Новые разработки двс. Перспективы. Новые технологии в двигателях внутреннего сгорания. Что произойдет, если система покажет себя несостоятельной

НЕФОРМАЛЫ

Многие из нас, наверное, знают, что двигатель внутреннего сгорания, был изобретен достаточно давно, дело это было аж в позапрошлом веке. За время прошедшее с того момента было предложено множество оригинальных конструкторских решений, казалось бы, способных перевернуть все понятия двигателестроения. Переворота все же не произошло, и наш хороший знакомый - кривошипно-шатунный поршневой двигатель не спеша, завоевал весь мир. Однако о неформалах мира двигателей поговорить все-таки стоит.

Роторно-волновой двигатель

Одну из оригинальных конструкций двигателя внутреннего сгорания предложили наши соотечественники. Конструкция эта достаточно не обычна и называется - роторно-волновой двигатель. Давайте сперва разберемся, из каких элементов эта хитрая конструкция состоит и как она работает, а потом поговорим обо всех преимуществах и недостатках.

Конструкция

Основой для двигателя служит корпус(1), достаточно не обычной формы, на внутренних поверхностях которого выполнены специальные винтовые каналы. Внутри корпуса находится полый ротор(2), имеющий на своей поверхности такие же винтовые каналы. Пустотелый ротор и вал отбора мощности(3), соединены между собой с помощью шарнира равных угловых скоростей (ШРУСа)(4). Обратите внимание, что в правой части полого ротора находится механизм, состоящий из блока шестерен(5) и эксцентрика (6). Благодаря нему ротор имеет возможность совершать обкатывание по винтовой поверхности корпуса. Весь же двигатель условно делится на три основные части: компрессорный отсек(А), камера сгорания(Б) и расширительный отсек(В).

Как работает роторно-волновой двигатель?

От конструкции двигателя плавно переходим к рассмотрению рабочего процесса Двухгипотрохоидного РВД, где двухзаходный корпус работает в совокупности с однозаходным ротором, а заключается он в следующем. Как только вал отбора мощности начинает совершать вращательные движения в полости, находящиеся между винтовыми каналами ротора и корпуса, в компрессорном отсеке, начинает засасываться воздух. Так как мы рассматриваем совместную работу двухзаходного корпуса и однозаходного ротора, то за один оборот вала отбора мощности в комперссорный отсек будет попадать две порции воздуха.

После того как воздух был захвачен и отсечен от окружающей среды, он направляется по винтовому каналу в камеру сгорания, испытывая всестороннее сжатие. Туда могут быть добавлены дизельные присадки . Это обусловлено тем, что высота винтовых каналов ротора и корпуса уменьшается, приближаясь к камере сгорания. После того как воздух прошел стадию сжатия он поступает непосредственно в камеру сгоранию, одновременно с этим происходит впрыск топлива.

Для поджигания горючей смеси в камере сгорания предусмотрена свеча, правда, она необходима только для первого воспламенения. Так как в дальнейшем сжигание смеси будет происходить только за счет горячих газов, оставшихся в камере сгорания. После того как произошло превращения топливной смеси в горячий газ, последний направляется в винтовые каналы расширительного отсека, имея в своем арсенале огромное давление и температуру.

Расширительная камера представляет собой полную противоположность компрессорной камере - высота каналов по ходу движения газов у нее только увеличивается. За счет этого и происходит полезная работа, так как, расширяясь, газы, заставляют вращаться ротор. Правда часть полученной мощности теряется при сжатии очередной порции воздуха необходимой для "огненного сердца".

Достоинства роторно-волнового двигателя

Следует сказать о том, что выше мы рассмотрели наиболее упрощенную конструкцию роторно-волнового двигателя. Существуют двигатели такого типа с пятизаходным корпусом и четырехзаходным ротором. Причем такие многозаходные конструкции могут играть роль редукторов, так как при четырех обкатываниях ротора по винтовой поверхности корпуса выходной вал совершит только один полный оборот. То есть сам двигатель позволяет поднять крутящий момент в четыре раза, что согласитесь не так уж и мало.

Еще одно преимущество двигателя скрывается в минимальном количестве пар трения. Фактически трение присутствует только в подшипниках, на которых закреплен вал отбора мощности да в ШРУСе. А как же потери связанные с тем, что ротор обкатывается по корпусу, спросите вы? Эти потери просто отсутствуют, волны ротора "расходятся" на минимально возможном расстоянии с волнами корпуса. К достоинствам следует отнести и малую массу такого типа двигателей. Ведь посмотрев на схему, вы не обнаружите ни газораспределительного механизма, ни тяжелого маховика, ни коленчатого вала. Так как ротор сам по себе является простейшим газораспределительным механизмом, а маховик роторно-волновому двигателю не нужен, потому что в нем просто-напросто отсутствует знакопеременное движение. Благодаря малому количеству деталей и их небольшой массе роторно-волновой двигатель способен развивать обороты в диапазоне от 3000 до 30000 об/мин.

О всеядности этого двигателя поговорить следует отдельно. Ведь в принципе высокооктановое топливо роторно-волновому двигателю необходимо только в момент запуска, как только камера сгорания прогреется, то в нее можно фактически подавать любую горючую жидкость, главное чтобы в процессе горения выделялись горячие газы необходимые для вращения ротора.

Недостаток роторно-волнового двигателя

У этого типа двигателей есть один существенный минус, который в принципе и мешает его мировому распространению - это высокая технологичность, а соответственно и еще большая себестоимость готовой продукции. Так что большое количество плюсов перекрывается одним жирным минусом.

Бесшатунный поршневой двигатель

Идея создания бесшатунного поршневого двигателя родилась в нашей стране достаточно давно. События происходили на рубеже трицатых-сороковых годов в конструкторском бюро, где занимались вопросами разработки и постройки авиационных двигателей. Один из конструкторов этого закрытого предприятия предложил тогда отойти от привычной для нас схемы двигателя внутреннего сгорания, где поршень и коленчатый вал соединены между собой с помощью шатуна. Конструктором этим был С. Баландин, а разработал он новый тип двигателя внутреннего сгорания - бесшатунный ДВС, который позже назвали двигателем Баландина.

Как работает бесшатунный поршневой двигатель?

Для того чтобы понять, как работает это чудо инженерной мысли, сперва взгляните на рисунок. Двигатель состоит из следующих частей: 1,2,3,4 - поршни, 5,6 - подшипники, 7,8 - консольные валы, с опорами для коленчатого вала, 9,10,11,12 - шестерни механизма синхронизации, 13 - коленчатый вал, 14,15 - ползун, 16 - вал отбора мощности.

Теперь давайте посмотрим, как все эти составные части взаимосвязано работают. Итак, представьте, что в камеру сгорания первого цилиндра попадает топливно-воздушная смесь, сначала происходит ее постепенное сжатие, а за тем возгорание. Резко возросшее давление горячих газов заставляет перемещаться поршень 1 и жестко связанный с ним ползун 14 вниз. Зародившееся движения сразу же выводит из состояния покоя коленчатый вал 13, так как все возрастающее давления со стороны ползуна заставляет его вращаться вокруг опор, которые расположены на консольных валах 7 и 8. В свою очередь достаточно сложное планетарное вращения коленчатого вала 13, моментально заставляет совершать вращательные движения и консольные валы 7,8. В результате этих хитросплетений взаимных перемещений, возникает крутящий момент, который через синхронизирующие шестерни 9,10,11,12 передается на вал отбора мощности 16.

Конструкция, рассмотренная нами выше, по теории Баландина должна была иметь высокий механический КПД равный приблизительно 94-м процентам, в то время как обычный, то есть шатунный двигатель внутреннего сгорания мог похвастаться только 85-и процентным КПД. Кроме высокого КПД двигатель должен был обладать следующими ниже преимуществами. Во-первых, это уменьшение нагрузки на поршни, так как в отличие от шатунного двигателя, они во время движения не перекашивются, вследствие чего и отсутствует трение поршня о стенку цилиндра. Во-вторых, есть возможность использования подпоршневого объема для нагнетания воздуха, либо для организации рабочего процесса. В-третьих, существует возможность отказа от маховика, так как поршни и ползуны обладают достаточной массой, а значит и инерционностью.

Казалось бы, сколько много у этого двигателя преимуществ по сравнению с шатунным, но почему же он до сих пор не был запущен в серийное производство? А дело все в следующем. Проблемы с этой конструкцией начались почти сразу же после постройки первых прототипов. Они категорически сопротивлялись работать, "первенцев" заклинивало практически после первых оборотов коленчатого вала. Но после того как эта проблема была решена, дело тогда было в задире поршней, начались новые неприятности - двигатель отказывался нарабатывать положенный моторесурс. На сей раз, виной всему стал чрезвычайно сильный износ направляющих ползунов. Тогда же столкнулись и с трудностью подачи смазки к ползунам и их направляющим.

Множество проблем связанных с доводкой двигателя привели к тому, что большое число конструкторов первоначально подхвативших идею Баландина, отказались от дальнейших работ в этой области. Да плюс ко всему прочему двигатель был очень сложен с технологической точки зрения. Так как в моторе использовалось множество взаимосвязанных элементов, то и допуски на размеры этих деталей должны были быть минимальны, а иначе работоспособность двигателя была бы под большим вопросом. Следует так же сказать, что большинство моторостроительных предприятий в нашей стране не могло похвастаться высокоточным оборудованием необходимым для производства бесшатунных двигателей. Но если даже представить, что производство этих необычных агрегатов и было бы освоено, то цифры их себестоимости удивляли, я думаю, не меньше чем конструкторские решения.

Двигатель Кушуля

В современном мире стало модно быть, экологически чистым. Буквально все твердят об экологической чистоте. Первым делом этот вопрос сказался на автомобильном транспорте, не даром большинство современных автомобилей соответствуют нормам Евро 4. Даже в нашей природа не любивой стране были введены нормы Евро 2. Деньги на совершенствование экологической безопасности автомобилей тратятся огромные, они идут на совершенствование систем впрыска, разработку новейших нейтрализаторов, а так же производство новейших видов топлива. Обо всем выше сказанном знают, наверное, многие, а вот о том, что разработкой экологически чистого двигателя в 60-х годах прошлого столетия занимался профессор Кущуль работающий в Ленинградском институте авиационного приборостроения, знают единицы.

Двигатель, построенный профессором при первом взгляде, напоминал обычный 6-ти цилиндровый V образный двигатель с малым углом развала цилиндров. Но это только при первом взгляде. На самом деле были и кардинальные отличия. Двигатель состоял: из хорошо знакомых нам поршней 1,2, шатунов не стандартной конструкции - 3,4, маховика - 5, блока цилиндров 6. Отличительной особенностью данного двигателя было перепускное окно 7, соединяющее между собой параллельные цилиндры.

Для того чтобы понять все достоинства и недостатки двигателя Кушуля давайте рассмотрим его рабочий процесс. Впуск - поршни, как и на "обычном" двигателе идут вниз, но вся разница в том, что один цилиндр "питается" сильно переобогащенной топливно-воздушной смесью, а второму перепадает только чистый воздух и ни грамма топлива. Сжатие - поршни идут вверх, сжимая находящееся внутри цилиндров "добро". Причем поршни идут с небольшой разницей, первый впереди второго на 20-30 градусов. То есть когда в первом цилиндре происходит зажигание топливно-воздушной смеси, поршень 2 находится в 30-40 градусах от в.м.т.. Рабочий ход - поршень 1 начинает движение вниз под действием расширяющихся газов, в то время как поршень 2 еще продолжает свое движение вверх и сжимает находящийся в цилиндре воздух. Через некоторое время поршни выстроятся "в линию", и давление над поршнями 1 и 2 будет иметь примерно одинаковое значение. Но рабочий ход продолжается и поршень 1 движется вниз, давление горячих газов над ним при этом уменьшается, а поршень 2 все еще продолжает двигаться вверх и сжимать находящийся в цилиндре воздух. Из-за большой разницы давлений, воздух, находящийся во втором цилиндре начинает перетекать в первый через перепускное окно с огромной скоростью. Новая порция воздуха позволяет полностью сгореть топливу, попавшему в первый цилиндр. После того как поршень 2 прошел в.м.т. в нем так же начинается рабочий ход. Горячие газы в этот момент времени одновременно воздействуют на два поршня сразу. Выпуск - открываются выпускные клапаны, оба поршня идут вверх, выбрасывая в атмосферу продукты сгорания, все как у обычного двигателя, но с одной оговоркой. Процесс выпуска у двигателя Кушуля не очень то и громогласен, виной всему низкое давление отработанных газов - топливо попало в один цилиндр, а расширение горячих газов произошло в двух. Кстати говоря, здесь прослеживается и еще одно достоинство этого двигателя - достаточно высокий КПД, так как энергия горячих газов максимально возможно использована в недрах мотора, а выброс отработанных газов происходит при относительно низком давлении и температуре.

Главный козырь этого двигателя, ради чего он в принципе и создавался, низкий выброс вредных веществ, благодаря наиболее полному сгоранию топлива. К преимуществам можно так же отнести возможность работы на различных видах топлива и экономичность.

Как всегда не обошлось и без ложки дегтя. Все недостатки "вылезли" в процессе ходовых испытаний построенного Кушулем двигателя, который был имплантирован в "тело" легендарной "Волги". Недостатков было не много, но они были достаточно существенны. Первое - большая масса агрегата, с ней пытались бороться, применяя облегченные детали, но срок их службы бал значительно меньше чем у массивных. Второе - несбалансированная работа двигателя, так как в каждый момент времени работало по два цилиндра, то двигатель был аналогичен трехцилиндровому мотору. Балансионный вал в конструкции этого двигателя предусмотрен не был, хотя сейчас практически все трехцилиндровые двигатели работают в паре с "балансиром".

Как и в других случаях, конструкция этого двигателя не "пошла" по технологическим причинам. Обычный двигатель был намного проще в производстве, чем двигатель Кушуля. А как все тогда хорошо начиналось.

Роторно-поршневой дизель

О роторно-поршневых двигателях Ванкеля я думаю, слышали многие. Свою известность в нашей стране этот тип двигателей получил, благодаря двум автомобильным компаниям - это "ВАЗ" и "Mazda". Хотя двигать первой фирмы является, честно говоря, копией двигателя второй. "Mazda" безусловно пролила много пота и крови доводя конструкцию роторно-поршневого двигателя до совершенства, и ей, следует сказать, это удалось сделать. Хотя если заглянуть в историю, то в роторно-поршневом буме, который был примерно сорок лет назад, поучаствовали, наверное, все компании, которые хоть как-то были связаны с разработкой двигателей. В этот период было сделано очень много интересных роторно-поршневых двигателей. Об одном из них мы с вами и поговорим - это роторно-поршневой дизельный двигатель, сконструированный знаменитой компанией "Роллс-Ройс".

На рисунке показан двухступенчатый роторно-поршневой дизель "Роллс-Ройс". Основой для двигателя служил корпус 8 в котором находилось две рабочие полости. В полости 3 был расположен ротор ступени высокого давления 5, а в полости 1 - ротор ступени низкого давления 7. Кроме того, что роторы имели разный размер, один был меньше другого в три раза, они еще отличались и формой рабочей поверхности - маленький имел специальные выемки, большой же этим похвастаться не мог. Оба ротора синхронно вращались в одном направлении, так как были связанны шестеренчатой передачей. Вал отбора мощности состыковывался с эксцентриковым валом ротора 7. В корпусе имелись две полости - 2,6, которые соединяли между собой ступени высокого и низкого давления, а так же два окна - 9 и 10, соответственно выпускное и впускное. Форсунка 4 находилась в верхней части корпуса и подавала "тяжелое" топливо в ступень высокого давления.

Этот двигатель работал следующим образом. Ротор 7 своей гранью отсекал от окружающей среды порцию воздуха, попавшую в секцию низкого давления через впускное окно 10. Затем воздух перемещался по каналу 2 в секцию высокого давления, испытывая небольшое сжатие, но лишь до того момента пока грань ротора 5 не пересекала перепускной канал. После того как воздух оказался в полости между ротором 5 и корпусом 8 он испытывал сильное всестороннее сжатия и постепенно переносился в рабочую зону форсунки 4. После впрыска топлива в предварительно сжатый воздух, происходило сгорание. Образовавшиеся газы расширялись лишь в секции высокого давления, но только до тех пор, пока грань ротора 5 не открыла доступ к перепускному каналу 6. После этого расширение уже происходило в двух секциях, до того момента пока грань ротора 7 не открывала выпускное окно 9.

Многие из вас наверняка зададутся вопросом: " А для чего необходимо было делать двигатель двухсекционным?" Двухсекционность в первую очередь была необходима, для того чтобы организовать дизельный цикл в роторно-поршневом двигателе. Во-вторых, было в два раза уменьшено давление приходящиеся на эксцентриковые валы роторов, соответственно это дало увеличение ресурса двигателя.

При конструировании этого необычного двигателя компанией "Роллс-Ройс" было решено громадное количество технических задач. Большие проблемы были связаны с подбором идеальной формы выемок выполненных в рабочей поверхности ротора ступени высокого давления. Много времени заняли вопросы, связанные с подшипниками ротора и радиальными уплотнениями. Так как в дизельном двигатели нагрузки на эти элементы намного больше, чем, в двигателе, работающем на бензине.

После того как двигатель окончательно был доведен до ума, фирме "Роллс-Ройс" пришлось сделать трудное для себя решение. А именно - закрыть этот проект. Так как двигатель хоть и радовал своими положительными чертами, сюда можно отнести все плюсы дизельных двигателей и прибавить компактность Р.П.Д., но был достаточно сложен в производстве, имел высокую себестоимость и что самое важное малый ресурс.

Максим УТЕШЕВ


Л етом 2017 года научно-техническое сообщество облетела новость – молодой учёный из Екатеринбурга победил в общероссийском конкурсе инновационных проектов в области энергетики. Конкурс называется «Энергия прорыва», к участию допускаются учёные не старше 45 лет, и Леонид Плотников, доцент «Уральского федерального университета имени первого президента России Б.Н. Ельцина» (УрФУ), удостоился в нём приза в 1 000 000 рублей.

Сообщалось, что Леонид разработал четыре оригинальных технических решения и получил семь патентов для систем впуска и выпуска ДВС, как турбированных, так и атмосферных. В частности, доработка впускной системы турбомотора «по методу Плотникова» способна исключить перегрев, снизить шумность и количество вредных выбросов. А модернизация выпускной системы турбированного ДВС на 2% повышает КПД и на 1,5% снижает удельный расход топлива. В итоге мотор становится более экологичным, стабильным, мощным и надёжным.

Действительно ли всё это так? В чём суть предложений учёного? Нам удалось побеседовать с победителем конкурса и всё разузнать. Из всех оригинальных технических решений, разработанных Плотниковым, мы остановились как раз на обозначенных выше двух: доработанных системах впуска и выпуска турбированных моторов. Возможно, стиль изложения поначалу покажется вам сложным для восприятия, но читайте вдумчиво, и в конце мы доберёмся до сути.

Проблемы и задачи

Авторство описанных ниже разработок принадлежит группе учёных УрФУ, в которую входят доктор технических наук, профессор Бродов Ю.М., доктор физико-математических наук, профессор Жилкин Б.П. и кандидат технических наук, доцент Плотников Л.В. Работа именно этой группы удостоилась гранта в миллион рублей. В инженерной проработке предлагаемых технических решений им помогали специалисты ООО «Уральский дизель-моторный завод», а именно, начальник отдела, кандидат технических наук Шестаков Д.С. и заместитель главного конструктора, кандидат технических наук Григорьев Н.И.

Одним из ключевых параметров их исследования стала теплоотдача, идущая от потока газа в стенки впускного или выпускного трубопровода. Чем теплоотдача ниже, тем меньше термические напряжения, выше надёжность и производительность системы в целом. Для оценки интенсивности теплоотдачи используют параметр, который называется локальным коэффициентом теплоотдачи (он обозначается как αх), и задача исследователей состояла в том, чтобы найти пути уменьшения этого коэффициента.



Рис. 1. Изменение локального (lх = 150 мм) коэффициента теплоотдачи αх (1) и скорости потока воздуха wх (2) во времени τ за свободным компрессором турбокомпрессора (далее – ТК) при гладком круглом трубопроводе и разных частотах вращения ротора ТК: а) nтк = 35 000 мин-1; б) nтк = 46 000 мин-1

Вопрос для современного двигателестроения серьёзный, поскольку газовоздушные тракты входят в перечень наиболее термонагруженных элементов современных ДВС, и особенно остро задача снижения теплоотдачи в впускном и выпускном трактах стоит для турбированных двигателей. Ведь в турбомоторах, по сравнению с атмосферниками, повышены давление и температура на впуске, увеличена средняя температура цикла, выше пульсация газа, которая вызывает термомеханические напряжения. Термонагруженность ведёт к усталости деталей, снижает надёжность и срок службы элементов двигателя, а также приводит к неоптимальным условиям сгорания топлива в цилиндрах и падению мощности.

Учёные считают, что термическую напряженность турбодвижка можно снизить, и тут, как говорится, есть нюанс. Обычно для турбокомпрессора считаются важными две его характеристики – давление наддува и расход воздуха, а сам узел в расчётах принимается статичным элементом. Но на самом деле, отмечают исследователи, после установки турбокомпрессора существенно изменяются тепломеханические характеристики потока газа. Поэтому прежде чем изучать то, как меняется αх на впуске и выпуске, надо исследовать сам поток газа закомпрессором. Сначала – без учёта поршневой части двигателя (что называется, за свободным компрессором, см. рис. 1), а потом – вместе с ней.

Была разработана и создана автоматизированная система сбора и обработки экспериментальных данных – с пары датчиков снимались и обрабатывались значения скорости потока газа wх и локального коэффициента теплоотдачи αх. Кроме того, была собрана одноцилиндровая модель двигателя на базе мотора ВАЗ-11113 с турбокомпрессором ТКР-6.



Рис. 2. Зависимость локального (lх = 150 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ во впускном трубопроводе поршневого ДВС с наддувом при разных частотах вращения коленчатого вала и разных частотах вращения ротора ТК: а) n = 1 500 мин-1; б) n = 3 000 мин-1, 1 - n = 35 000 мин-1; 2 - nтк = 42 000 мин-1; 3 - nтк = 46 000 мин-1

Проведённые исследования показали, что турбокомпрессор – мощнейший источник турбулентности, которая влияет на тепломеханические характеристики потока воздуха (см. рис. 2). Кроме того, исследователи установили, что сама по себе установка турбокомпрессора повышает αх на впуске двигателя примерно на 30% - отчасти из-за того, что воздух после компрессора просто значительно горячее, чем на впуске атмосферного мотора. Была замерена и теплоотдача на выпуске мотора с установленным турбокомпрессором, и оказалось, что чем выше избыточное давление, тем менее интенсивно происходит теплоотдача.


Рис. 3. Схема впускной системы двигателя с наддувом с возможностью сброса части нагнетаемого воздуха: 1 - впускной коллектор; 2 - соединительный патрубок; 3 - соединительные элементы; 4 - компрессор ТК; 5 - электронный блок управления двигателем; 6 - электропневмоклапан].

В сумме получается, что для снижения термонагруженности необхожимо следующее: во впускном тракте нужно уменьшать турбулентность и пульсацию воздуха, а на выпуске – создавать дополнительное давление или разрежение, разгоняя поток – это снизит теплоотдачу, а кроме того, положительно скажется на очистке цилиндров от отработанных газов.

Все эти вроде бы очевидные вещи нуждались в детальных замерах и в анализе, которого никто ранее не делал. Именно полученные цифры позволили выработать меры, которые в будущем способны если не произвести революцию, то уж точно вдохнуть, в прямом смысле слова, новую жизнь во всю отрасль двигателестроения.


Рис. 4. Зависимость локального (lх = 150 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ во впускном трубопроводе поршневого ДВС с наддувом (nтк = 35 000 мин-1) при частоте вращения коленчатого вала n = 3 000 мин-1. Доля сброса воздуха: 1 - G1 = 0,04; 2 - G2 = 0,07; 3 - G3 = 0,12].

Сброс избытка воздуха на впуске

Во-первых, исследователи предложили конструкцию, позволяющую стабилизировать поток воздуха на впуске (см. рис. 3). Электропневмоклапан, врезанный во впускной тракт после турбины и в определённые моменты сбрасывающий часть сжатого турбокомпрессором воздуха, стабилизирует поток– уменьшает пульсацию скорости и давления. В итоге это должно привести к снижению аэродинамического шума и термических напряжений во впускном тракте.

А сколько же нужно сбросить, чтобы система эффективно работала, не ослабляя значительно эффекта турбонаддува? На рисунках 4 и 5 мы видим результаты проведённых замеров: как показывают исследования, оптимальная доля сбрасываемого воздуха G лежит в диапазоне от 7 до 12% – такие значения снижают теплоотдачу (а значит – и термонагруженность) во впускном тракте двигателя до 30%, то есть, приводят её к значениям, характерным для атмосферных моторов. Дальше увеличивать долю сброса смысла нет – эффекта это уже не даёт.


Рис. 5. Сравнение зависимостей локального (lх = 150 мм, d = 30 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ во впускном трубопроводе поршневого ДВС с наддувом без сброса (1) и со сбросом части воздуха (2) при nтк = 35 000 мин-1 и n = 3 000 мин-1, доля сброса избыточного воздуха равна 12% от общего расхода].

Эжекция на выпуске

Ну а что же выпускная система? Как мы говорили выше, она в турбированном моторе тоже работает в условиях повышенных температур, а кроме того, выпуск всегда хочется сделать как можно более способствующим максимальной очистке цилиндров от отработавших газов. Традиционные методы решения этих задач уже исчерпаны, есть ли тут ещё какие-то резервы для улучшения? Оказывается, есть.

Бродов, Жилкин и Плотников утверждают, что улучшить газоочистку и надёжность выпускной системы можно путём создания в ней дополнительного разрежения, или эжекции. Эжекционный поток, по мнению разработчиков, так же, как и клапан на впуске, снижает пульсацию потока и увеличивает объёмный расход воздуха, что способствует лучшей очистке цилиндров и повышению мощности двигателя.


Рис. 6. Схема выпускной системы с эжектором: 1 – головка цилиндра с каналом; 2 – выпускной трубопровод; 3 – труба выхлопная; 4 – эжекционная трубка; 5 – электропневмоклапан; 6 – электронный блок управления].

Эжекция положительно влияет на теплоотдачу от выпускных газов к деталям выпускного тракта (см. рис. 7): с такой системой максимальные значения локального коэффициента теплоотдачи αхполучаются на 20% ниже, чем при традиционном выпуске – за исключением периода закрытия впускного клапана, тут интенсивность теплоотдачи, напротив, несколько выше. Но в целом теплоотдача всё равно меньше, и исследователи сделали предположение, что эжектор на выпуске турбомотора повысит его надёжность, так как снизит теплоотдачу от газов стенкам трубопровода, а сами газы будут охлаждаться эжекционным воздухом.


Рис. 7.Зависимости локального (lх = 140 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ в выпускной системе при избыточном давлении выпуска рb = 0,2 МПа и частоте вращения коленчатого вала n = 1 500 мин-1. Конфигурация выпускной системы: 1 - без эжекции; 2 - с эжекцией.]

А если объединить?..

Получив такие выводы на экспериментальной установке, учёные пошли дальше и применили полученные знания на реальном двигателе – в качестве одного из «подопытных» был выбран дизель 8ДМ-21ЛМ производства ООО «Уральский дизель-моторный завод».Такие моторы применяются в качестве стационарных энергоустановок. Кроме того, в работах использовался и «младший брат» 8-цилиндрового дизеля, 6ДМ-21ЛМ, также V-образный, но имеющий шесть цилиндров.


Рис. 8. Установка электромагнитного клапана для сброса части воздуха на дизеле 8ДМ-21ЛМ: 1 - клапан электромагнитный; 2 - впускной патрубок; 3 - кожух выпускного коллектора; 4 - турбокомпрессор.

На «младшем» моторе была реализована система эжекции на выпуске, логично и весьма остроумно объединённая с системой сброса давления на впуске, которую мы рассмотрели чуть ранее – ведь как было показано на рисунке 3, сбрасываемый воздух может использоваться для нужд двигателя. Как видим (рис. 9), над выпускным коллектором проложены трубки, в которые подаётся воздух, забранный со впуска – это то самое избыточное давление, создающее турбулентность после компрессора. Воздух из трубок «раздаётся» через систему электроклапанов, которые стоят сразу за выпускным окном каждого из шести цилиндров.


Рис. 9. Общий вид модернизированной выпускной системы двигателя 6ДМ-21ЛМ: 1 – выпускной трубопровод; 2 – турбокомпрессор; 3 – газоотводящий патрубок; 4 – система эжекции.

Такое эжекционное устройство создаёт дополнительное разрежение в выпускном коллекторе, что ведёт к выравниванию течения газов и ослаблению переходных процессов в так называемом переходном слое. Авторы исследования замерили скорость потока воздуха wх в зависимости от угла поворота коленчатого вала φ с применением эжекции на выпуске и без неё.

Из рисунка 10 видно, что при эжекции максимальная скорость потока выше, а после закрытия выпускного клапана она падает медленнее, чем в коллекторе без такой системы – получается своеобразный «эффект продувки». Авторы говорят, что результаты свидетельствуют о стабилизации потока и лучшей очистке цилиндров двигателя от отработавших газов.


Рис. 10. Зависимости местной (lx = 140 мм, d = 30 мм) скорости потока газа wх в выпускном трубопроводе с эжекцией (1) и традиционном трубопроводе (2) от угла поворота коленчатого вала φ при частоте вращения коленчатого вала n = 3000 мин-1 и начальном избыточном давлении pb = 2,0 бар.

Что в итоге

Итак, давайте по порядку. Во-первых, если из впускного коллектора турбомотора сбрасывать небольшую часть сжатого компрессором воздуха, можно снизить теплоотдачу от воздуха к стенкам коллектора до 30% и при этом сохранить массовый расход воздуха, поступающего в мотор, на нормальном уровне. Во-вторых, если применить эжекцию на выпуске, то теплоотдачу в выпускном коллекторе тоже можно существенно снизить – проведённые замеры дают величину около 15%, – а также улучшить газоочистку цилиндров.

Объединяя показанные научные находки для впускного и выпускного трактов в единую систему, мы получим комплексный эффект: забирая часть воздуха со впуска, передавая её на выпуск и точно синхронизировав эти импульсы по времени, система будет выравнивать и «успокаивать» процессы течения воздуха и отработавших газов. В результате мы должны получить менее термонагруженный, более надёжный и производительный по сравнению с обычным турбомотором двигатель.

Итак, результаты получены в лабораторных условиях, подтверждены математическим моделированием и аналитическими расчетами, после чего создан опытный образец, на котором проведены испытания и подтверждены положительные эффекты. Пока всё это реализовано в стенах УрФУ на большом стационарном турбодизеле (моторы такого типа используют также на тепловозах и судах), однако заложенные в конструкцию принципы могли бы прижиться и на моторах поменьше – представьте, например, что ГАЗ Газель, УАЗ Патриот или LADA Vesta получают новый турбомотор, да ещё с характеристиками лучше, чем у зарубежных аналогов… Возможно ли, чтобы новая тенденция в двигателестроении началась в России?

Есть у учёных из УрФУ и решения для снижения термонагруженности атмосферных моторов, и одно из них – профилирование каналов: поперечное (путём введения вставки квадратного или треугольного сечения) и продольное. В принципе, по всем этим решениям сейчас можно строить рабочие образцы, проводить испытания и при их положительном исходе запускать серийное производство – заданные проектно-конструкторские направления, по мнению учёных, не требуют значительных финансовых и временных затрат. Теперь должны найтись заинтересованные производители.

Леонид Плотников говорит, что считает себя в первую очередь учёным и не ставит цели коммерциализировать новые разработки.

Среди целей я, скорее, назвал бы проведение дальнейших исследований, получение новых научных результатов, разработку оригинальных конструкций газовоздушных систем поршневых ДВС. Если мои результаты будут полезны промышленности, то я буду рад. По опыту знаю, что внедрение результатов – очень сложный и трудоемкий процесс, и если в него погружаться, то на науку и преподавание не останется времени. А я больше склонен именно к области образования и науки, а не к промышленности и бизнесу

доцент «Уральского федерального университета имени первого президента России Б.Н. Ельцина» (УрФУ)


Однако добавляет, что уже начался процесс внедрения результатов исследования на энергомашины ПАО «Уралмашзавод». Темпы внедрения пока невысоки, вся работа находится на начальном этапе, и конкретики очень мало, однако заинтересованность у предприятия есть. Остаётся надеяться на то, что результаты этого внедрения мы всё же увидим. А также на то, что работа учёных найдёт применение в отечественном автопроме.

А как вы оцениваете результаты исследования?

Новые технологии направлены на то, чтобы сделать двигатели внутреннего сгорания более эффективными. В предыдущие годы они стали повсеместными, а в будущем станут «умными». К сожалению, пока они не обладают высоким КПД и неэкономичны. Но пользуясь последними достижениями в области материалов и электроники, вполне возможно исправить эти недостатки.

Автомобильный концерн Мазда часто предлагает интересные инновационные решения. Один из вопросов, которыми он решил заняться ─ экономия топлива. Компания разработала новые двигатели Skyactiv-G. Уже планируются к выпуску малолитражные автомобили Mazda 2, оснащенные ими. Они обладают высочайшей степенью сжатия, за счет чего и повышается топливная экономичность. По версии разработчиков, средний расход бензина будет составлять примерно 3 литра на сотню километров.

Электронный клапан

Данный двухтактный двигатель разработан корпорацией Grail Engine Technologies. Он выполнен из простых деталей, изготовленных методом отливки.

Преимущества:

  • изготовлен в соответствии с экологическими стандартами;
  • потребляя от трех до четырех литров на «сотню» выдает 200 л.с.;
  • возможна установка на гибридные автомобили.

Лазеры

Новые технологии в двигателях внутреннего сгорания стали возможны с появлением лазеров. Стандартные свечи имеют серьезную проблему. Она заключается в необходимости сильной искры, но в таком случае идет быстрый износ электродов. Решить этот вопрос можно, если применять лазеры для воспламенения топлива. Они имеют преимущество, так как позволяют задавать важные параметры: угол зажигания и мощность.

Учеными разработаны керамические лазеры d 9 мм. Они подойдут для подавляющего большинства моторов.

Pinnacle

Одной из перспективных разработок являются двигатели Pinnacle.В них поршни располагаются противоположно относительно друг друга, находясь в одном цилиндре. Между ними и воспламеняется топливо. Подобное их расположение значительно экономит энергию и увеличивает эффективность двигателя. При этом стоимость силового агрегата достаточно низкая.

Эти двигатели принципиально отличаются от распространенных оппозитных моделей, использующихся повсеместно.

Iris

Это двухтактный двигатель с изменяемой геометрией и площадью поршня. Он легок и компактен, а его КПД составляет 45%.

Изобретатель Iris Тимбер Дик придумал концепцию с шестью поршнями, полезная площадь которых в три раза больше, чем в стандартной паре. Каждый поршень представляет собой стальной, изогнутый лепесток.

Алгоритм работы:

  • поступление воздуха через камеру сгорания;
  • смыкание лепестков к середине камеры и сжимание воздуха;
  • раздвижение поршней и поворот валов;
  • впрыскивание топлива и зажигание;
  • открытие выпускных клапанов.

Разделение радиатором

Особенность инновации в том, что используется разделение мотора радиатором на две части. Впуск и сжатие топлива осуществляется в холодных цилиндрах, а сгорание и выхлоп газов – в горячих. При таком функционировании агрегата получается экономия около 40%. Ученые все еще дорабатывают и совершенствуют данную систему, чтобы добиться еще большей экономии (до 50%).

Scuderi

Это двигатель разделенного цикла Air-Hybrid разработан американской компанией Scuderi Group. Он более экономичен, если сравнивать с обычными аналогами. Сотрудники компании рассчитывают, что их изобретение станет настоящим прорывом. Они уже получили на него патент. Для наиболее рационального использования энергии он разделяет 4 стандартных поршневых цилиндра на рабочие и вспомогательные. Это делается для того, чтобы разумно использовать энергию, которую они будут вырабатывать. Механизм функционирования основан на соединении двух цилиндров при помощи специального канала. Далее происходит впрыскивание сжатого воздуха во второй цилиндр с последующим воспламенением топливовоздушной смеси и выхлопом.

Экомотор

Компания Eco Motors International переработала конструкцию двигателя внутреннего сгорания, применив творческий подход. Он получился двухтактный, с элегантной и простой конструкцией. Пара модулей (по четыре поршня в каждом) соединены муфтой и имеют электронное управление.

Турбокомпресс утилизирует энергию выхлопных газов и участвует в выработке электроэнергии.

Достоинства:

  • легкость;
  • низкий расход топлива;
  • небольшие производственные затраты;
  • масштабируемость (при добавлении нескольких модулей двигатель малолитражного автомобиля превращается в мотор для грузовика).

Работа двигателя возможна на бензине, дизеле, этаноле.

Роторные двигатели

Американские ученые разрабатывают еще одну интересную инновацию автомобильного мотора. Его ресурс будет более высокий, чем у обычных моделей. Механизм действия:

  1. Получение энергии под воздействием взрывных волн.
  2. Вращение ротора, прохождение топлива по каналам.
  3. Образование ударной волны.
  4. Воспламенение и выхлоп отработанных газов.

Ученые в 2018 году продолжают искать новые технологии для производства экономичных и экологичных моделей двигателей внутреннего сгорания. Многие проекты еще находятся на стадии разработок и ждут финансирования.

Очевидно, что двигатель внутреннего сгорания недостаточно экономичен и по сути имеет невысокий КПД . Это заставляет ученых искать альтернативы – в частности, создавать доступный электрический или водородный транспорт. Однако последние разработки показывают, что ДВС можно сделать по-настоящему эффективным. За счет чего это осуществимо и что мешает применять такие технологии на практике уже сейчас?

Двигатель внутреннего сгорания без преувеличения раскрутил мотор научно-технического прогресса. Автомобильный транспорт является важнейшим средством перевозки пассажиров и грузов. В США сегодня на 1000 человек приходится почти 800 автомобилей, а к 2020 году в России этот показатель составит около 350 машин на тысячу населения.

Подавляющее большинство из более миллиарда автомобилей на планете все еще используют двигатель внутреннего сгорания (ДВС), изобретенный в XIX веке. Несмотря на все технологические ухищрения и «умную» электронику, коэффициент полезного действия современных бензиновых двигателей все еще «топчется» вокруг отметки в 30%.

Самые экономичные дизельные ДВС имеют КПД в 50%, то есть даже они половину топлива выбрасывают в виде вредных веществ в атмосферу.

Естественно, говорить об экономичности ДВС не приходится, особенно если учесть, что современные автомобили сжигают по 10–20 литров горючего на 100 км пути. Не удивительно, что ученые по всему миру пытаются создать доступные электрические и водородные авто. Однако и концепция двигателя внутреннего сгорания не исчерпала потенциал модернизации.

Благодаря последним достижениям в области электроники и материалов, появилась возможность создать по-настоящему эффективный ДВС.

Экомотор

Инженеры компании EcoMotors International творчески переработали конструкцию традиционного ДВС. Он сохранил поршни, шатуны, коленвал и маховик, однако новый двигатель на 15–20% эффективнее, кроме того намного легче и дешевле в производстве. При этом двигатель может работать на нескольких видах топлива, включая бензин, дизель и этанол.

Рис. 1. В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе.

Добиться этого удалось с помощью использования оппозитной конструкции двигателя, в которой камеру сгорания образуют два поршня, двигающихся навстречу друг другу . При этом двигатель двухтактный и состоит из двух модулей по 4 поршня в каждом, соединенных специальной муфтой с электронным управлением.

Двигателем полностью управляет электроника , благодаря чему удалось добиться высокого КПД и минимального расхода топлива. Например, в пробке и других случаях, когда полная мощность двигателя не нужна, работает только один модуль из двух, что уменьшает расход топлива и шум.

Также мотор оснащен управляемым электроникой турбокомпрессором , который утилизирует энергию выхлопных газов и вырабатывает электроэнергию. В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе. У него нет блока головки цилиндров, он сделан из обычных материалов и издает меньше шума и вибраций.

При этом двигатель получился очень легким: на 1 кг веса он выдает мощность больше 1 л.с (на практике он приблизительно в 2 раза легче традиционного двигателя такой же мощности). Более того, изделие EcoMotors легко масштабируется: достаточно добавить несколько модулей и двигатель малолитражки превращается в мотор мощного грузовика.

Опытный двигатель EcoMotors EM100 при размерах 57,9х 104,9х47 см весит 134 кг и выдает мощность 325 л.с. при 3,500 оборотах в минуту (на дизтопливе), диаметр цилиндров – 100 мм. Расход топлива у пятиместного автомобиля с мотором EcoMotors планируется чрезвычайно низкий – на уровне 3–4 л на 100 км .

Экономия во всем

Компания Achates Power поставила себе цель разработать ДВС с расходом топлива 3–4,5 л на 100 км для автомобиля размером с Ford Fiesta. Пока их экспериментальный дизельный двигатель демонстрирует гораздо больший аппетит, но разработчики надеются уменьшить расход. Однако главное в данном моторе исключительно простая конструкция и низкая себестоимость . Согласимся, что экономия на топливе мало чего стоит, если она обошлась ценой многократного удорожания мотора.

Рис. 2. Двигатель Achates Power имеет предельно простую конструкцию.

Двигатель Achates Power имеет предельно простую конструкцию. Это двухтактный оппозитный дизельный мотор, в котором два поршня движутся навстречу друг другу, образуя камеру сгорания. Таким образом отпадает необходимость в головке блока цилиндров и сложном газораспределительном механизме. Большинство деталей мотора изготавливаются с помощью несложных производственных процессов и не требуют дорогих материалов. В целом, двигатель содержит намного меньше деталей и металла, чем обычный.

В настоящее время на испытаниях мотор Achates Power демонстрирует экономичность на 21% большую, чем лучшие «традиционные» дизельные двигатели. Более того, он имеет модульную конструкцию, большую удельную мощность (соотношение вес/л.с.). Также благодаря особой форме верхней части поршня создается вихревой поток особой формы, обеспечивающий отличное перемешивание топливовоздушной смеси, эффективный теплоотвод и уменьшающий время сгорания.

В результате двигатель не только соответствует военным спецификациям армии США, но и превосходит по характеристикам двигатели, которые сегодня устанавливаются на боевую технику.

Простой способ

Американская компания Transonic Combustion решила не создавать новый двигатель, а добиться внушительной (25–30%) экономии топлива с помощью новой системы впрыска.

Высокотехнологичная система впрыска TSCiTM не требует радикальных переделок двигатели и, по сути, представляет собой набор инжекторов и специальный топливный насос.

Рис. 3. Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Сверхкритическая жидкость это состояние вещества при определенной температуре и давлении, когда оно не является ни твердым телом, ни жидкостью, ни газом . В таком состоянии вещество приобретает интересные свойства, например, не имеет поверхностного натяжения, и образует мелкодисперсные частицы в процессе фазового перехода. Кроме того сверхкритическая жидкость обладает способностью быстрого переноса массы. Все эти свойства крайне полезны в двигателе внутреннего сгорания, в частности, сверхкритическое топливо быстро смешивается, не имеет крупных капель, быстро сгорает с оптимальным тепловыделением и высокой эффективностью цикла.

Электронный клапан

Компания Grail Engine Technologies разработала уникальный двухтактный двигатель с очень заманчивыми характеристиками.

Так, при потреблении 3–4 литров на «сотню», двигатель выдает 200 л.с. Мотор с мощностью 100 л.с. весит менее 20 кг, а мощностью 5 л.с. – всего 11 кг! При этом Grail Engine, в отличие от обычных двухтактных моторов, не загрязняет топливо маслом из картера, а значит, соответствует самым жестким экологическим стандартам.

Сам двигатель состоит из простых деталей, в основном изготавливаемых способом отливки. Секрет выдающихся характеристик кроется в схеме работы Grail Engine. Во время движения поршня вверх, внизу создается отрицательное давления воздуха и через специальный углепластиковый клапан воздух проникает в камеру сгорания. В определенной точке движения поршня начинает подаваться топливо, затем в верхней мертвой точке с помощью трех обычных электросвечей происходит зажигание топливно-воздушной смеси, клапан в поршне закрывается. Поршень идет вниз, цилиндр заполняется выхлопными газами. По достижении нижней мертвой точки поршень опять начинает движение вверх, поток воздуха вентилирует камеру сгорания, выталкивая выхлопные газы, цикл работы повторяется.

Рис. 4. Секрет выдающихся характеристик кроется в схеме работы Grail Engine.

Компактный и мощный Grail Engine идеально подходит для гибридных автомобилей, где бензиновый мотор вырабатывает электроэнергию, а электромоторы крутят колеса.

В такой машине Grail Engine будет работать в оптимальном режиме без резких скачков мощности, что существенно повысит его долговечность, снизит шум и расход топлива. При этом модульная конструкция позволяет присоединять к общему коленвалу два и более одноцилиндровых Grail Engine, что дает возможность создания рядных двигателей различной мощности.

Новые модели авто появляются каждый год – но по каким-то причинам на них не стоят вышеописанные экономичные и простые двигатели. Действительно, двигателями новой конструкции интересуются все: от вездесущего инвестора Билла Гейтса до Пентагона. Однако автопроизводители не спешат устанавливать новинки на свои машины. Видимо, все дело в том, что крупные автоконцерны сами производят двигатели и, естественно, не желают делиться прибылью со сторонними разработчиками.

Но в любом случае жесткие экологические стандарты и электромобили заставят автопроизводителей внедрять новые технологии, гораздо более важные для здоровья людей и всей планеты, чем мультимедийные системы и дизайнерские изыски.

Дизель с четырьмя турбинами, первый в мире мотор с электрическим нагнетателем и революционный агрегат, способный вдохнуть в ДВС новую жизнь: «Мотор» представляет обзор силовых установок с самыми нестандартными решениями, показанными за последние несколько месяцев.

С начала 2016 года нам показали впечатляющие своей конструкцией дизели для флагманской модели BMW и «заряженной» версии Audi Q7, малолитражный, но очень «умный» бензиновый мотор Volkswagen, «восьмерку» для новой «Панамеры» и необычный продукт совместной работы Koenigsegg и китайцев из фирмы Qoros.

Что общего у «семерки» BMW и суперкара Bugatti Veyron? Количество турбин в моторе! Этой весной баварский флагман получил новый дизельный агрегат: три литра рабочего объема, шесть цилиндров и четыре нагнетателя. Четыре! Это не только первый в истории серийный двигатель «на тяжелом топливе» с таким количеством турбин, но и мощнейшая дизельная «шестерка» в мире.

Двигатель развивает 400 лошадиных сил 760 Нм крутящего момента - на 19 сил и 20 Нм больше прежнего агрегата с тремя компрессорами. Мотор, работающий в паре с восьмиступенчатым «автоматом», позволяет «семерке» ускоряться с места до ста километров в час за 4,6 секунды (длиннобазный седан проделывает то же самое упражнение за 4,7 секунды) - на 0,3 секунды быстрее предшественника. Но наверняка в конструкцию этого мотора заложен куда больший потенциал.

Система многоступенчатого наддува этого мотора состоит из двух малоинерционных нагнетателей высокого давления, установленных в едином блоке, а также двух компактных компрессоров низкого давления. Все турбины включаются в работу последовательно, причем второй компрессор высокого давления задействуется только при резком ускорении и только на оборотах коленвала выше 2500 в минуту.

Новый агрегат получился чуть легче и тяговитее: первые 450 Нм крутящего момента доступны уже с 1000 оборотов в минуту, а на полку в 760 Нм мотор выходит в диапазоне от 2000 до 3000 оборотов в минуту.

Дополнительная турбина низкого давления позволила не только увеличить отдачу мотора, но и повысить топливную экономию на 11 процентов - до 5,7-5,9 литра на сто километров пробега.

Концерн Volkswagen на симпозиуме в Вене представил новую 1,5-литровую «турбочетверку», которая заменит нынешний наддувный агрегат объемом 1,4 литра. Главное новшество этого двигателя - турбина с изменяемой геометрией крыльчатки, которая впервые в мире появится на массовых моделях с ДВС с искровым зажиганием.

Компрессоры с изменяемой геометрией компании Peugeot, Citroen, Honda и Chrysler применяли еще в конце 1980-х годов, однако сейчас эта технология используется только на спорт- и суперкарах, вроде Porsche 911 Turbo, а также на новых турбированных «четверках» моделей 718 Cayman и 718 Boxster. Ну и в дизельных агрегатах, конечно же.

Особенность такого турбонагнетателя - кольцо со специальными направляющими лепестками, которые способны менять свой угол для оптимизации мощности турбины при конкретных нагрузках. Возможность изменения сечения увеличивает отдачу, улучшает отклик мотора и снижает уровень потребления топлива. Максимальный крутящий момент достигается при меньших оборотах и доступен в более широком диапазоне по сравнению с моторами с традиционным нагнетателем.

Одной из первых моделей, получивших двигатель с турбиной с изменяемой геометрией крыльчатки, стал мелкосериный хэтчбек Shelby CSX–VNT 1989 года

Новый 1,5-литровый агрегат будет предлагаться в двух вариантах мощности: 131 и 150 лошадиных сил. Пиковый крутящий момент базового мотора в 200 Нм достигается уже при 1300 оборотах в минуту и доступен вплоть до 4500 оборотов.

Еще одно новшество - этот мотор будет работать по циклу Миллера , в котором впускной клапан остается открытым еще на какое-то время в начале цикла сжатия и закрывается чуть позже, чем на стандартных двигателях. В результате геометрическая степень сжатия увеличилась с 10,5:1 у прежнего двигателя до 12,5:1.

Помимо этого, новая «четверка» получила систему деактивации цилиндров, которая отключает два из них при малых нагрузках, усовершенствованную систему впрыска топлива с повышенным до 350 бар давлением, полностью новую головку блока цилиндров и электронноуправляемую систему охлаждения.

«Дизельгейт» еще не успел отгреметь, а у Audi появилась новая 435-сильная четырехлитровая «восьмерка» с тройным наддувом, которая дебютировала на «заряженном» внедорожнике SQ7. Две традиционные турбины тут работают в паре с компрессором с электрическим приводом. Подобную схему применили на серийном автомобиле впервые.

Компрессор раскручивается 7-киловаттным (9,5 лошадиные силы) электрическим мотором, который разгоняет ротор до 70 тысяч оборотов всего за четверть секунды, позволяя избежать турбоямы. Электродвигатель запитан от отдельной электрической системы с напряжением 48 вольт и блоком литий-ионных аккумуляторов, расположенных под багажником «заряженного» кроссовера.

Сам четырехлитровый мотор V8 - тоже новый. Турбокомпрессоры тут расположены в развале блока цилиндров и работают по двухступенчатой схеме. На малых и средних оборотах система valvelift открывает один из двух выпускных клапанов в каждом цилиндре, раскручивая первую турбину. По мере увеличения нагрузки (2200-2700 оборотов в минуту) электроника открывает второй выпускной клапан, активизируется другой компрессор. Электрический нагнетатель работает в самом «низу».

В результате, четырехлитровый агрегат развивает 435 лошадиных сил, а максимальный крутящий момент в 900 Нм доступен в диапазоне 1000-3250 оборотов в минуту. Мотор, работающий вместе с восьмиступенчатым «автоматом», позволяет семиместному внедорожнику набирать «сотню» за 4,8 секунды. Максимальная скорость ограничена электроникой 250 километрами в час.

Новый мотор Audi в дальнейшем появится и на других моделях концерна Volkswagen, включая новую Porsche Panamera и Cayenne, а также дизельную модификацию Bentley Bentayga.

Еще один «глобальный» двигатель, который сначала дебютирует на Porsche Panamera Turbo и Cayenne Turbo следующего поколения, а впоследствии доберется и до моделей Audi, Bentley и даже Lamborghini. Это новейший четырехлитровый твин-турбо мотор V8, который придет на смену нынешней 4,8-литровой «турбо-восьмерке».

Уменьшение рабочего объема, помимо унификации с другими силовыми установками концерна Volkswagen, позволит флагманским моделям Porsche - Panamera Turbo и Cayenne Turbo - обойти повышенный налог на автомобили с моторами объемом свыше четырех литров, действующий в Китае.

В базовой версии новый двигатель будет развивать 550 лошадиных сил и 770 Нм крутящего момента, что на 30 сил и 70 Нм больше предыдущего агрегата 4.8. При этом в Porsche поговаривают, что на версиях Panamera Turbo S и Cayenne Turbo S он будет выдавать свыше 600 сил и 810 Нм.

Помимо высокой отдачи, новый мотор будет заметно эффективнее предыдущего. А значит, экономичнее. Ведь он получит систему деактивации половины цилиндров при малых нагрузках (в диапазоне от 950 до 3500 оборотов в минуту), что позволит на 30 процентов улучшить топливную экономию.

Твин-турбо «восьмерка» унифицирована с трехлитровым турбомотором V6, разработанным Audi, и создавалась с учетом ее применения как на модульной платформе MLB, так и на шасси MSB. Первая архитектура предназначена для машин с передним и полным приводом (читай, Audi A4, A5, A6 и производные, включая кроссоверы), а вторая - с приводом на задние или на все колеса (используется на больших моделях Porsche и Bentley).

Поэтому, помимо новых Panamera и Cayenne, четырехлитровый мотор пополнит линейку двигателей Audi A6, A8 и Q7 следующих поколений, а также двух моделей Bentley - Bentayga и Continental. Наконец, именно этим мотором, скорее всего, будет оснащаться и кроссовер Lamborghini Urus, который должен отнять у «Бентейги» звание «быстрейшего серийного внедорожника в мире».