Магнит вечный двигатель. Вечный двигатель на магнитах. Вечный двигатель, возможно, возможен

В истории попыток изобрести «вечный» двигатель магнит сыграл не последнюю роль.
Неудачники-изобретатели на разные лады старались использовать магнит, чтобы устроить механизм, который вечно двигался бы сам собой. Вот один из проектов подобного «механизма» (описанный в XVII веке англичанином Джоном Вилькенсом, епископом в Честере).

Сильный магнит А помещается на колонке. К ней прислонены два наклонных желоба М и N, один под другим, причем верхний М имеет небольшое отверстие С в верхней части, а нижний N изогнут.

Если, – рассуждал изобретатель, – на верхний желоб положить небольшой железный шарик В, то вследствие притяжения магнитом А шарик покатится вверх; однако, дойдя до отверстия, он провалится в нижний желоб N, покатится по нему вниз, взбежит по закруглению D этого желоба и попадет на верхний желоб М; отсюда, притягиваемый магнитом, он снова покатится вверх, снова провалится через отверстие, вновь покатится вниз и опять очутится на верхнем желобе, чтобы начать движение сначала. Таким образом, шарик безостановочно будет бегать взад и вперед, осуществляя «вечное движение».

В чем абсурдность этого изобретения? Указать ее не трудно.
Почему изобретатель думал, что шарик, скатившись по желобу N до его нижнего конца, будет еще обладать скоростью, достаточной для поднятия его вверх по закруглению D? Так было бы, если бы шарик катился под действием одной лишь силы тяжести: тогда он катился бы ускоренно. Но наш шарик находится под действием двух сил: тяжести и магнитного притяжения. Последнее по предположению настолько значительно, что может заставить шарик подняться от положения В до С. Поэтому по желобу N шарик будет скатываться не ускоренно, а замедленно, и если даже достигнет нижнего конца, то во всяком случае не накопит скорости, необходимой для поднятия по закруглению D.

Описанный проект много раз вновь всплывал впоследствии во всевозможных видоизменениях.
Один из подобных проектов был даже, как ни странно, патентован в Германии в 1878 г., т. е. тридцать лет спустя после провозглашения закона сохранения энергии!

Изобретатель так замаскировал нелепую основную идею своего «вечного магнитного двигателя», что ввел в заблуждение техническую комиссию, выдающую патенты И хотя, согласно уставу, патенты на изобретения, идея которых противоречит законам природы, не должны выдаваться, изобретение на этот раз было формально запатентовано. Вероятно, счастливый обладатель этого единственного в своем роде патента скоро разочаровался в своем детище, так как уже через два года перестал вносить пошлину, и курьезный патент потерял законную силу; «изобретение» стало всеобщим достоянием. Однако оно никому не нужно.

Источник: Я.И. Перельман. Занимательная физика. Книга 2.



Знаете ли вы?

об органических магнитах

Обычно магнетизм связан с железом, кобальтом, никелем или редкоземельными элементами.
Но вот в 1985 году в США был открыт первый органический магнит.
В 1991 году японцы создали сложный органический магнит, в состав которого входят углерод, водород, азот и кислород. Однако магнитные свойства этого вещества начинали проявлять лишь вблизи абсолютного нуля.
В 1997 году ученые нашли еще один органический магнит из немагнитного ванадия, окруженного молекулами тетрацианоэтилена, который магнитил до 75 градусов по Цельсию. Магнетизм в органических магнитах возникает потому, что атомы выстраиваются в них упорядоченным образом.
Однако, большая часть «органических магнитов», известных к настоящему времени, проявляют магнитные свойства только при низких температурах.

А есть ли магнитные свойства у широко распространенного на Земле углерода?
Ведь чистый углерод (графит, алмаз) не действуют на стрелку компаса.

Но вот в 2001 году в России были обнаружены ферромагнитные свойства у молекул фуллерена С60 , его остаточная намагниченность, сохранялась при температурах до 225°C (точка Кюри). Среди производных материалов от С60 оказалось много сверхпроводников. Фуллерен С60 обладает в полтора раза меньшей плотностью, чем графит, и вдвое меньшей, чем алмаз. Пытаясь увеличить эту плотность при помощи высоких давлений при высокой температуре, ученые получили несколько образцов еще одной формы углерода с выраженными ферромагнитными свойствами
Получается, что углерод может обладать ферромагнитными свойствами при обычных температурах.

Малая плотность органических магнитов позволит создавать легкие электромоторы и генераторы, магнитооптические устройства запоминания и хранения информации. Органические магниты гораздо дешевле металлических, и их легче изготавливать.


Любознательным

Оптическое «парение»

В воздушной и водяной струях можно наблюдать «парение» мячиков, и их устойчивость удивительна. Свет также способен «держать» шарики в воздухе: луч достаточно мощного лазера поднимает и удерживает во взвешенном состоянии прозрачные стеклянные сферы диаметром около 20 мкм. Как свет может поднять такой шарик? Как достигается устойчивость при горизонтальных возмущениях?

Оказывается...
Свет обладает импульсом и поэтому может оказывать давление. Лазер, используемый в описанных опытах, создает интенсивный пучок света, который способен поднять шарик. Устойчивость шарика обусловлена преломлением света внутри него. Интенсивность пучка лазерного света максимальна в центре. Пусть шарик несколько смещен относительно центра пучка, но не покидает его пределов. Свет, падающий на шарик у края пучка, преломляется внутрь шарика, проходит внутри него и затем, вновь преломляясь, выходит наружу в направлении к центру пучка. В результате луч лазера несколько отклоняется, и, следовательно, он должен действовать на шарик с некоторой силой. Свет, входящий в шарик несколько сбоку (по центру луча), тоже отклоняется, но уже не к центру, а вбок. За счет этих отклонений возникает как подъемная сила, так и сила, действующая вбок. Интенсивность света, отклоняемого к центру шарика, меньше, чем интенсивность света, отклоняемого в сторону, поэтому результирующая сила направлена к центру. Если шарик отходит от центра луча, то эта результирующая сила возвращает его.

Практически все в нашей жизни зависит от электричества, но существуют определенные технологии, которые позволяют избавиться от локальной проводной энергии. Предлагаем рассмотреть, как сделать магнитный двигатель своими руками, его принцип работы, схема и устройство.

Типы и принципы работы

Существует понятие вечных двигателей первого порядка и второго. Первый порядок – это устройства, которые производят энергию сами по себе, из воздуха, второй тип – это двигатели, которым необходимо получать энергию, это может быть ветер, солнечные лучи, вода и т.д., и уже её они преобразовывают в электричество. Согласно первому началу термодинамики, обе эти теории невозможны, но с таким утверждением не согласны многие ученые, которые и начали разработку вечных двигателей второго порядка, работающих на энергии магнитного поля.

Фото – Магнитный двигатель дудышева

Над разработкой «вечного двигателя» трудилось огромное количество ученых во все времена, наиболее большой вклад в развитие теории о магнитном двигателе сделали Никола Тесла, Николай Лазарев, Василий Шкондин, также хорошо известны варианты Лоренца, Говарда Джонсона, Минато и Перендева.


Фото – Магнитный двигатель Лоренца

У каждого из них своя технология, но все они основаны на магнитном поле, которое образовывается вокруг источника. Стоит отметить, что «вечных» двигателей не существует в принципе, т.к. магниты теряют свои способности приблизительно через 300-400 лет.

Самым простым считается самодельный антигравитационный магнитный двигатель Лоренца . Он работает за счет двух разнозаряженных дисков, которые подключаются к источнику питания. Диски наполовину помещаются в полусферический магнитный экран, поле чего их начинают аккуратно вращать. Такой сверхпроводник очень легко выталкивает из себя МП.

Простейший асинхронный электромагнитный двигатель Тесла основан на принципе вращающегося магнитного поля, и способен производить электричество из его энергии. Изолированная металлическая пластина помещается как можно выше над уровнем земли. Другая металлическая пластина помещается в землю. Провод пропускается через металлическую пластину, с одной стороны конденсатора и следующий проводник идет от основания пластины к другой стороне конденсатора. Противоположный полюс конденсатора, будучи подключенным к массе, используется как резервуар для хранения отрицательных зарядов энергии.

Фото – Магнитный двигатель Тесла

Роторный кольцар Лазарева пока что считается единственным работающим ВД2, кроме того, он прост в воспроизведении, его можно собрать своими руками в домашних условиях, имея в пользовании подручные средства. На фото показана схема простого кольцевого двигателя Лазарева:

Фото – Кольцар Лазарева

На схеме видно, что емкость поделена на две части специальной пористой перегородкой, сам Лазарев применял для этого керамический диск. В этот диск установлена трубка, а емкость заполнена жидкостью. Вы для эксперимента можете налить даже простую воду, но желательно применять улетучивающийся раствор, к примеру, бензин.

Работа осуществляется следующим образом: при помощи перегородки, раствор попадает в нижнюю часть емкости, а из-за давления по трубке перемещается наверх. Это пока что только вечное движение, не зависящее от внешних факторов. Для того чтобы соорудить вечный двигатель, нужно под капающей жидкостью расположить колесико. На основе этой технологии и был создан самый простой самовращающийся магнитный электродвигатель постоянного движения, патент зарегистрирован на одну российскую компанию. Нужно под капельницу установить колесико с лопастями, а непосредственно на них разместить магниты. Из-за образовавшегося магнитного поля, колесо начнет вращаться быстрее, быстрее перекачиваться вода и образуется постоянное магнитное поле.

Линейный двигатель Шкондина произвел своего рода революцию в прогрессе. Это устройство очень простой конструкции, но в тоже время невероятно мощное и производительное. Его двигатель называется колесо в колесе, и в основном его используют в современной транспортной отрасли. Согласно отзывам, мотоцикл с мотором Шкондина может проехать 100 километров на паре литров бензина. Магнитная система работает на полное отталкивание. В системе колеса в колесе, есть парные катушки, внутри которых последовательно соединены еще одни катушки, они образовывают двойную пару, у которой разные магнитные поля, за счет чего они двигаются в разные стороны и контрольный клапан. Автономный мотор можно устанавливать на автомобиль, никого не удивит бестопливный мотоцикл на магнитном двигателе, устройства с такой катушкой часто используются для велосипеда или инвалидной коляски. Купить готовый аппарат можно в интернете за 15000 рублей (производство Китай), особенно популярен пускатель V-Gate.


Фото – Двигатель Шкондина

Альтернативный двигатель Перендева – это устройство, которое работает исключительно благодаря магнитам. Используется два круга – статичный и динамичный, на каждом из них в равной последовательности, располагаются магниты. За счет самооталкивающейся свободной силы, внутренний круг вращается бесконечно. Эта система получила широкое применение в обеспечении независимой энергии в домашнем хозяйстве и производстве.


Фото – Двигатель Перендева

Все перечисленные выше изобретения находятся в стадии развития, современные ученые продолжают их совершенствовать и искать идеальный вариант для разработки вечного двигателя второго порядка.

Помимо перечисленных устройств, также популярностью у современных исследователей пользуется вихревой двигатель Алексеенко, аппараты Баумана, Дудышева и Стирлинга.

Как собрать двигатель самостоятельно

Самоделки пользуются огромным спросом на любом форуме электриков, поэтому давайте рассмотрим, как можно собрать дома магнитный двигатель-генератор. Приспособление, которое мы предлагаем сконструировать, состоит из 3 соединенных между собой валов, они скреплены таким образом, что вал в центре повернут прямо к двум боковым. К середине центрального вала прикреплен диск из люцита диаметров четыре дюйма, толщиной в половину дюйма. Внешние валы также оснащены дисками диаметром два дюйма. На них расположены небольшие магниты, восемь штук на большом диске и по четыре на маленьких.


Фото – Магнитный двигатель на подвеске

Ось, на которых расположены отдельные магниты, находится в параллельной валам плоскости. Они установлены таким образом, что концы проходят возле колес с проблеском в минуту. Если эти колеса двигать рукой, то концы магнитной оси будут синхронизироваться. Для ускорения рекомендуется установить алюминиевый брусок в основание системы так, чтобы его конец немного касался магнитных деталей. После таких манипуляций, конструкция должна начать вращаться со скоростью пол оборота в одну секунду.

Приводы установлены специальным образом, при помощи которого валы вращаются аналогично друг другу. Естественно, если воздействовать на систему сторонним предметом, к примеру, пальцем, то она остановится. Этот вечный магнитный двигатель изобрел Бауман, но ему не удалось получить патент, т.к. на тот момент устройство отнесли к разряду непатентуемых ВД.

Для разработки современного варианта такого двигателя многое сделали Черняев и Емельянчиков.


Фото – Принцип работы магнита

Какие достоинства и недостатки имеют реально работающие магнитные двигатели

Достоинства:

  1. Полная автономия, экономия топлива, возможность из подручных средств организовать двигатель в любом нужном месте;
  2. Мощный прибор на неодимовых магнитах способен обеспечивать энергией жилое помещение до 10 вКт и выше;
  3. Гравитационный двигатель способен работать до полного износа и даже на последней стали работы выдавать максимальное количество энергии.

Недостатки:

  1. Магнитное поле может негативно влиять на здоровье человека, особенно этому фактору подвержен космический (реактивный) движок;
  2. Несмотря на положительные результаты опытов, большинство моделей не способны работать в нормальных условиях;
  3. Даже после приобретения готового мотора, его бывает очень сложно подключить;
  4. Если Вы решите купить магнитный импульсный или поршневой двигатель, то будьте готовы к тому, что его цена будет сильно завышена.

Работа магнитного двигателя – это чистая правда и она реально, главное правильно рассчитать мощность магнитов.

То, что генератор на неодимовых магнитах, например ветрогенератор, является полезным, уже ни у кого не вызывает сомнений. Если даже все приборы в доме и не удастся обеспечить энергией таким способом, то все-таки при длительном использовании он покажет себя с выигрышной стороны. Изготовление прибора своими руками сделает эксплуатацию еще экономичнее и приятнее.

Характеристики неодимовых магнитов

Но давайте сначала выясним, что собой представляют магниты. Они появились не так давно. Приобрести в магазине магниты можно было с девяностых годов прошлого века. Изготовлены они из неодима, бора и железа. Основным элементом, конечно, является неодим. Это металл лантоноидной группы, с помощью которого магниты приобретают огромную силу сцепления. Если взять две штуки большого размера и притянуть друг к другу, то расцепить их будет почти невозможно.

В продаже в основном, конечно, встречаются миниатюрные виды. В любом сувенирном магазине можно найти шарики (или другую форму) из этого металла. Высокая цена неодимовых магнитов объясняется сложностью добычи сырья и технологии его производства. Если шарик диаметром 3-5 миллиметров обойдется всего в несколько рублей, то за магнитик диаметром от 20 миллиметров и выше придется выложить 500 рублей и более.

Неодимовые магниты получают в специальных печах, где процесс происходит без доступа кислорода, в вакууме или атмосфере с инертным газом. Самые распространенные — это магниты с аксиальным намагничиванием, в которых вектор поля направлен вдоль одной из плоскостей, где измеряется толщина.

Характеристики неодимовых магнитов очень ценны, но их легко можно испортить без возможности восстановления. Так, сильный удар способен лишить их всех свойств. Поэтому нужно стараться избегать падений. Также у разных видов имеется свой температурный предел, который варьируется от восьмидесяти до двухсот пятидесяти градусов. При температуре выше предельной магнит теряет свои свойства.

Правильное и аккуратное использование служит залогом сохранения качеств в течение тридцати лет и более. Естественное размагничивание составляет всего один процент в год.

Применение неодимовых магнитов

Их часто используют в опытах в области физики и электротехники. Но и на практике эти магниты нашли уже широкое применение, например, в промышленности. Нередко их можно найти и в составе сувенирной продукции.

Высокая степень сцепления делает их очень полезными при поиске предметов из металла, находящихся под землей. Поэтому многие поисковики используют оборудование с применением неодимовых магнитов, чтобы находить технику, оставшуюся с военных времен.

Если старые акустические колонки еле работают, то иногда стоит к ферритовым магнитам приложить неодимовые, и аппаратура снова отлично зазвучит.

Так и на двигателе или генераторе можно попробовать заменить старые магниты. Тогда есть шанс, что техника заработает намного лучше. Потребление при этом даже снизится.

Человечество уже давно ищет На неодимовых магнитах, как некоторые считают, технология вполне может обрести реальные очертания.

Вертикально ориентированный ветрогенератор в готовом виде

К ветрогенераторам, особенно в последние годы, снова возобновился интерес. Появились новые модели, более удобные и практичные.

Еще недавно главным образом использовались горизонтальные ветрогенераторы, имеющие три лопасти. А вертикальные виды не распространялись из-за сильной нагрузки на подшипники ветроколеса, вследствие чего возникало увеличенное трение, поглощающее энергию.

Но благодаря использованию принципов ветрогенератор на неодимовых магнитах стал применяться именно вертикально-ориентированный, с выраженным свободным инерционным вращением. В настоящее время он доказал свою более высокую эффективность по сравнению с горизонтальным.

Легкий старт достигается благодаря принципу магнитной левитации. А благодаря многополюсности, которая дает номинальное напряжение на малых оборотах, удается отказаться от редукторов полностью.

Некоторые приборы способны начать работу, когда скорость ветра составляет всего полтора сантиметра в секунду, а при достижении всего трех—четырех метров в секунду, она может уже равняться вырабатываемой мощности прибора.

Область применения

Таким образом, ветрогенератор, в зависимости от своей мощности, способен обеспечить энергией разные строения.

    Городские квартиры.

    Частные дома, дачи, магазины, мойки.

    Детские сады, больницы, порты и другие городские учреждения.

    Преимущества

    Приборы приобретают в готовом виде или изготавливают самостоятельно. Купив ветрогенератор, его остается только установить. Все регулировки и центровки уже пройдены, проведены испытания при различных климатических условиях.

    Неодимовые магниты, которые используются вместо редуктора и подшипников, позволяют достичь следующих результатов:

    сокращается трение, и повышается срок эксплуатации всех деталей;

    исчезает вибрация и шум прибора при работе;

    себестоимость уменьшается;

    экономится электроэнергия;

    исчезает необходимость регулярно обслуживать прибор.

Ветрогенератор можно приобрести со встроенным инвертором, который заряжает батарею, а также с контроллером.

Наиболее распространенные модели

Генератор на неодимовых магнитах может быть изготовлен на одинарном или двойном креплении. Помимо основных неодимовых, в конструкции могут быть предусмотрены дополнительные ферритовые магниты. Высоту крыла делают разную, в основном от одного до трех метров.

Более мощные модели имеют двойное крепление. В них также устанавливаются дополнительные генераторы на ферритовых магнитах и имеется различная высота крыла и диаметр.

Самодельные конструкции

Учитывая то, что приобрести генератор на неодимовых магнитах, работающий от ветра, далеко не всем по карману, часто решаются на сооружение конструкции своими руками. Рассмотрим различные варианты устройств, которые без труда можно сделать самостоятельно.

Ветрогенератор своими руками

Имеющая вертикальную ось вращения, имеет обычно от трех до шести лопастей. В конструкцию входят статор, лопасти (неподвижные и вращающиеся) и ротор. Ветер влияет на лопасти, вход в турбину и выход из нее. В качестве опоры иногда используют автомобильные ступицы. Такой генератор на неодимовых магнитах является бесшумным, остается стабильным даже при сильном ветре. Ему не нужна высокая мачта. Движение начинается даже при очень слабом ветре.

Каким может быть устройство неподвижного генератора

Известно, что электродвижущая сила через провод генерируется посредством изменения магнитного поля. В сердечнике неподвижного генератора создается путем электронного управления, не механически. Генератор управляет потоком автоматически, действуя резонансно и потребляя очень малую мощность. Его колебания отклоняют в стороны магнитные потоки железных или ферритовых сердечников. Чем больше частота колебаний, тем сильнее мощность генератора. Запуск реализуется путем кратковременного импульса на генератор.

Как сделать вечный двигатель

На неодимовых магнитах в основном однотипны по принципу действия. Стандартным уже вариантом является аксиальный тип.

За его основу берется ступица из автомобиля с тормозными дисками. Такая база станет надежной и мощной.

При решении ее использовать ступицу следует полностью разобрать и проверить, достаточно ли там смазки, а при необходимости очистить ржавчину. Тогда готовый прибор будет приятно покрасить, и он приобретет «домашний», ухоженный вид.

В однофазном приборе полюсы должны иметь равное количество с количеством магнитов. В трехфазном должно соблюдаться соотношение двух к трем или четырех к трем. Магниты размещают с чередованием полюсов. Они должны быть точно расположены. Для этого можно начертить на бумаге шаблон, вырезать его и точно перенести на диск.

Чтобы полюсы не перепутать, маркером делают пометки. Для этого магниты подносят одной стороной: ту, что притягивает, обозначают знаком «+», а ту, что отталкивает, - «-». Магниты должны притягиваться, то есть те, что расположены друг напротив друга, должны иметь разные полюсы.

Обычно используется суперклей или подобный ему, а после наклейки заливают еще эпоксидной смолой для увеличения прочности, предварительно сделав «бордюрчики», чтобы она не вытекла.

Трех- или однофазный

Генератор на неодимовых магнитах обычно делают конструкция при нагрузке будет работать с вибрацией, так как не обеспечится постоянная отдача тока, из-за чего получится скачкообразная амплитуда.

Зато при трехфазной системе в любое время гарантируется постоянная мощность благодаря компенсации фаз. Поэтому ни вибрации не будет возникать, ни гудения. А эффективность работы станет на пятьдесят процентов выше, чем с одной фазой.

Намотка катушки и остальная сборка

Расчет генератора на неодимовых магнитах в основном делается на глаз. Но лучше, конечно, добиваться точности. Например, для тихоходного устройства, где зарядка аккумулятора начинала бы функционировать при 100—150 оборотах в минуту, потребуется от 1000 до 1200 витков. Общее количество делится на количество катушек. Столько потребуется витков в каждую из них. Катушки наматывают по возможности наиболее толстым проводом, так как при меньшем сопротивлении ток будет больше (при большом напряжении сопротивлением весь ток заберется).

Обычно используют круглые, но лучше мотать катушки вытянутой формы. Внутреннее отверстие должно равняться диаметру магнита или быть больше него. Кроме того, оптимальный магнит получится в виде прямоугольника, а не шайбы, так как у первых магнитное поле растянуто по длине, а у последних — сосредоточено в центре.

Толщину статора делают равной толщине магнитов. Для формы можно использовать фанеру. На ее дне и поверх катушек размещают стеклоткань для прочности. Катушки соединяют между собой, и каждую фазу выводят наружу для соединения затем треугольником или звездой.

Остается сделать мачту и надежное основание.

Конечно, это не вечный двигатель на неодимовых магнитах. Однако экономия при использовании ветрогенератора будет обеспечена.

Возможность получения свободной энергии для многих учёных в мире является одним из камней преткновения. На сегодняшний день получение такой энергии осуществляется за счёт альтернативной энергетики. Природная энергия преобразовывается альтернативными источниками энергии в привычную для людей тепловую и электрическую. При этом такие источники обладают основным недостатком — зависимостью от погодных условий. Подобных недостатков лишены бестопливные двигатели, а именно — двигатель Москвина.

Двигатель Москвина

Бестопливный двигатель Москвина представляет собой механическое устройство, которое преобразует энергию наружной консервативной силы в кинетическую энергию, которая вращает рабочий вал, без потребления электроэнергии или какого-либо вида топлива. Такие устройства являют собой фактически вечные двигатели, работающие бесконечно долго до тех пор, пока прилагается усилие к рычагам, а детали не изнашиваются в процессе преобразования свободной энергии. В процессе работы бестопливного двигателя образуется бесплатная свободная энергия, потребление которой при подключении генератора является законным.

Новые бестопливные двигатели представляют собой универсальные и экологически чистые приводы для различных механизмов и устройств, которые работают без вредных выбросов в окружающую среду и атмосферу.

Изобретение в Китае безтопливного двигателя сподвигло учёных-скептиков на проведение экспертизы по существу. Несмотря на то, что многие аналогичные запатентованные изобретения находятся под сомнением по причине того, что их работоспособность в силу определённых причин не была проверена, модель бестопливного двигателя полностью работоспособна. Образец устройства позволил получить свободную энергию.

Бестопливный двигатель на магнитах

Работа различных предприятий и оборудования, как и каждодневный быт современного человека, зависит от наличия электрической энергии. Инновационные технологии позволяют практически полностью отказаться от использования подобной энергии и устранить привязку к определённому месту. Одна из подобных технологий позволила создать бестопливный двигатель на постоянных магнитах.

Принцип работы магнитного электрогенератора

Вечные двигатели делятся на две категории: первого и второго порядка. Под первым типом подразумевают оборудование, способное вырабатывать энергию из воздушного потока. Двигателям второго порядка для работы требуется поступление природной энергии, — воды, солнечных лучей или ветра — которая преобразуется в электрический ток. Несмотря на существующие законы физики, учёные смогли создать вечный бестопливный двигатель в Китае, который функционирует за счёт производимой магнитным полем энергии.

Разновидности магнитных двигателей

На данный момент выделяют несколько видов магнитных двигателей, для работы каждого из которых требуется магнитное поле. Единственное различие между ними — конструкция и принцип работы. Двигатели на магнитах не могут существовать вечно, поскольку любые магниты теряют свои свойства спустя несколько сотен лет.

Самая простая модель - двигатель Лоренца, который реально собрать в домашних условиях. Для него характерно антигравитационное свойство. Конструкция двигателя строится на двух дисках с разным зарядом, которые соединены посредством источника питания. Устанавливают её в полусферический экран, который начинает вращаться. Такой сверхпроводник позволяет легко и быстро создать магнитное поле.

Более сложной конструкцией является магнитный двигатель Серла.

Асинхронный магнитный двигатель

Создателем асинхронного магнитного двигателя был Тесла. Его работа строится на вращающемся магнитном поле, что позволяет преобразовывать получаемый поток энергии в электрический ток. На максимальной высоте крепится изолированная металлическая пластина. Аналогичная пластина зарывается в почвенный слой на значительную глубину. Через конденсатор пропускается провод, который с одной стороны проходит через пластину, а с другой — крепится к её основанию и соединяется с конденсатором с другой стороны. В такой конструкции конденсатор выполняет роль резервуара, в котором накапливаются отрицательные энергетические заряды.

Двигатель Лазарева

Единственным работающим на сегодняшний день ВД2 является мощный роторный кольцар — двигатель, созданный Лазаревым. Изобретение учёного отличается простой конструкцией, благодаря чему его можно собрать в домашних условиях при помощи подручных средств. Согласно схеме бестопливного двигателя, используемую для его создания ёмкость делят на две равные части посредством специальной перегородки — керамического диска, к которому крепят трубку. Внутри ёмкости должна находиться жидкость — бензин либо обычная вода. Работа электрогенераторов такого типа основывается на переходе жидкости в нижнюю зону ёмкости через перегородку и её постепенном поступлении наверх. Движение раствора осуществляется без воздействия окружающей среды. Обязательное условие конструкции — под капающей жидкостью должно размещаться небольшое колёсико. Данная технология легла в основу самой простой модели электродвигателя на магнитах. Конструкция такого двигателя подразумевает наличие под капельницей колёсика с закреплёнными на его лопастях маленькими магнитами. Магнитное поле возникает только в том случае, если жидкость перекачивается колёсиком на большой скорости.

Двигатель Шкондина

Немалым шагом в эволюции технологий стало создание Шкондиным линейного двигателя. Его конструкция представляет собой колесо в колесе, которая широко применяется в транспортной промышленности. Принцип работы системы строится на абсолютном отталкивании. Такой двигатель на неодимовых магнитах может быть установлен в любом автомобиле.

Двигатель Перендева

Альтернативный двигатель высокого качества был создан Перендевым и представлял собой устройство, которое для производства энергии использовало только магниты. Конструкция такого двигателя включает в себя статичный и динамичный круги, на которые устанавливаются магниты. Внутренний круг беспрерывно вращается за счёт самооталкивающей свободной силы. В связи с этим бестопливный двигатель на магнитах такого типа считается наиболее выгодным в эксплуатации.

Создание магнитного двигателя в домашних условиях

Магнитный генератор можно собрать в домашних условиях. Для его создания используются три вала, соединённых друг с другом. Расположенный в центре вал обязательно поворачивается к остальным двум перпендикулярно. К середине вала крепится специальный люцитовый диск диаметром четыре дюйма. К другим валам крепятся аналогичные диски меньшего диаметра. На них размещают магниты: восемь посередине и по четыре с каждой стороны. Основанием конструкции может выступить алюминиевый брусок, который ускоряет работу двигателя.

Преимущества магнитных двигателей

К основным достоинствам подобных конструкций относят следующее:

  1. Экономия топлива.
  2. Полностью автономная работа и отсутствие необходимости в источнике электроэнергии.
  3. Можно использовать в любом месте.
  4. Высокая выходная мощность.
  5. Использование гравитационных двигателей до их полного износа с постоянным получением максимального количества энергии.

Недостатки двигателей

Несмотря на имеющиеся преимущества, у бестопливных генераторов есть и свои минусы:

  1. При длительном нахождении рядом с работающим двигателем человек может отмечать ухудшение самочувствия.
  2. Для функционирования многих моделей, в том числе и китайского двигателя, требуется создание специальных условий.
  3. Готовый двигатель подключить в некоторых случаях довольно сложно.
  4. Высокая стоимость бестопливных китайских двигателей.

Двигатель Алексеенко

Патент на бестопливный двигатель Алексеенко получил в 1999 году от Российского агентства по товарным знакам и патентам. Для работы двигателю не требуется топливо — ни нефть, ни газ. Функционирование генератора строится на полей, создаваемых постоянными магнитами. Обычный килограммовый магнит способен притягивать и отталкивать порядка 50-100 килограммов массы, в то время как оксидно-бариевые аналоги могут воздействовать на пять тысяч килограммов массы. Изобретатель бестопливного магнита отмечает, что настолько мощные магниты для создания генератора не требуются. Лучше всего подойдут обычные — один к ста либо один к пятидесяти. Магнитов такой мощности достаточно для работы двигателя на 20 тысячах оборотов в минуту. Мощность будет гаситься за счёт передающего устройства. На нём и располагаются постоянные магниты, энергия которых приводит двигатель в движение. Благодаря собственному магнитному полю ротор отталкивается от статора и приходит в движение, которое постепенно ускоряется из-за воздействия магнитного поля статора. Такой принцип действия позволяет развить огромную мощность. Аналог двигателя Алексеенко можно применять, к примеру, в стиральной машине, где его вращение будет обеспечиваться маленькими магнитами.

Создатели бестопливных генераторов

Специальное оборудование к автомобильным двигателям, которое позволяет машинам передвигаться только на воде без использования углеводородных добавок. Подобными приставками сегодня оснащаются многие российские автомобили. Использование подобного оборудования позволяет автомобилистам сэкономить на бензине и снизить количество вредных выбросов в атмосферу. Для создания приставки Бакаеву понадобилось открыть новый тип расщепления, который и использовался в его изобретении.

Болотов — учёный XX века — разработал автомобильный двигатель, которому для запуска требуется буквально одна капля топлива. Конструкция такого двигателя не подразумевает цилиндров, коленчатого вала и любых других трущихся деталей — они заменены двумя дисками на подшипниках с небольшими зазорами между ними. Топливом является обычный воздух, который расщепляется на азот и кислород на высоких оборотах. Азот под воздействием температуры в 90 о С сгорает в кислороде, что позволяет двигателю развить мощность в 300 лошадиных сил. Русские учёные, помимо схемы бестопливного двигателя, разработали и предложили модификации многих других двигателей, для функционирования которых требуются принципиально новые источники энергии — к примеру, энергия вакуума.

Мнение учёных: создание бестопливного генератора невозможно

Новые разработки инновационных бестопливных двигателей получили оригинальные наименования и стали обещанием революционных перспектив в будущем. Создатели генераторов сообщали о первых успехах на ранних этапах тестирования. Несмотря на это, в научной среде до сих пор скептически относятся к идее бестопливных двигателей, и многие учёные высказывают свои сомнения на этот счёт. Одним из противников и главных скептиков является учёный из Калифорнийского университета, физик и математик Фил Плейт.

Учёные из противоборствующего лагеря придерживаются мнения о том, что сама концепция двигателя, не требующего для работы топлива, противоречит классическим законам физики. Баланс сил внутри двигателя должен сохраняться всё то время, что создаётся тяга внутри него, а согласно закону импульса, такое невозможно без использования горючего. Фил Плейт не раз отмечал, что для ведения разговоров о создании подобного генератора придётся опровергнуть весь закон сохранения импульса, что нереально сделать. Проще говоря, для создания бестопливного двигателя требуется революционный прорыв в фундаментальной науке, а уровень современных технологий не оставляет и шанса на то, чтобы сама концепция генератора такого типа рассматривалась всерьёз.

На аналогичное мнение наводит и общая ситуация, касающаяся подобного типа двигателя. Рабочей модели генератора на сегодняшний день не существует, а теоретические выкладки и характеристики экспериментального устройства не несут никакой существенной информации. Проведённые замеры показали, что тяга составляет порядка 16 миллиньютонов. При следующих измерениях данный показатель увеличился до 50 миллиньютонов.

Британец Роджер Шоер ещё в 2003 году представил экспериментальную модель бестопливного двигателя EmDrive, разработчиком которой он и являлся. Для создания микроволн генератору требовалось электричество, добываемое посредством использования солнечной энергии. Данная разработка вновь всколыхнула в научной среде разговоры о вечном двигателе.

Разработка учёных была неоднозначно оценена в NASA. Специалисты отметили уникальность, инновационность и оригинальность конструкции двигателя, но при этом утверждали, что добиться значимых результатов и эффективной работы можно только в том случае, если генератор будет эксплуатироваться в условиях квантового вакуума.

Магнитные двигатели - это автономные устройства, которые способны вырабатывать электроэнергию. На сегодняшний день существуют различные модификации, все они отличаются между собой. Основное преимущество двигателей заключается в экономии топлива. Однако недостатки в данной ситуации также следует учитывать. В первую очередь важно отметить, что магнитное поле способно оказывать негативное влияние на человека.

Также проблема заключается в том, что для различных модификаций необходимо создать определенные условия для эксплуатации. Трудности еще могут возникнуть при подключении мотора к устройству. Чтобы разобраться в том, как сделать в домашних условиях вечный двигатель на магнитах, необходимо изучить его конструкцию.

Схема простого двигателя

Стандартный вечный двигатель на магнитах (схема показана выше) включает в себя диск, кожух, а также металлический обтекатель. Катушка во многих моделях используется электрическая. Магниты крепятся на специальных проводниках. Положительная обратная связь обеспечивается за счет работы преобразователя. Дополнительно в некоторых конструкциях встроены ревербераторы для усиления магнитного поля.

Модель на подвеске

Чтобы сделать с подвеской вечный двигатель на неодимовых магнитах своими руками, необходимо использовать два диска. Кожух для них лучше всего подбирать медный. При этом края необходимо тщательно заточить. Далее, важно подсоединить контакты. Всего магнитов на внешней стороне диска должно находиться четыре. Слой диэлектрика обязан проходить вдоль обтекателя. Чтобы исключить возможность появления отрицательной энергии, используются инерционные преобразователи.

В данном случае положительно заряженные ионы обязаны двигаться вдоль кожуха. У некоторых проблема часто заключается в малой холодной сфере. В такой ситуации магниты следует использовать довольно мощные. В конечном итоге выход подогретого агента должен осуществляться через обтекатель. Подвеска устанавливается между дисками на небольшом расстоянии. Источником самозаряда в устройстве является преобразователь.

Как сделать двигатель на кулере?

Как складывается вечный двигатель на постоянных магнитах своими руками? С использованием обычного кулера, который можно взять из персонального компьютера. Диски в данном случае важно подобрать небольшого диаметра. Кожух при этом закрепляется на их внешней стороне. Раму для конструкции можно изготовить из любой коробки. Обтекатели чаше всего используются толщиной 2,2 мм. Выход подогретого агента в данной ситуации осуществляется через преобразователь.

Высота кулоновских сил зависит исключительно от заряженности ионов. Чтобы повысить параметр охлажденного агента, многие специалисты советуют использовать изолированную обмотку. Проводники для магнитов целесообразнее подбирать медные. Толщина токопроводящего слоя зависит от типа обтекателя. Проблема данных двигателей часто заключается в малой отрицательной заряженности. В данном случае диски для модели лучше всего взять большего диаметра.

Модификация Перендева

При помощи статора большой мощности можно сложить данный вечный двигатель на магнитах своими руками (схема показа ниже). Сила электромагнитного поля в этой ситуации зависит от многих факторов. В первую очередь следует учитывать толщину обтекателя. Также важно заранее подобрать небольшой кожух. Пластину для двигателя необходимо использовать толщиной не более 2,4 мм. Преобразователь на это устройство устанавливается низкочастотный.

Дополнительно следует учитывать, что ротор подбирается только последовательного типа. Контакты на нем установлены чаще всего алюминиевые. Пластины для магнитов необходимо предварительно прочистить. Сила резонансных частот будет зависеть исключительно от мощности преобразователя.

Чтобы усилить положительную обратную связь, многие специалисты рекомендуют воспользоваться усилителем промежуточной частоты. Устанавливается он на внешнюю сторону пластины возле преобразователя. Для усиления волновой индукции применяются спицы небольшого диаметра, которые закрепляются на диске. Отклонение фактической индуктивности происходит при вращении пластины.

Устройство с линейным ротором

Линейные роторы обладают довольно высоким образцовым напряжением. Пластину для них целесообразнее подбирать большую. Стабилизация проводящего направления может осуществляться за счет установки проводника (чертежи вечного двигателя на магнитах показаны ниже). Спицы для диска следует использовать стальные. На инерционный усилитель желательно устанавливать преобразователь.

Усилить магнитное поле в данном случае можно только за счет увеличения количества магнитов на сетке. В среднем их там устанавливается около шести. В этой ситуации многое зависит от скорости аберрации первого порядка. Если наблюдается в начале работы некоторая прерывистость вращения диска, то необходимо заменить конденсатор и установить новую модель с конвекционным элементом.

Сборка двигателя Шконлина

Вечный двигатель данного типа собрать довольно сложно. В первую очередь следует заготовить четыре мощных магнита. Патина для данного устройства подбирается металлическая, а диаметр ее должен составлять 12 см. Далее необходимо использовать проводники для закрепления магнитов. Перед применением их необходимо полностью обезжирить. С этой целью можно воспользоваться этиловым спиртом.

Следующим шагом пластины устанавливаются на специальную подвеску. Лучше всего ее подбирать с затупленным концом. Некоторые в данном случае используют кронштейны с подшипниками для увеличения скорости вращения. Сеточный тетрод в вечный двигатель на мощных магнитах крепится напрямую через усилитель. Увеличить мощность магнитного поля можно за счет установки преобразователя. Ротор в этой ситуации необходим только конвекционный. Термооптические свойства у данного типа довольно хорошие. Справиться с волновой аберрацией в устройстве позволяет усилитель.

Антигравитационная модификация двигателя

Антигравитационный вечный двигатель на магнитах является наиболее сложным устройством среди всех представленных выше. Всего пластин в нем используется четыре. На внешней их стороне закрепляются диски, на которых находятся магниты. Все устройство необходимо уложить в корпус для того, чтобы выровнять пластины. Далее важно закрепить на модели проводник. Подсоединение к мотору осуществляется через него. Волновая индукция в данном случае обеспечивается за счет нехроматического резистора.

Преобразователи у этого устройства используются исключительно низкого напряжения. Скорость фазового искажения может довольно сильно меняться. Если диски вращаются прерывисто, необходимо уменьшить диаметр пластин. В данном случае отсоединять проводники не обязательно. После установки преобразователя к внешней стороне диска прикладывается обмотка.

Модель Лоренца

Чтобы сделать вечный двигатель на магнитах Лоренца, необходимо использовать пять пластин. Расположить их следует параллельно друг другу. Затем по краям к ним припаиваются проводники. Магниты в данном случае крепятся на внешней стороне. Чтобы диск свободно вращался, для него необходимо установить подвеску. Далее к краям оси прикрепляется катушка.

Управляющий тиристор в данном случае устанавливается на ней. Чтобы увеличить силу магнитного поля, используется преобразователь. Вход охлажденного агента происходит вдоль кожуха. Объем сферы диэлектрика зависит от плотности диска. Параметр кулоновской силы, в свою очередь, тесно связан с температурой окружающей среды. В последнюю очередь важно установить статор над обмоткой.

Как сделать двигатель Тесла?

Работа данного двигателя основывается на изменении положения магнитов. Происходит это за счет вращения диска. Для того чтобы увеличить кулоновскую силу, многие специалисты рекомендуют пользоваться медными проводниками. В таком случае вокруг магнитов образуется инерционное поле. Нехроматические резисторы в данной ситуации используются довольно редко. Преобразователь в устройстве крепится над обтекателем и соединяется с усилителем. Если движения диска в конечном счете являются прерывистыми, значит, необходимо катушку использовать более мощную. Проблемы с волновой индукцией, в свою очередь, решаются за счет установки дополнительной пары магнитов.

Реактивная модификация двигателя

Для того чтобы сложить реактивный вечный двигатель на магнитах, необходимо использовать две катушки индуктивности. Пластины в данном случае следует подбирать диаметром около 13 см. Далее необходимо использовать преобразователь низкой частоты. Все это в конечном счете значительно увеличит силу магнитного поля. Усилители в двигателях устанавливаются довольно редко. Аберрация первого порядка происходит за счет использования стабилитронов. Для того чтобы надежно закрепить пластину, необходимо использовать клей.

Перед установкой магнитов контакты тщательно зачищаются. Генератор для данного устройства необходимо подбирать индивидуально. В данном случае многое зависит от параметра порогового напряжения. Если устанавливать конденсаторы перекрытия, то они значительно снижают порог чувствительности. Таким образом, ускорение пластины может быть прерывистым. Диски для указанного устройства необходимо по краям зачищать.

Модель при помощи генератора на 12 В

Применение генератора на 12 В позволяет довольно просто собрать вечный двигатель на неодимовых магнитах. Преобразователь для него необходимо использовать хроматический. Сила магнитного поля в данном случае зависит от массы пластин. Для увеличения фактической индуктивности многие специалисты советуют применять специальные операционные усилители.

Подсоединяются они напрямую к преобразователям. Пластину необходимо использовать только с медными проводниками. Проблемы с волновой индукцией в данной ситуации решить довольно сложно. Как правило, проблема чаще всего заключается в слабом скольжении диска. Некоторые в сложившейся ситуации советуют устанавливать подшипники в вечный двигатель на неодимовых магнитах, которые крепятся к подвеске. Однако сделать это порой невозможно.

Использование генератора на 20 В

Сделать при помощи генератора на 20 В вечный двигатель на магнитах своими руками можно, имея мощную катушку индуктивности. Пластины для данного устройства целесообразнее подбирать небольшого диаметра. При этом диск важно надежно закрепить на спицы. Чтобы увеличить силу магнитного поля, многие специалисты рекомендуют устанавливать в вечный двигатель на постоянных магнитах низкочастотные преобразователи.

В этой ситуации можно надеяться на быстрый выход охлажденного агента. Дополнительно следует отметить, что добиться большой кулоновской силы у многих получается за счет установки плотного обтекателя. Температура окружающей среды на скорость вращения влияет, однако незначительно. Магниты на пластине следует устанавливать на расстоянии 2 см от края. Спицы в данном случае необходимо крепить с промежутком 1,1 см.

Все это в конечном счете позволит уменьшить отрицательное сопротивление. Операционные усилители в двигателях устанавливаются довольно часто. Однако для них необходимо подбирать отдельные проводники. Лучше всего их устанавливать от преобразователя. Чтобы не произошла волновая индукция, прокладки следует использовать прорезиненные.

Применение низкочастотных преобразователей

Низкочастотные преобразователи в двигателях способны эксплуатироваться только вместе с хроматическими резисторами. Приобрести их можно в любом магазине электроники. Пластину для них следует подбирать толщиной не более 1,2 мм. Также важно учитывать, что низкочастотные преобразователи довольно требовательны к температуре окружающей среды.

Увеличить кулоновские силы в сложившейся ситуации получится за счет установки стабилитрона. Крепить его следует за диском, чтобы не произошла волновая индукция. Дополнительно важно позаботиться об изоляции преобразователя. В некоторых случаях он приводит к инерционным сбоям. Все это происходит за счет изменения внешней холодной среды.