Обоснование выбора системы охлаждения. Выбор системы охлаждения РЭС. Обоснование выбора охладителя

Система кондиционирования воздуха предназначена для выполнения следующих функций:

  • - обеспечения нормальных условий жизнедеятельности пассажиров и экипажа в полете и на земле;
  • - охлаждения бортовой радиоэлектронной аппаратуры.

СКВ самолета состоит из двух подсистем, каждая их которых включает в себя:

  • - систему отбора воздуха от двигателей самолета или от вспомогательной силовой установки;
  • - систему охлаждения воздуха и его влажностной обработки;
  • - систему подачи и распределения воздуха в кабине самолета;
  • - систему контроля и управления.

Система отбора воздуха от двигателей

Отбор воздуха производиться от ступеней компрессора двигателей. Система отбора воздуха состоит из:

  • - узла отбора воздуха от двигателя;
  • - регулятора давления, который обеспечивает требуемое давление на входе в систему охлаждения;
  • - теплообменного аппарата, обеспечивающего температуру на выходе из системы отбора не более 200 С.

Система охлаждения воздуха

По рекомендациям из методических указаний, для данного типа самолета, выбираем двухступенчатую двухтурбинную СКВ с влагоотделением в линии высокого давления и регенерацией теплоты на входе в турбину турбохолодильника (рис. 1)

Преимущество этой схемы СКВ перед схемами с влагоотделением в линии низкого давления заключается в более высокой степени осушки охлаждаемого воздуха. Применение второй ступени промежуточного сжатия охлаждаемого воздуха позволяет повысить экономичность и тепловую эффективность СКВ, а подогрев воздуха перед турбиной - увеличить ресурс работы турбохолодильника.

Воздух из системы отбора подается в систему охлаждения через регулятор расхода. Сначала воздух охлаждается в предварительном теплообменнике АТ1 до некоторой температуры (определена в п.3), затем поступает в компрессор КМ турбохолодильной установки ТХ. После компрессора воздух поступает в «петлю» отделения влаги перед турбиной Т, которая образована регенеративным теплообменником АТ3, для испарения конденсата, и конденсатором АТ4 для конденсации влаги. Охлаждение воздуха в конденсаторе до необходимой температуры производится воздухом, выходящем из турбины. Водный конденсат отделяется во влагоотделителе ВД и впрыскивается в магистраль продувки основного теплообменника и далее в атмосферу. От установок охлаждения левого и правого борта воздух поступает в единый коллектор холодного воздуха, а оттуда - в кабину.

Рис.1.

Система распределения и подачи воздуха

Система распределения и подачи предназначена для подготовки воздушной смеси с необходимыми параметрами, ее подачу в кабину и распределения в салонах, кабине экипажа и бытовых помещениях самолета. Система включает в себя:

  • - коллектор холодного воздуха;
  • - коллектор горячего воздуха;
  • - датчики температуры и давления воздуха в кабине;
  • - устройства распределения воздуха в салонах, кабине экипажа и бытовых помещениях.

Регулирование температуры воздуха в кабине производиться подмешиванием горячего воздуха в воздух из системы охлаждения.

Часть воздуха из пассажирских салонов с помощью электровентиляторов через фильтры подается в эжекторы, в которых происходит смешивание свежего и использованного воздуха и его подачи в коллектор холодного воздуха. Эжекторы выполнены так, что воздух после них может поступать: смешанный - в салоны, а свежий - в кабину экипажа.

Выбор системы охлаждения имеет большое значение. От неё зависит сохранность и усушка груза, расход энергии на еденицу перевозимой продукции, безопасность перевозки, эффективность использования грузового объема и т. д.

Рассмотрим основные требования, которым должна удовлетворять судовая система охлаждения трюмов:

Обеспечивать равномерное (однородное) температурное поле в любой точке трюма с минимальными отклонениями от оптимальных значений для дан­ного груза;

Обладать большой аккумулирующей способностью (инерционностью) с целью замедления повышения температуры в трюме при временной остановке холодильной машины;

Обеспечивать возможно меньший температурный перепад между темпе­ратурой груза и температурой кипения холодильного агента. Это позволит полу­чить при заданной температуре камеры максимальное значение холодильного ко­эффициента машины и наименьшие энергозатраты на перевозку грузов.

Охлаждающие приборы и системы канализации холодоносителя должны иметь малую массу и габариты. Необходимо знать, что малые габариты охлаж­дающих поверхностей могут быть достигнуты только за счет повышения значе­ний коэффициентов теплопередачи.

Обеспечивать надежность, простоту и удобство в эксплуатации, безопас­ность для людей и фузов, нормальное наблюдение за режимом охлаждения, лег­кость его регулирования, ревизии, ремонта и т.д.

Для провизионных камер сухогрузного судна экономически выгоднее использовать воздушную систему охлаждения с непосредственным испарениям хладагента в испарительных батареях. Так как системы с промежуточным хладоносителем имеют более низкую экономичность по сравнению с системой непосредственного охлаждения: теплопередача осуществляется дважды - от воздуха к рассолу и от рассола к хладагенту. Поэтому при прочих равных условиях общий перепад температуры между грузом и испаряющимся холодильным агентом возрастает и составляет 11 ...12°С, что ухудшает экономические показатели работы компрес­сора и повышает его размеры. Кроме того, возрастают расходы на привод рас­сольных насосов.

Системы с промежуточным хладоносителем также имеют низкую холодо-отдчу холодоносителя, что предопределяет большие массогабаритные показатели рассольных систем.

Воздушная система охлаждения получила широкое распространение на транспортных и производственных рефрижераторах, в особенности при использовании фреоновых холодильных машин. Особенно предпочтительна эта система для рефрижераторов, перевозящих дышащие грузы (фрукты, овощи).

Воздушная система охлаждения, обслуживаемая холодильными машинами на фреоне-R-22, наилучшим образом обеспечивает повышение технико-экономических показателей производст­венных и транспортных рефрижераторов.

Циркуляция охлажденного воздуха в камерах обеспечивается вентиляторами, прогоняющими воздух через воздухоохладители непосредственного охлаждения.

Значительно меньшие масса и габариты приборов охлаждения существенно увеличивают полезный объем камер.

Система воздушного охлаждения по сравнению с системой батарейного («тихого») охлаждения имеет ряд преимуществ и недостатков, взаимное влияние которых учитывается при технико-экономическом анализе сравниваемых систем. Преимушества воздушной системы: значительно меньшая металлоемкость, большая долговечность, более удобная эксплуатация, повышенная грузовмести-мость при прочих равных условиях. Все эти факторы уменьшают амортизацион-ные отчисления, эксплуатационные расходы и улучшают провозную способность судна. При наличии воздушной системы периодически проводящиеся оттайки воздухоохладителей позволяют более эффективно использовать производитель-ность холодильной машины в то время как при «тихом» охлаждении слой инея, нарастающий за весь период рейса, существенно ухудшает эффективность охлаждающих батарей и приводит к снижению холодильного коэффициента мапгины с соответствующим увеличением энергозатрат. К недостаткам воздушной системы относятся: повышенная холодопроизводительность установ-ки, связанная с необходимостью компенсации дополнительных теплопритоков эквивалентных мощности вентиляторов и несколько большая усушка продукта связанная с более интенсивным тепло- и массообменом.

Технико-экономические анализы воздушных систем охлаждения показывают преимущества этих систем перед система батарейного охлаждения, в связи с чем воздушная система охлаждения считается наиболее прогрессивной и перспективной.

Рис.2. Принципиальная схема воздушной системы охлаждения с непосредственным испарением судовых рефрижераторных помещений.

4. Выбор изоляционных материалов. Расчет изоляционной конструкции.

Основным потребителем холода в рефрижераторных перевозках является тепло, проникающее в охлаждаемые помещения извне через ограждающие их конструкции. Уменьшение внешних теплопритоков способствует уменьшению холодопотребности судна. Это возможно обеспечить путем осуществления теп­ловой изоляции ограждающих поверхностей. Чем ниже теплопроводность изо­ляционного материала и больше его толщина, тем меньше тепла проникает в помещение. Однако с увеличением толщины изоляции уменьшается полезный грузовой объем изолируемых помещений, возрастают стоимость изоляционно­го материала и его монтаж. На современных рефрижераторных судах изоляци­онные конструкции уменьшают объем трюма на 15...30%, что отрицательно вли-ивт на рентабельность перевозок. Поэтому для теплоизоляции применяют материалы, имеющие низкое значение коэффициента теплопроводности.

К изоляционным материалам, применяемым в судостроении, предъяв­ляется ряд других важных требований, обусловливающих их высокую эффективность:

Высокие теплозащитные свойства (низкий коэффициент теплопроводности λ [Вт/(м·К)];

Малая плотность ρ, кг/м 3 ;

Высокая механическая прочность и эластичность, противостоящие вибрации и деформации корпуса судна;

Морозостойкость (способность противостоять разрушению изоляции при переменных температурных нагрузках);

Огнестойкость и негорючесть;

Отсутствие запахов и невосприимчивость к ним;

Малая влагоемкость и малая гигроскопичность;

Минимальная усадка насыпного изоляционного материала;

Не вызывать и не способствовать коррозии поверхностей;

Не влиять на здоровье людей;

Достаточная стойкость к гнилостным бактериям и грибкам;

Дешевизна, доступность, удобство при транспортировке, монтаже и эксплу-атации, долговечность.

Существующие изоляционные материалы не могут в достаточной степени удовлетворять одновременно всем перечисленным выше требованиям. Поэтому при их выборе ориентируются на выполнение только основных требовании м зависимости от назначения судна, района плавания и др. Кроме того, влиянии ряда недостатков может быть устранено либо значительно снижено созданном рациональной изоляционной конструкции, которая обеспечивает:

Предохранение изоляционной конструкции от увлажнения путем установки паровлагозащитного покрытия и (или) устройства осушающих слоев дня осушения изоляции в период эксплуатации;

Защиту изоляции от проникновения грызунов путем установки специаш, ных металлических сеток;

Непрерывность изоляционного слоя и его толщины, способствующих эффективности теплозащитных свойств ограждений в длительный эксплуатацион-ный период.

Хорошими изоляционными свойствами обладают материалы, состоящие из мелких и закрытых пор. В современных изоляционных материалах число закрытых пор, содержащихся в 1 см 3 материала, достигает нескольких тысяч. Такие материалы не требуют дополнительных мероприятий по пароизоляции и не нуждаются в осушении.

Наиболее современными представителями высокоэффективных теплоизо­ляционных материалов являются пенопласты. В последнее время получено много различных пенопластов, обладающих высокой стойкостью к увлажнению, высокой прочностью и низкими значениями плотности и коэффициента тепло­проводности.

Поэтому в качестве теплоизо­ляционого материала провизионных камер будем использовать плиты из полихлорвиниловой смолы с неорганическим газо-образователем ПХВ-1 представляют собой пористый материал, ячейки которого заполнены воздухом и изолированы друг от друга тонкими стенками. ПХВ-1 не загнивает, тлеет в пламени, не вызывает коррозии. Плиты при нагревании позволяют создавать фасонные дета­ли применительно к набору судна.

Теплофизические характеристики изоляционного материала:

Плотность – ρ = 90...130 кг/м 3

λ и з = 0,058 Вт/(м·К)

Изоляционные конструкции охлаждаемых помещений судов подразделяют на три основных типа: не прорезаемые стальным набором корпуса; перекрываю-щие набор, или нормальные и обходящие набор.

Х
олодильные камеры располагаются вблизи камбуза, следовательно применем изоляционную конструкцию первого типа для изолирования гладких металлических поверхностей. Такие конструкции не прорезают стальной набор корпуса судна, поэтому их выполняют из материалов с коэффициентами тепло-проводности, отличающимися не более чем в десять раз. Конструкции такого рода применяют для изолирования второго дна, палуб, переборок и гладких сторон охлаждаемых помещений (рис.3.)

Рис.3. Изоляционная конструкция переборок.

1 – металлическая обшивка; 2 – подкрепляющие деревянные бруски;

3 – изоляционный материал; 4 – деревянная зашивка изоляции.

Простые конструкции изоляции гладких переборок, палубы, выполненные из материалов с мало отличающимися коэффициентами теплопроводности, рассчи-таны по законам параллельным тепловому потоку.

Расчет изоляционной конструкции по методу параллельных тепловых потоков:

Основные размеры конструкции:

S = 800 мм

С = 60 мм

δ д = 60 мм

δ из =150 мм

Деревянная зашивка и бруски – сосна вдоль волокон:

Плотность – ρ= 500 кг/м 3

Коэффициент теплопроводности – λ д = 0,4 Вт/(м·К)

Теплоемкость – с= 2,3 кДж/(кг·К)

/(0,15+0,06)= 1,90Вт/(м·К)

1/((0,15/0,058)+(0,06/)=0,37 Вт/(м·К)

((1,90·0,06)+ 0,37(0,8-0,06))/0,8=0,48 Вт/(м·К)

Расчет изоляционной конструкции методом круговых потоков:

Размеры шпации:

b=70 мм Рис.4. Нормальная изоляционная конструкция

с продольным расположением брусков

тепловой поток идет по линии наименьшего сопротивления т.е. наибольшая длинна дуги четверти круга равна высоте профиля набора:

(2·170)/π=0,108 м

Шпация разбивается на 6 зон, ширина которых равна:

II. 2h/π= 0,108 м

III. S-b-4h/π=(800-70-4·170/π)/1000=0,514 м

IV. H-e-a-h(1-2/π)=(300-150-60-170(1-2/π))/1000=0,028 м

V. h+e+a-H-c=(170+150+60-300-60)/1000=0,020 м

Расчитываем тепловой поток каждой зоны:

m э =λ из /λ д =0,058/0,4=0,145 - толщина эквивалентная слою дерева толщиной 1м;

I
зона:

0,690 рад

Коэффициент теплопроводности всей конструкции:

(0,0516+0,0425+0,1198+0,0072+0,00914+0,1311)/0,8=

Документ анализирует применение охладительных систем испарительного типа, "сухих" градирен и градирен смешанного типа с точки зрения экологического воздействия, стоимости сооружения и эффективности использования.

Начальник группы проектирования градирен АО "АТОМПРОЕКТ" Михаил Пресман представил результаты ТЭО на заседании Общественного Совета Госкорпорации "Росатом" в городе Сосновый Бор 13 апреля.

В соответствии с проведенным анализом любые варианты охладительных систем за исключением башенных испарительных градирен потребуют значительного расширения промплощадки атомной станции. При незначительной разнице в воздействии на окружающую среду в рамках нормативов, утвержденных законодательством РФ, варианты охладительных систем с применением "сухих" и комбинированных градирен по стоимости в три-четыре раза превышают затраты на сооружение традиционных испарительных градирен. В то же время работа "сухих" градирен серьезно скажется на мощности сооружаемых энергоблоков, снизив ее более чем на 20 МВт в год. Таким образом ежегодные экономические "потери" при применении "сухих" и комбинированных градирен составят от 750 млн до 1 млрд. рублей.

Наиболее экономичным вариантом системы охлаждения воды второго контура является прямоточная система с использованием природных водоемов. Этот вариант используется в экспортных проектах АЭС, разрабатываемых АТОМПРОЕКТом, например, в Китае и Финляндии, однако не может использоваться в России согласно требованиям Водного кодекса. В этих условиях наиболее экономически обоснованным для проекта второй очереди ЛАЭС-2 является применение башенных испарительных градирен.

Ленинградская АЭС-2 сооружается по проекту «АЭС-2006» – современному эволюционному проекту атомной электростанции поколения 3+. В проекте АЭС-2006 применены четыре активных канала систем безопасности, дублирующие друг друга, а также пассивные системы безопасности, работа которых обусловлена только законами физики и не зависит «человеческих» факторов.

Способы охлаждения в зависимости от вида охлаждающей среды делятся на непосредственное охлаждение и на охлаждение жидким хладоносителем (косвенное охлаждение).

При непосредственном охлаждении теплота, воспринимаемая охлаждающими приборами, передается непосредственно кипящему в них хладагенту. При охлаждении хладоносителем теплота в охлаждающих приборах передается промежуточной среде - хладоносителю, с помощью которого она переносится к хладагенту, находящемуся в испарителе холодильной установки, обычно расположенном на некотором удалении от охлаждаемого объекта.

При этом способе охлаждения отвод теплоты от охлаждаемого объекта вызывает повышение температуры хладоносителя в охлаждающих приборах без изменения его агрегатного состояния.

Области применения того или иного способа определяются их особенностями, оказывающими влияние на технологический процесс, а также экономическими показателями.

Холодильная установка при непосредственном охлаждении проще, т.к. в ней отсутствуют испаритель для охлаждения хладоносителя и насос для его циркуляции. Вследствие чего эта установка требует меньших первоначальных затрат по сравнению с установкой косвенного охлаждения, а также меньших затрат электроэнергии.

В то же время способу непосредственного охлаждения присущи и серьезные недостатки, а именно:

Имеется опасность попадания холодильного агента в помещения (аппараты) при нарушениях плотности системы. Опасность для людей значительно увеличивается при применении токсичных хладагентов, например аммиака.

Даже при использовании более безопасных хладагентов, таких как хладоны, применять непосредственное охлаждение помещений, в которых может находиться большое количество людей, нежелательно.

Такое соотношение достоинств и недостатков обеих систем долгое время не давало преобладающих преимуществ ни одной из них.

Однако, в связи с появлением и широким применением автоматического регулирования подачи хладагента в приборы охлаждения, преимущество получили холодильные установки с непосредственным охлаждением как более экономичные по капитальным и эксплуатационным затратам и более долговечные.

В зависимости от вида охлаждающих приборов и способа организации циркуляции воздуха в охлаждаемом помещении бесконтакное охлаждение с передачей теплоты через воздух подразделяют на системы батарейного охлаждения (при использовании батарей - охлаждающих приборов со свободным движением воздуха), воздушного охлаждения (при использовании воздухоохладителей - охлаждающих приборов в вынужденным движением воздуха) и смешанного охлаждения (при использовании батарей и воздухоохладителей).

Система воздушного охлаждения характеризуется вынужденным движением воздуха в помещении и значительно большими его скоростями, доходящими в отдельных устройствах до 10м/с.

При воздушном охлаждении воздух лучше перемешивается, вследствие чего резкой разницы температуры и влажности воздуха по объему не наблюдается.

Более высокие скорости воздуха, свойственные системам воздушного охлаждения, интенсифицируют процесс теплообмена как между охлаждаемым телом и воздухом, так и между воздухом и охлаждающими приборами (коэффициент теплоотдачи при воздушном охлаждении возрастает в среднем в три - четыре раза). Благодаря этому сокращается время охлаждения и тем самым уменьшается время технологической обработки.

Преимущества, присущие холодильным системам с воздухоохладителями очевидны, поэтому в проекте применена непосредственная децентрализованная схема охлаждения, в качестве приборов охлаждения выбраны воздухоохладители.

Подача холодильного агента к дросселирующим устройствам происходит за счет разности давлений нанизкой и высокой сторонах давления холодильной установки.

Применение децентрализованной системы охлаждения камер имеет ряд преимуществ перед централизованной системой охлаждения, таких как:

  • - независимость охлаждаемых объектов друг от друга;
  • - более надежная работа, установление точного температурного режима;
  • - уменьшение количества оборудования и протяженности трубопроводов;
  • - возможность применения агрегатированных холодильных машин и их более высокая надежность за счет упрощения и сокращения объема монтажных работ;
  • - высокая заводская степень готовности оборудования к монтажу.

Способ охлаждения во многом определяет конструкцию радиоэлектронной аппаратуры (РЭА), поэтому даже на ранней стадии проектирования, то есть на стадии технического предложения или эскизного проекта, необходимо выбрать систему охлаждения РЭА. Для предварительной оценки и выбора способа охлаждения, необходимо определить два основных показателя /1, стр.119/.

Первый показатель - перегрев относительно окружающей среды Tc корпуса наименее теплостойкого элемента, для которого допустимая температура имеет минимальное значение. Этот показатель определяется по формуле

υс = Ti min - Tc (2.1)

где Ti min - допустимая температура корпуса наименее теплостойкого элемента;

Тс - температура окружающей среды (задана в техническом задании).

Так как все элементы по условию технического задания одинаковы, но на них выделяются разные мощности, то наиболее большое тепловыделение будет у третьего транзистора. Для этих элементов минимальное значение допустимой температуры равно T min = 373 К.

Подставляя значение Тс = 323 К и выбранное минимальное значение допустимой температуры T min = 373 К в формулу (2.1), получим

υс = 373 - 323 = 50 К

Второй показатель q равен плотности теплового потока, проходящего через условную площадь поверхности Ап теплообмена

q = Фkн1/Ап (2.2)

где Ф - суммарная мощность, рассеиваемая в блоке;

kн1 - коэффициент, учитывающий давление воздуха;

Ап - условная площадь поверхности теплообмена.

Условная площадь поверхности теплообмена Ап определяется по следующей формуле

Ап = 2 (2.3)

где L1, L2, L3 - горизонтальные и вертикальные размеры блока, указанные в техническом задании, в метрах;

Кз - коэффициент заполнения.

В данном случае имеем значения: L1 = 0,34 м, L2 = 0,17 м, L3 = 0,1 м, Кз = 0,31.

Подставляя эти значения в формулу (2.3), получим

Ап = 2Ч = 0,15 м2

Зная, что мощность составляет Ф = 34 Вт, kн1 = 1,2 при Н1= 0,05 МПа и Ап = 0.15 м2, по формуле (2.2) рассчитаем второй показатель и получим

q = 34Ч1,2 / 0,15 = 272 Вт/м2

lg q = 2,4 (2.4)

Полученные в результате расчетов показатели υс = 50 К и lg q = 2,4, являются координатами точки.

Рисунок 2 - Области целесообразного применения различных способов охлаждения.

Где 1 - свободное воздушное; 2 - свободное и принудительное воздушное; 3 - принудительное воздушное; 4 - принудительное воздушное и жидкостное; 5 - принудительное испарительное; 6 - принудительное жидкостное и свободное испарительное; 7 - принудительное жидкостное, свободное и принудительное испарительное; 8 - свободное принудительное и свободное испарительное; 9 - свободное и принудительное испарительное.

Из рисунка 2 получим, что данная точка попадает на границу области 1 и 2. Таким образом, возможно применение как свободного, так и принудительного охлаждения. Остановимся на выборе свободного воздушного охлаждения.

Рисунок 3 - Вероятностные кривые для РЭА в перфорированном корпусе при свободном воздушном охлаждении

Из рисунка 3 находим вероятность нормального охлаждения, для выбранного способа охлаждения. Из графика находим что вероятность р=0,8. Следовательно, подобный способ охлаждения может быть выбран, но следует уделить внимание анализу теплового режима в дальнейшем.