вследствие увеличения шумовых характеристик механизмов, В связи с повышением скоростей движения машин опасность вибраций возрастает, поэтому расчеты на колебания приобретают все большее значение.

Особенности расчета деталей машин. Для того чтобы составить математическое описание объекта расчета и по возможности просто решить задачу, в инженерных расчетах реальные конструкции заме­няют идеализированными моделями или расчетными схемами. Например, при расчетах на прочность по существу несплошной и неоднородный материал деталей рассматривают как сплошной и однородный, идеализируют опоры, нагрузки и форму деталей. При этом расчет становится приближенным, В приближенных расчетах большое значение имеет правильный выбор расчетной схемы, умение оценить главные и отбросить второстепенные факторы.

Погрешности приближенных расчетов существенно снижаются при использовании опыта проектирования и эксплуатации аналогичных конструкций. В результате обобщения предшествующего опыта выра­батывают нормы и рекомендации, например нормы допускаемых напряжений или коэффициентов запасов прочности, рекомендации по выбору материалов, расчетной нагрузки и пр. Эти нормы и рекомендации в приложении к расчету конкретных деталей приведены в соответствую­щих разделах данного конспекта лекций. Здесь отметим, что неточности расчетов на прочность компенсируют в основном за счет запасов прочности. При этом выбор коэффициентов запасов прочности становится весьма от ветственным этапом расчета. Заниженное значение запаса прочности приводит к разрушению детали, а завышенное - к неоправданному увеличению массы изделия и перерасходу материала. В условиях большого объема выпуска деталей общего назначения перерасход материала приобретает весьма существенное значение.

Факторы, влияющие на запас прочности, многочисленны и разнообразны: степень ответственности детали, однородность материала и надежность его испытаний, точность расчетных формул и определения расчетных нагрузок, влияние качества технологии, условий эксплуата­ции и пр. Если учесть все разнообразие условий работы современных машин и деталей, а также методов их производства, то станут очевидными большие трудности в раздельной количественной оценке влия­ния перечисленных факторов на значение запасов прочности. Поэтому в каждой отрасли машиностроения, основываясь на своем опыте, вырабатывают свои нормы запасов прочности для конкретных деталей. Нормы запасов прочности не являются стабильными. Их периодически корректируют по мере накопления опыта и роста уровня техники.

В инженерной практике встречаются два вида расчета - проектный и проверочный.

Проектный расчет - предварительный, упрощенный расчет, выполняемый в процессе разработки конструкции детали (машины) в целях определения ее размеров и материала.

Проверочный расчет - уточненный расчет известной конструкции, выполняемый в целях проверки ее прочности или определения норм нагрузки.

При проектном расчете число неизвестных обычно превышает число расчетных уравнений. Поэтому некоторыми неизвестными параметрами задаются, принимая во внимание опыт и рекомендации, а некоторые второстепенные параметры просто не учитывают. Такой упрощенный расчет необходим для определения тех размеров, без которых невозможна первая чертежная проработка конструкции. В процессе проектирования расчет и чертежную проработку конструкции выполняют параллельно. При этом ряд размеров, необходимых для расчета, конструктор определяет по эскизному чертежу, а проектный расчет приобретает форму проверочного для намеченной конструкции. В поисках лучшего варианта конструкции часто приходится выполнять несколько вариантов расчета. В сложных случаях поисковые расчеты удобно выполнять на ЭВМ. То обстоятельство, что конструктор сам выбирает расчетные схемы, запасы прочности и лишние неизвестные параметры, приводит к неоднозначности инженерных расчетов, а следовательно, и работоспособности конструкций. В каждой конструкции отражаются творческие способности, знание и опыт конструктора. Внедряются наиболее совершенные решения.

Расчетные нагрузки. При расчетах деталей машин различают расчетную и номинальную нагрузку. Расчетную нагрузку, например вращающий момент Т, определяют как произведение номинального момента Т н на динамический коэффициент режима нагрузки К* Т =Т н *К.

Номинальный момент соответствует паспортной (проектной) мощности машины. Коэффициент К учитывает дополнительные динамические нагрузки, связанные в основном с неравномерностью движения, пуском и торможением. Значение этого коэффициента зависит от типа двигателя, привода и рабочей машины. Если режим работы машины, ее упругие характеристики и масса известны, го значение К можно определить расчетом. В других случаях значение К выбирают, ориентируясь на рекомендации. Такие рекомендации составляют на основе экспериментальных исследований и опыта эксплуатации различных машин.

При расчете некоторых механизмов вводят дополнительные коэффициенты нагрузки, учитывающие специфические особенности этих механизмов, см., например, зубчатые передачи, гл. 4.

Выбор материалов для деталей машин является ответственным этапом проектирования. Правильно выбранный материал в значительной мере определяет качество детали и машины в целом. При изложении этого вопроса предполагают, что изучающим известны основные сведения о свойствах машиностроительных материалов и способах их производства из курсов материаловедения, технологии материалов, сопротивления материалов.

Выбирая материал, учитывают в основном следующие факторы: соответствие свойств материала главному критерию работоспособности (прочность, износостойкость и др.); требования к массе и габари­там детали и машины в целом; другие требования, связанные с назна­чением детали и условиями ее эксплуатации (противокоррозионная стойкость, фрикционные свойства, электроизоляционные свойства и т. д.); соответствие технологических свойств материала конструктивной форме и намечаемому способу обработки детали (штампуемость, свариваемость, литейные свойства, обрабатываемость резанием и пр.); стоимость и дефицитность материала.

Черные металлы , подразделяемые на чугуны и стали, имеют наибольшее распространение. Это объясняется прежде всего их высокой прочностью и жесткостью, а также сравнительно невысокой стоимостью. Основные недостатки черных металлов - большая плотность и слабая коррозионная стойкость.

Цветные металлы - медь, цинк, свинец, олово, алюминий и некоторые другие - применяют главным образом в качестве составных частей сплавов (бронз, латуней, баббитов, дюралюминия и т. д.). Эти металлы значительно дороже черных и используются для выполне­ния особых требований: легкости, антифрикционности, антикоррозинности и др.

Неметаллические материалы - дерево, резина, кожа, асбест, металлокерамика и пластмассы также находят широкое применение.

Пластмассы и композитные материалы - сравнительно новые, но уже хорошо освоенные выпуском, применение кото­рых в машиностроении все более расширяется. Современное развитие химии высокомолекулярных соединений позволяет получить материалы, которые обладают ценными свойствами: легкостью, прочностью, тепло и электроизоляцией, стойкостью против действия агрессивных сред, фрикционностью или антифрикционностью и т. д.

Пластмассы технологичны. Они обладают хорошими литейными свойствами и легко обрабатываются пластическим деформированием при сравнительно невысоких температурах и давлениях. Это позволяет получать из пластмасс изделия почти любой сложной формы высоко­производительными методами: литьем под давлением, штамповкой, вытяжкой или выдуванием. Другим преимуществом пластмасс и композитных материалов является сочетание легкости и высокой прочности. По этому показателю некоторые их виды могут конкурировать с лучшими сортами стали и дюралюминия. Высокая удельная прочность позволяет, использовать данные материалы в конструкциях, уменьшение массы которых имеет особо важное значение.

Основные потребители пластмасс в настоящее время - электрорадиотехническая и химическая промышленность. Здесь из пластмасс изготовляют корпуса, панели, колодки, изоляторы, баки, трубы и другие детали, подвергающиеся действию кислот, щелочей и т. п. В дру­гих отраслях машиностроения пластмассы применяют, главным образом, для производства корпусных деталей, шкивов, вкладышей под­шипников, фрикционных накладок, втулок, маховичков, рукояток…

Технико-экономическая эффективность применения пластмасс и композитных материалов в машиностроении определяется в основном значительным снижением массы машин и повышением их эксплуатационных качеств, а также экономией цветных металлов и сталей. Замена металла пластмассами значительно снижает трудоемкость и себестоимость машиностроительной продукции. При замене черных металлов пластмассами трудоемкость изготовления деталей уменьшается в среднем в 5. . .6 раз, а себестоимость - в 2. . .6 раз. При замене пластмассами цветных металлов себестоимость снижается в 4. . .10 раз.

Порошковые материалы получают методом порошковой метал лургии, сущность которой состоит в изготовлении деталей из порошков металлов путем прессования и последующего спекания в пресс-формах. Применяют порошки однородные или из смеси различных металлов, а также из смеси металлов с неметаллическими материалами, например с графитом. При этом получают материалы с различными механическими и физическими свойствами (например, высокопрочные, износостойкие, антифрикционные и др.).

В машиностроении наибольшее распространение получили детали на основе железного порошка. Детали, изготовленные методом порошковой металлургии, не нуждаются в последующей обработке резанием, что весьма эффективно при массовом производстве. В условиях современного массового производства развитию порошковой металлургии уделяется большое влияние.

Использование вероятностных методов расчета.

Основы теории вероятности изучают в специальных разделах математики. В курсе деталей машин вероятностные расчеты используют в двух видах: принимают табличные значения физических величин, подсчитанные с заданной вероятностью (к таким величинам относятся, например, ме­ханические характеристики материалов σ в, σ_ 1 , твердость Н и др., ресурс наработки подшипников качения и пр.); учитывают заданную вероятность отклонения линейных размеров при определении расчетных значений зазоров и натягов, например в расчетах соединений с натягом и зазоров в подшипниках скольжения при режиме жидкостного трения.

Установлено, что отклонения диаметров отверстий D и валов d подчиняются нормальному закону распределения (закону Гаусса). При этом для определения вероятностных зазоров S p и натягов N p получены зависимости:

Sp min - max = ,
,

где верхние и нижние знаки относятся соответственно к мини­мальному и максимальному зазору или натягу, S = 0,5 (S min +S max), N =0.5(Nmin +N max); допуски T D = ES - EJ и T d =es-ei; ES , es -верхние, a EJ , ei -нижние предельные отклонения размеров.

Коэффициент С зависит от принятой вероятности Р обеспечения того, что фактическое значение зазора или натяга располагается в пределах S P min …S P max или N P min … N P max:

P ……….. 0.99 0.99 0.98 0.97 0.95 0.99

C ……… 0.5 0.39 0.34 0.31 0.27 0.21

На рис. представлено графическое изображение параметров формулы для соединения с натягом. Здесь f (D ) и f (d ) плотности
распределения вероятностей случайных величин D и d . Заштрихованы участки кривых, которые не учитывают как маловероятные при расчетах с принятой вероятностью Р.

Применение вероятностных расчетов позволяет существенно повысить допускаемые нагрузки при малой вероятности отказов. В условиях массового производства это дает большой экономический эффект.

Надежность машин .

Приняты следующие показатели надёжности:

Показатели безотказности

Вероятность безотказной работы – вероятность того, что в пределах заданной наработки, отказ не возникнет.

Средняя наработка до отказа – математическое ожидание наработки до отказа невосстанавливаемого изделия.

Средняя наработка на отказ – отношение наработки восстанавливаемого объекта к математическому ожиданию числа его отказов в течение этой наработки.

Интенсивность отказов – показатель надёжности невосстанавливаемых изделий, равный отношению среднего числа отказавших в единицу времени объектов к числу объектов, оставшихся работоспособными.

Параметр потока отказов - показатель надёжности восстанавливаемых изделий, равный отношению среднего числа отказов восстанавливаемого объекта за произвольную малую его наработку к значению этой наработки (соответствует интенсивности отказов для неремонтируемых изделий, но включает повторные отказы).

Показатели долговечности

Технический ресурс (ресурс) – наработка объекта от начала его эксплуатации или возобновления эксплуатации после ремонта до предельного состояния работоспособности. Ресурс выражается е единицах времени работы (обычно в часах), или длины пути пробега (в километрах), или в количестве единиц выпускаемой продукции.

Срок службы – календарная наработка до предельного состояния работоспособности (в годах).

Показатели ремонтопригодности и сохраняемости

Среднее время восстановления до работоспособного состояния.

Вероятность восстановления до работоспособного состояния в заданное время.

Сроки сохраняемости: средний и γ - процентный.

Комплексные показатели (для сложных машин и поточных линий.)

Различают три периода, от которых зависит надежность: проектирования, производства, эксплуатации.

При проектировании закладываются основы надежности. Плохо продуманные, неотработанные конструкции не бывают надежными. Конструктор должен отразить в расчетах, чертежах, технических ус­ловиях и другой технической документации все факторы, обеспечивающие надежность.

При производстве обеспечиваются все средства превышения надёж ности, заложенные конструктором. Отклонения от конструкторской документации нарушают надежность. В целях исключения влияния дефектов производства все изделия необходимо тщательно контролировать.

При эксплуатации реализуется надежность изделия. Такие понятия надежности, как безотказность и долговечность, проявляются только в процессе работы машины и зависят от методов и условий ее эксплуатации, принятой системы ремонта, методов технического обслуживания, режимов работы и пр.

Основные причины, определяющие надежность, содержат элементы случайности. Случайны отклонения от номинальных значений характеристик прочности материала, номинальных размеров деталей и прочих показателей, зависящих от качества производства; случайны отклонения от расчетных режимов эксплуатации и т. д. Поэтому для описания надежности используют теорию вероятности.

Надежность оценивают вероятностью сохранения работоспособно сти в течение заданного срока службы . Утрату работоспособности называют отказом . Если, например, вероятность безотказной работы изделия в течение 1000 ч. равна 0,99, то это значит, что из некоторого большого числа таких изделий, например из 100, один процент или одно изделие потеряет свою работоспособность раньше чем через 1000 ч. Вероятность безотказной работы (или коэффициент надежности) для нашего примера равна отношению числа надежных изделий к числу изделий, подвергавшихся наблюдениям:

P(t) =99/100=0,99.

Значение коэффициента надежности зависит от периода наблюдения t , который включен в обозначение коэффициента. У изношенной машины Р(t ) меньше, чем у новой (за исключением периода обкатки, который рассматривают особо).

Коэффициент надежности сложного изделия выражается произве­дением коэффициентов надежности составляющих элементов:

P (t )= P 1 (t ) P 2 (t )... P n (t ).

Анализируя эту формулу, можно отметить следующее;

- надежность сложной системы всегда меньше надежности самого ненадежного элемента, поэтому важно не допускать в систему ни од ного слабого элемента.

- чем больше элементов имеет система, тем меньше ее надежность. Если, например, система включает 100 элементов с одинаковой надежностью Р п (t) = 0,99, то надежность P(t) = 0,99 100 0,37. Такая система, конечно, не может быть признана работоспособной, так как онабольше простаивает, чем работает. Это позволяет понять, почему проблема надежности стала особенно актуальной в современный период развития техники по пути создания сложных автоматических систем. Известно, что многие такие системы (автоматические линии, ракеты, самолеты, математические машины и др.) включают десятки и сотни тысяч элементов. Если в этих системах не обеспечивается достаточная надежность каждого элемента, то они становятся непригодными или неэффективными.

Изучением надежности занимается самостоятельная отрасль науки и техники.

Ниже излагаются основные пути повышения надежности на стадии проектирования, имеющие общее значение при изучении настоящего курса.

1. Из предыдущего ясно, что разумный подход к получению высокой надежности состоит в проектировании по возможности простых изделий с меньшим числом деталей. Каждой детали должна быть обеспечена достаточно высокая надежность, равная или близкая к надежности остальных деталей.

2. Одним из простейших и эффективных мероприятий по повышению надежности является уменьшение напряженности деталей (повышение запасов прочности). Однако это требование надежности вступает в противоречие с требованиями уменьшения габаритов, массы и стоимости изделий. Для примирения этих противоречивых требований рационально использовать высокопрочные материалы и упрочняющую технологию: легированные стали, термическую и химико-термическую обработку, наплавку твердых и антифрикционных сплавов на поверхность деталей, поверхностное упрочнение путем дробеструйной обработки или накатки роликами и

т. п. Так, например, путем термической обработки можно увеличить нагрузочную способность зубчатых передач в 2 - 4 раза. Хромирование шеек коленчатого вала автомобильных двигателей увеличивает срок службы по износу в 3 - 5 и более раз. Дробеструйный наклеп зубчатых колес, рессор, пружин и прочее повышает срок службы по усталости материала в 2-3 раза.

    Эффективной мерой повышения надежности является хорошая система смазки: правильный выбор сорта масла, рациональная система подвода смазки к трущимся поверхностям, защита трущихся поверхностей от абразивных частиц (пыли и грязи) путем размещения изделий в закрытых корпусах, установки эффективных уплотнений и т. п.

    Статически определимые системы более надежны. В этих системах меньше проявляется вредное влияние дефектов производства на распределение нагрузки.

    Если условия эксплуатации таковы, что возможны случайные перегрузки, то в конструкции следует предусматривать предохрани тельные устройства (предохранительные муфты или реле максимального тока).

    Широкое использование стандартных узлов и деталей, а также стандартных элементов конструкций (резьб, галтелей и пр.) повышает надежность. Это связано с тем, что стандарты разрабатывают на основе большого опыта, а стандартные узлы и детали изготовляют на специализированных заводах с автоматизированным производством. При этом повышаются качество и однородность изделий.

7. В некоторых изделиях, преимущественно в электронной аппаратуре, для повышения надежности применяют не последовательное, а параллельное соединение элементов и так называемое резервирование. При параллельном соединении элементов надёжность системы значительно повышается, так как функцию отказавшего элемента принимает на себя параллельный ему или резервный элемент. В машиностроении параллельное соединение элементов и резервирование применяют редко, так как в большинстве случаев они приводят к значительному повышению массы, габаритов и стоимости изделий, Оправданным применением параллельного соединения могут служить самолеты с двумя и четырьмя двигателями. Самолет с четырьмя двигателями не терпит аварии при отказе одного и даже двух двигателей.

8. Для многих машин большое значение имеет ремонтопригодность. Отношение времени простоя в ремонте к рабочему времени является одним из показателей надежности. Конструкция должна обеспечивать легкую доступность к узлам и деталям для осмотра или замены. Сменные детали должны быть взаимозаменяемыми с запасными частями. В конструкции желательно выделять так называемые ремонтные узлы. Замена поврежденного узла заранее подготовленным значительно сокращает ремонтный простой машины.

Перечисленные факторы позволяют сделать вывод, что надежность является одним из основных показателей качества изделия. По надеж ности изделия можно судить о качестве проектно-конструкторских работ, производства и эксплуатации.

«Детали машин и основы конструирования» – один из основных инженерных курсов, который преподается большинству студентов инженерно-технических специальностей.
В программе курса изучается устройство, принципы работы, а также методы конструирования деталей и узлов машин общего назначения: разъемных и неразъемных соединений, передач трением и зацеплением, валов и осей, подшипников скольжения и качения, различных муфт.
В начале курсе излагаются понятия и определения, используемые в машиностроении, критерии работоспособности деталей машин, основные машиностроительные материалы, нормирование точности изготовления деталей, рассматриваются различные варианты соединения деталей: резьбовые, сварные, заклепочные, шпоночные, шлицевые и т.д.
Подробно изучаются наиболее используемые механизмы в машиностроении - механические передачи, а именно зубчатые передачи (среди них планетарные, червячные, волновые), фрикционные, цепные, а также передачи «винт-гайка».
Рассматриваются их кинематические расчеты, расчеты на прочность и жесткость, методы рационального выбора материалов и способы соединения деталей, расчеты валов и осей, подшипников, муфт.
В конце курса на примере одного из редукторов обобщается методика конструирования привода: от расчетов его кинематических и энергосиловых параметров до определения размеров подшипников.

Формат

Курс включает в себя просмотр тематических видеолекций с несколькими вопросами для самопроверки; выполнение многовариантных тестовых заданий с автоматизированной проверкой результатов; объяснение примеров решения задач; лабораторные работы.

Информационные ресурсы

1. Учебник «Детали машин и основы конструирования» / С.М. Горбатюк, А.Н. Веремеевич, С.В. Албул, И.Г. Морозова, М.Г. Наумова - М.: Изд. Дом МИСиС, 2014 / ISBN 978-5-87623-754-5
2. Учебно-методическое пособие «Детали машин и оборудование. Проектирование приводов» / С.М. Горбатюк, С.В. Албул - М.: Изд. Дом МИСиС, 2013

Требования

Для полноценного освоения курса слушатель должен владеть базовыми знаниями из курсов математики, инженерной графики, теоретической механики, сопротивления материалов.

Программа курса

1. Основные понятия и определения. Критерии работоспособности деталей машин;
2. Машиностроительные материалы. Их классификация и область применения;
3. Допуски размеров. Посадки деталей. Отклонения формы и расположения поверхностей. Шероховатость поверхности;
4. Неразъемные соединения деталей: сварные, заклепочные, паяные, клеевые;
5. Разъемные соединения деталей: резьбовые, шпоночные, шлицевые, штифтовые, клеммовые;
6. Зубчатые передачи. Основная теорема зацепления. Геометрия зубьев. Методика расчета передач;
7. Многозвенные зубчатые передачи: планетарные, дифференциальные, волновые. Кинематика передач;
8. Червячные передачи. Геометрия и конструкция. КПД передачи и ее тепловой расчет;
9. Фрикционные передачи и вариаторы. Ременные передачи;
10. Валы и оси. Критерии работоспособности. Расчет на прочность. Уплотнения валов;
11. Подшипники. Классификация и конструкция. Расчет подшипников;
12. Муфты: неуправляемые, компенсирующие, предохранительные;
13. Методика конструирования. Пример конструирования редуктора.

Результаты обучения

После прохождения курса слушатели будут знать:
основные типы соединений деталей машин;
основные типы и характеристики механических передач;
основные типы и область применения подшипников качения и скольжения, муфт;
методы расчета и проектирования узлов и деталей машин общего назначения;
методы проектно-конструкторской работы.

Уметь:
составлять расчетные схемы нагружения узлов;
определять усилия, моменты, напряжения и перемещения, действующие на детали машин;
проектировать и конструировать типовые элементы машин, выполнять их оценку по прочности, жесткости и другим критериям работоспособности.

Владеть:
навыками выбора материалов и назначения их обработки;
навыками оформления проектной и конструкторской документации в соответствии с требованиями ЕСКД;
навыками эскизного, технического и рабочего проектирования узлов машин.

Формируемые компетенции

15.03.02 Технологические машины и оборудование

  • способность использовать основы философских знаний для формирования мировоззренческой позиции (ОК-1);
  • способность принимать участие в работах по расчету и проектированию деталей и узлов машиностроительных конструкций в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования (ПК-5);
  • способность разрабатывать рабочую проектную и техническую документацию, оформлять законченные проектно-конструкторские работы с проверкой соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам (ПК-6);
  • способность создавать техническую документацию на конструкторские разработки в соответствии с существующими стандартами и другими нормативными документами (ППК-2);
  • способность разрабатывать технологическую и производственную документацию с использованием современных инструментальных средств (ППК-9).

Машиной называется устройство, создаваемое человеком, выполняющее механические движения для преобразования энергии, материалов и информации с целью полной замены или облегчения физического и умственного труда человека, увеличения его производительности.

Под материалами понимаются обрабатываемые предметы, перемещаемые грузы и т. д.

Машину характеризуют следующие признаки :

    преобразование энергии в механическую работу или преобразование механической работы в другой вид энергии;

    определённость движения всех ее частей при заданном движении одной части;

    искусственность происхождения в результате труда человека.

По характеру рабочего процесса, все машины можно разделить на классы :

    машины – двигатели. Это энергетические машины, предназначенные для преобразования энергии любого вида (электрической, тепловой и т. д.) в механическую энергию (твердого тела);

    машины – преобразователи – энергетические машины, предназначенные для преобразования механической энергии в энергию любого вида (электрические генераторы, воздушные и гидравлические насосы и т. д.);

    транспортные машины;

    технологические машины;

    информационные машины.

Все машины и механизмы состоят из деталей, узлов, агрегатов.

Деталь – часть машины, изготавливаемая из однородного материала без применения сборочных операций.

Узел – законченная сборочная единица, которая состоит из ряда соединенных деталей. Например: подшипник, муфта.

Механизмом называется искусственно созданная система тел, предназначенная для преобразования движения одного или нескольких тел в требуемые движения других тел.

Требования к машинам:

    Высокая производительность;

2. Окупаемость затрат на проектирования и изготовление;

3. Высокий КПД;

4. Надёжность и долговечность;

5. Простота управления и обслуживания;

6. Транспортабельность;

7. Малые габариты;

8. Безопасность в работе;

Надёжность – это способность детали сохранять свои эксплутационные показатели, выполнять заданные функции в течение заданного срока службы.

Требования к деталям машин :

а) прочность – сопротивляемость детали разрушению или возникновению пластических деформаций в течение гарантийного срока службы;

б) жесткость – гарантированная степень сопротивления упругому деформированию детали в процессе ее эксплуатации;

в) износостойкость – сопротивление детали: механическому изнашиванию или коррозийно-механическому изнашиванию;

г) малые габариты и масса ;

д) изготовление из недорогих материалов ;

е) технологичность (изготовление должно осуществляться при наименьших затратах труда и времени);

ж) безопасность;

з) соответствие государственным стандартам.

При расчете деталей на прочность нужно в опасном сечении получить такое напряжение, которое будет меньше или равно допускаемому: δ max ≤[δ]; τ max ≤[τ]

Допускаемое напряжения – это максимальное рабочее напряжение, которое может быть допущено в опасном сечении, при условии обеспечения необходимой прочности и долговечности детали во время ее эксплуатации.

Допускаемое напряжение выбирают в зависимости от предельного напряжения

;
n – допускаемый коэффициент запаса прочности, который зависит от типа конструкции, ее ответственности, характера нагрузок.

Жесткость детали проверяется сравнением величины наибольшего линейного ¦ или углового j перемещения с допускаемым: для линейного ¦ max £ [¦]; для углового j max £ [j]