Кпд аккумуляторных батарей. Типы свинцово-кислотных аккумуляторов. Как заряжать свинцово-кислотный аккумулятор

История

Свинцовый аккумулятор разработал в 1859-1860 годах Гастон Планте, сотрудник лаборатории Александра Беккереля . В 1878 году Камилл Фор усовершенствовал его конструкцию, покрыв пластины аккумулятора свинцовым суриком .

Принцип действия

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в сернокислотной среде.

Энергия возникает в результате взаимодействия оксида свинца и серной кислоты до сульфата (классическая версия). Проведенные в СССР исследования показали, что внутри свинцового аккумулятора протекает как минимум ~60 реакций, порядка 20 из которых протекают без участия кислоты электролита (нехимические)

Во время разряда происходит восстановление диоксида свинца на катоде и окисление свинца на аноде . При заряде протекают обратные реакции, к которым в конце заряда добавляется реакция электролиза воды, сопровождающаяся выделением кислорода на положительном электроде и водорода - на отрицательном.

Химическая реакция (слева направо - разряд, справа налево - заряд):

В итоге получается, что при разряде аккумулятора расходуется серная кислота из электролита (и плотность электролита падает, а при заряде, серная кислота выделяется в раствор электролита из сульфатов, плотность электролита растёт). В конце заряда, при некоторых критических значениях концентрации сульфата свинца у электродов, начинает преобладать процесс электролиза воды. При этом на катоде выделяется водород , на аноде - кислород . При заряде не стоит допускать электролиза воды, в противном случае необходимо её долить для восполнения потерянного в ходе электролиза количества.

Устройство

Элемент свинцово-кислотного аккумулятора состоит из электродов (положительных и отрицательных) и разделительных изоляторов (сепараторов), которые погружены в электролит . Электроды представляют собой свинцовые решётки. У положительных активным веществом является перекись свинца (PbO 2), у отрицательных активным веществом является губчатый свинец .

На самом деле электроды выполнены не из чистого свинца, а из сплава с добавлением сурьмы в количестве 1-2 % для повышения прочности и примесей. Иногда в качестве легирующего компонента используются соли кальция, в обеих пластинах, или только в положительных. Применение солей кальция вносит не только положительные но и много отрицательных моментов в эксплуатацию свинцового аккумулятора, например, у такого аккумулятора при глубоких разрядах существенно и необратимо снижается емкость.

Электроды погружены в электролит, состоящий из разбавленной дистиллированной водой серной кислоты (H 2 SO 4). Наибольшая проводимость этого раствора наблюдается при комнатной температуре (что означает наименьшее внутреннее сопротивление и наименьшие внутренние потери) и при его плотности 1,23 г/см³

Однако на практике, часто в районах с холодным климатом применяются и более высокие концентрации серной кислоты, до 1,29 −1,31 г/см³.

Существуют экспериментальные разработки аккумуляторов где свинцовые решетки заменяют вспененным карбоном , покрытым тонкой свинцовой пленкой. Используя меньшее количество свинца и распределив его по большой площади, батарею удалось сделать не только компактной и легкой, но и значительно более эффективной - помимо большего КПД, она заряжается значительно быстрее традиционных аккумуляторов.

В результате каждой реакции образуется нерастворимое вещество - сернокислый свинец PbSO 4 , осаждающийся на пластинах, который образует диэлектрический слой между токоотводами и активной массой. Это один из факторов, влияющий на срок службы свинцово-кислотной аккумуляторной батареи.

Основными процессами износа свинцово-кислотных аккумуляторов являются:

Хотя батарею, вышедшую из строя по причине физического разрушения пластин, самому починить нельзя, некоторые источники описывают химические растворы и прочие способы способные «десульфатировать» пластины. Простой но вредный для жизни аккумулятора способ предполагает использование раствора сульфата магния . Раствор заливается в секции после чего батарею разряжают и заряжают несколько раз. Сульфат свинца и прочие остатки химической реакции осыпаются при этом на дно батареи, что может привести к замыканию секции поэтому обработанные секции желательно промыть и заполнить новым электролитом номинальной плотности. Это позволяет несколько продлить срок использования устройства. Если батарея имеет одну или несколько секций которые не работают (то есть не дают 2.17 вольта - например если корпус имеет трещины) возможно соединить две (или больше) батареи последовательно: к плюсовому контакту первой батареи подключаем плюсовой провод потребителя, к минусовому контакту второй батареи - минусовой провод потребителя, а две оставшихся контакта батареи соединяются кабелем. Такая батарея имеет суммарное напряжение работающих секций и поэтому количество работающих секций должно быть не более шести - то есть необходимо слить электролит из излишних секций. Такой вариант подходит для транспортных средств с большим моторным отсеком.

Вторичная переработка

Вторичная переработка для этого вида аккумуляторов играет важную роль, так как свинец, содержащийся в аккумуляторах является тяжелым металлом и наносит серьёзный вред при попадании в окружающую среду. Свинец и его соли должны быть переработаны на специальных предприятиях для возможности его вторичного использования.

Выброшенные аккумуляторы часто используются как источник свинца для кустарной переплавки, например, в рыболовные грузила, дробь или гири. Для этого из аккумулятора сливается электролит, остатки нейтрализуются промыванием каким-либо безвредным основанием (например, гидрокарбонатом натрия), после чего корпус батареи разбивается и извлекается металлический свинец .

См. также

Примечания

Ссылки

  • ГОСТ 15596-82
  • ГОСТ Р 53165-2008 Батареи аккумуляторные свинцовые стартерные для автотракторной техники. Общие технические условия. Взамен ГОСТ 959-2002 и ГОСТ 29111-91
  • Видео, демонстрирующее принцип работы аккумулятора на YouTube
  • Обслуживание и Восстановление свинцовых АКБ системы AGM"


Изобретенный французским физиком Рэймондом Луи Гастоном Планте в 1859 году, свинцово-кислотный аккумулятор был первым аккумулятором для коммерческого использования. Сегодня, заливные свинцово-кислотные аккумуляторы широко используется в автомобилях, электропогрузчиках, источниках бесперебойного питания (ИБП).

Заливные свинцово-кислотные батареи состоят из свинцовых пластин, выступающих в качестве электродов, погруженных в воду и серную кислоту. Эти батареи требуют некоторого технического обслуживания за счет потери водорода с течением времени.

В середине 1970-х годов, исследователи разработали необслуживаемые свинцово-кислотные аккумуляторы, которые могут работать в любом положении в пространстве. Жидкий электролит был заменен увлажненными сепараторами и была решена проблема изоляции. Были добавлены предохранительные клапаны, которые сделали возможным удаление воздуха во время заряда и разряда. Тем не менее, необслуживаемые батареи стоят дороже и имеют более короткий срок эксплуатации, чем заливные батареи.

Свинцово-кислотные батареи могут иметь жидкий или гелеобразный электролит.

В зависимости от областей применения, появились два обозначения свинцово-кислотно батарей. Это небольшие герметичные свинцово-кислотные (SLA , sealed lead acid ) батареи и большие клапанные регулируемые свинцово-кислотные (VRLA , valve regulated lead acid ) батареи . Конструктивно, обе батареи одинаковы. (Некоторые могут возразить, что название «герметичная свинцово-кислотная батарея » является неправильным, потому что свинцово-кислотный аккумулятор не может быть полностью герметичен. Я соглашусь — это действительно так, название не совсем корректное, но это не мешает ему быть широкораспространенным). Я сделаю акцент на портативных батареях, поэтому буду ориентироваться на SLA .

В отличие от заливной свинцово-кислотной батареи, как SLA , так и VRLA имеют низкий потенциал перенапряжения, чтобы исключить выделение газа во время зарядки. Перезаряд вызывает газообразование и обезвоживание батареи. Следовательно, эти батареи не могут быть заряжены до их полного потенциала.

Свинцово-кислотные батареи не имеют эффекта памяти. Если оставить аккумулятор на подзарядке в течение длительного времени, то это не вызывает его повреждения. Время удержания заряда свинцово-кислотным аккумулятором является лучшим среди различных типов аккумуляторных батарей. В то время, как никель-кадмиевая батарея саморазряжается примерно на 40 процентов от ее накопленной энергии за три месяца, SLA саморазряжается на ту же величину в течение одного года. SLA являются относительно недорогими источниками энергии.

SLA не поддается быстрой зарядке — типичный цикл заряда длится 8-16 часов.

SLA всегда должны храниться в заряженном состоянии. Оставив батарею в разряженном состоянии, вы запустите в ней процесс под названием сульфатация (по сути, это окисление и кристаллизация), что может привести к невозможности ее последующей перезарядки.

В отличие от никель-кадмиевых аккумуляторов, SLA не любит глубокого разряда. Полный разряд вызывает дополнительную деформацию, и каждый цикл лишает батарею небольшого количества мощности. Эта спадающая характеристика износа относится и к другим химическим батареям в той или иной степени. Для того, чтобы предотвратить частые глубокие разряды батареи, лучше использовать SLA несколько большей, чем требуется емкости.

В зависимости от глубины разряда и рабочей температуры, SLA обеспечивает от 200 до 300 циклов заряда/разряда. Основной причиной столь относительно короткого жизненного цикла является коррозия сетки положительного электрода, истощение активного материала и расширение плюсовых пластин. Эти изменения более ярко выражены при более высоких рабочих температурах.

Оптимальной рабочей температурой для батарей SLA и VRLA , является температура в 25°C . Как правило, повышение температуры на 8°C сокращает срок службы батареи в два раза. VRLA , работающая в течение 10 лет при 25°C проработает только 5 лет при 33°C, и чуть более года при температуре 42°C.

Среди современных аккумуляторных батарей, семейство свинцово-кислотных аккумуляторов имеет самую низкую плотность энергии, которая измеряется в Ватт/кг, что делает его непригодным для портативных устройств, которым требуется компактный источник питания. Кроме того, КПД таких аккумуляторов при низких температурах оставляет желать лучшего.

Свинцово-кислотные батареи хорошо работают на высоких импульсных токах. Полная мощность может быть выдана в нагрузку за короткое время. Это делает их идеальными для использования там, где может внезапно понадобиться большое количество энергии. Именно поэтому они используются для электрического запуска двигателей внутреннего сгорания в большинстве транспортных средств.

С точки зрения утилизации, SLA является менее вредными, чем никель-кадмиевые батареи, но высокое содержание свинца делает SLA неэкологичными.

Преимущества свинцово-кислотных аккумуляторов

  • Недорогие и простые в изготовлении — с точки зрения затрат на Вт·ч, SLA является наименее дорогими. Например, аккумулятор 12В емкостью 3.2 А·ч, имеющий размеры 134x67x60мм, стоит порядка 400 рублей.
  • Зрелая, надежная и хорошо освоеная технология — при правильном использовании, SL A достаточно долговечны
  • Низкий саморазряд — скорость саморазряда является одной из самой низких в аккумуляторных системах (3-20% в месяц)
  • Низкие требования к обслуживанию — нет эффекта памяти, нет необходимости доливать электролит
  • Способность к большой токоотдаче. Для упомянутого выше аккумулятора с C = 3.2 А·ч токоотдача составляет не менее 16А. Аккумулятор отдает большой пусковой ток в нагрузку, при этом не просаживая напряжение питания.

Недостатки свинцово-кислотных аккумуляторов

  • Не могут храниться в разряженном состоянии
  • Высокая чувствительность к изменению температуры — влияет и на продолжительность работы и на срок жизни аккумулятора
  • Низкая плотность энергии — слабая весо-энергетическая плотность аккумулятора ограничивает область применения стационарными и колесными приложениями, поэтому их целесообразно использовать только в больших и средних по размерам роботах (если уж говорить о роботах)
  • Позволяет только ограниченное количество полных циклов разряда — хорошо подходит для резервных приложений, в которых происходят только случайные глубокие разряды
  • Экологически вредные — электролит и содержание свинца делают их небезопасными для окружающей среды
  • Транспортные ограничения для заливных свинцово-кислотных батарей — в случае аварии может произойти утечка кислоты

Типичные характеристики свинцово-кислотных аккумуляторов

Приведу типичные значения параметров, встречающиеся для необслуживаемых 6 и 12 вольтовых батарей с емкостью порядка 0.8-7 А·ч:

  • Теоретическая энергоемкость: 135 Вт·ч/кг
  • Удельная энергоемкость: 30-60 Вт·ч/кг
  • Удельная энергоплотность: 1250 Вт·ч/дм 3
  • ЭДС заряженного аккумулятора: 2.11В
  • Рабочее напряжение: 2.1В (3 или 6 секций дают стандартные 6.3 или 12.6В)
  • Напряжение полностью разряженного аккумулятора: 1.75-1.8В (на одну секцию). Более низкий заряд не допускается
Напряжение Заряд
12.70В 100%
12.46В 80%
12.24В 55%
12.00В 25%
11.90В 0%
  • Рабочая температура: от -40 до +40ºС
  • КПД: 80-90%


Принцип работы свинцового аккумулятора

Источником электроэнергии на автомобиле при неработающем или работающем с малой частотой вращения коленчатого вала двигателе является аккумуляторная батарея. В настоящее время на автомобилях наиболее широко применяются свинцовые аккумуляторные батареи, состоящие из нескольких последовательно соединенных аккумуляторов. Применение кислотных аккумуляторов объясняется тем, что они обладают небольшим внутренним сопротивлением и способны в течение короткого промежутка времени (несколько секунд) отдавать ток силой в несколько сотен ампер, что необходимо для питания стартера при пуске двигателя.

Свинцовый аккумулятор электрической энергии был изобретен в 1859 году французским физиком Гастоном Планте . В последующие годы конструкция аккумулятора, особенно – химический состав его электродов (пластин) постоянно совершенствовалась. В настоящее время свинцовые аккумуляторы и аккумуляторные батареи широко применяются в разных областях техники в качестве накопителей электроэнергии (стартерные батареи, аварийные и резервные источники энергии и т. п.).

Конструктивно аккумулятор представляет собой емкость, наполненную электролитом, в которой размещены свинцовые электроды. В качестве электролита используется раствор серной кислоты и дистиллированной воды. Электроды выполнены в виде пластин, одна из которых изготовлена из губчатого свинца Pb , а вторая – из диоксида свинца PbO 2 . При взаимодействии электродов с электролитом между ними возникает разность потенциалов.

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в водном растворе серной кислоты.

При подключении к электродам аккумулятора внешней нагрузки начинается электрохимическая реакция взаимодействия оксида свинца и серной кислоты, при этом металлический свинец окисляется до сульфата свинца.

Во время разряда происходит восстановление диоксида свинца на положительном электроде (аноде) и окисление свинца на отрицательном электроде (катоде). При пропускании через электроды аккумулятора зарядного тока в нем протекают обратные реакции. При перезаряде аккумулятора, после исчерпания сульфата свинца начинается электролиз воды, при этом на аноде выделяется кислород, а на катоде - водород.

Электрохимические реакции (слева направо - при разряде, справа налево - при заряде):

Реакции на аноде:

PbO 2 + SO 4 2- + 4H + + 2e - ↔ PbSO 4 + 2H 2 O ;

Реакции на катоде:

Pb + SO 4 2- - 2e - ↔ PbSO 4 .

Физические процессы, происходящие в аккумуляторе, объясняются свойством электролитического растворения металлов, которое заключается в переходе положительно заряженных ионов металла в раствор. Легкоокисляющиеся металлы (например, свинец) обладают этим свойством в большей степени, чем инертные металлы.
При погружении свинцового электрода в раствор электролита от него начнут отделяться положительно заряженные ионы свинца и переходить в раствор, при этом сам электрод будет заряжаться отрицательно.

По мере протекания процесса растет разность потенциалов раствора и электрода, и переход положительных ионов в раствор будет замедляться.
При какой-то определенной разности потенциалов электрода и раствора наступит равновесие между силой электролитической упругости растворения свинца, с одной стороны, и силами электростатического поля и осмотического давления - с другой.
В результате переход ионов свинца в электролит прекратится.

При погружении электрода, изготовленного из двуокиси свинца, в раствор серной кислоты наблюдается такой же процесс, но результат получается иной. Двуокись свинца в ограниченном количестве переходит в раствор, где при соединении с водой ионизируется на четырехвалентные ионы свинца Рв4+ и одновалентные ионы гидроксила ОН .
Четырехвалентные ионы свинца, осаждаясь на электроде, создают положительный потенциал относительно раствора. Серная кислота образует в воде практически только на ионы НO + и HSO 4 .
Таким образом, при разряде аккумулятора расходуется серная кислота, образуется вода, а на обоих электродах - сульфат свинца. При заряде процессы протекают в обратном направлении.

При подключении потребителей в аккумуляторе возникает разрядный ток. При этом ионы сернокислотного остатка SO 4 соединяются со свинцом электродов и образуют на них сернокислый свинец PbSO 4 , а ионы водорода соединяются с кислородом, выделяясь на положительной пластине в виде воды.
В результате электроды покрываются сернокислым свинцом, а серная кислота разбавляется водой, т. е. при разряде аккумулятора плотность электролита уменьшается. Поэтому по плотности электролита можно судить о степени заряженности аккумуляторной батареи.

При прохождении электрического (зарядного) тока через аккумуляторную батарею протекают обратные электрохимические процессы. Ионы водорода, образующиеся в результате распада воды, взаимодействуют с сернокислым свинцом электродов.
Водород, соединяясь с сернистым осадком, образует серную кислоту, а на электродах восстанавливается губчатый свинец. Выделяющийся из воды кислород, соединяется со свинцом положительной пластины, образуя перекись свинца.
В результате этих процессов содержание воды в электролите уменьшается, а содержание кислоты увеличивается, что приводит к повышению плотности электролита.



По завершению процессов восстановления свинца на электродах заряд аккумулятора прекращается. При дальнейшем прохождении электрического тока через электролит начинается процесс электролиза (разложения) воды, при этом аккумулятор «закипает», и выделяющиеся пузырьки образуют смесь водорода и кислорода. Смесь этих газов является взрывоопасной, поэтому следует избегать перезаряда до появления электролизных явлений по разложению воды.

Кроме того, длительный перезаряд приводит к потере электролитом воды (испарению), в результате чего его плотность повышается и для корректировки требуется доливка дистиллированной воды.
При доливке воды необходимо помнить, что вода, попадающая в концентрированную серную кислоту, закипает и сильно разбрызгивает кислотные капли, что при попадании на открытое тело или одежду может привести к ожогам кожи, слизистых оболочек, прожигу одежды и другим неприятным последствиям.

При постоянном напряжении источника зарядного тока по мере увеличения степени заряженности аккумулятора повышается его ЭДС и, следовательно, уменьшается сила зарядного тока. Когда напряжение на клеммах источника тока будет равно ЭДС полностью заряженного аккумулятора плюс ЭДС поляризации, зарядный ток прекратится.

Среднее значение напряжения аккумулятора – 2 В . Поскольку электрооборудование современных автомобилей рассчитано для работы при напряжении в бортовой сети 12 или 24 В , аккумуляторы соединяют в батареи (по 6 или 12 шт .).

Важным параметром аккумулятора является его емкость, т. е. количество электрической энергии, которую способен отдать аккумулятор. Емкость – это произведение силы разрядного тока на продолжительность разрядки до предельно допустимого разряженного состояния. Измеряется емкость аккумулятора в ампер-часах (А×ч ). Емкость аккумулятора зависит, в первую очередь, от активной площади его электродов.
Поэтому повышения емкости можно достичь увеличением поверхности электродов, что достигается использованием нескольких параллельно соединенных между собой пластин, а также применением пористого материала для их изготовления, что позволяет использовать в качестве активной массы не только поверхность, но и внутренний объем пластин.

Емкость аккумулятора не постоянна, она зависит от силы разрядного тока, температуры электролита и состояния активной поверхности пластин. При увеличении разрядного тока и понижении температуры электролита емкость аккумулятора уменьшается, что объясняется неполным протеканием электрохимических реакций разрядки в этих условиях, вследствие сокращения времени разрядки и повышения вязкости электролита при низких температурах.

 Главная > Конспект

Лекция 3. Аккумуляторы

    Основные понятия. Электрические характеристики и классификация аккумуляторов. Свинцовые аккумуляторы. Щелочные аккумуляторы. Стартерные батареи. Аккумуляторы с расплавленным и твердым электролитом. Применение аккумуляторов на железнодорожном транспорте.

1. Основные понятия. Электрические характеристики и классификация аккумуляторов.

Аккумуляторами называются устройства, в которых электрическая энергия превращается в химическую, а химическая – снова в электрическую. То есть они служат для накопления химической энергии, превращаемой по мере необходимости в электрическую. Аккумуляторы или аккумуляторные батареи (АКБ) относятся к вторичным (перезаряжаемым) химическим источникам тока , характеризующимся многократностью использования и обратимостью. После работы (разрядки) аккумулятора его можно перевести в исходное состояние путём зарядки – пропускания через него постоянного электрического тока от внешнего источника. При заряде аккумулятор работает как электролизер, а при разряде – как гальванический элемент. Аккумулятор состоит из двух электродов (отрицательного заряженного анода и положительного заряженного катода) и электролита (ионного проводника) между ними. Анодом является электрод, на котором протекает окисление; катодом – электрод, на котором протекает восстановление. Ёмкость аккумулятора – такое количество электричества, которое можно получить при работе элемента в режиме разряда до достижения минимального значения напряжения: С = I·t (А·ч). Ёмкость зависит от природы и количества активных масс в электродах, их конструкции и состояния, тока разряда, концентрации электролита и так далее. ЭДС аккумулятора – разность электродных потенциалов катода и анода при разомкнутой внешней цепи: Е ак = φ к – φ а. ЭДС АКБ равна сумме ЭДС аккумуляторов. При разряде напряжение аккумулятора меньше ЭДС (из-за поляризации и омических потерь (внутреннего сопротивления)). В процессе его работы изменяется состав активных масс, и соответственно – ЭДС и напряжение. Кривые изменения напряжения аккумулятора во времени называют зарядными и разрядными кривыми. Зарядное напряжение увеличивается, а разрядное - уменьшается во времени (см. рисунок 3.1.). U, ЭДС, В U, ЭДС, В 2,5 2,2 1,8 1,7
100 Степень 100 Степень заряда разряда

Рисунок 3.1. Зарядные и разрядные кривые аккумуляторов

Энергия аккумулятора – это произведение его ёмкости на напряжение: W = C·U (Вт·ч). Она определяет то количество энергии, которое при разряде передается во внешнюю цепь. Мощность аккумулятора – количество энергии, отдаваемое в единицу времени: Р = W / t (Вт). Часто используют удельные значения энергии и мощности аккумуляторов – на единицу массы или объема или в единицу времени. КПД аккумулятора – отношение энергии, полученной при разряде, к энергии, подведённой при заряде аккумулятора: η = W p / W з. Срок службы аккумулятора – чаще измеряется в годах или в количестве разрядно-зарядных циклов. На практике для оценки работы АКБ используют зависимость напряжения аккумулятора от силы тока (рисунок 3.2.). Резкое снижение напряжения на участках АВ и СД обусловлено электрохимической поляризацией электродов; на участке ВС изменение напряжения почти линейное (обусловлено ещё и омическими падениями). Чем меньше падение U с ростом I, тем лучше работает аккумулятор. Классификацию аккумуляторов проводят в основном по химической природе электролита (рисунок 3.3). Кроме этого, они различаются по типу электродов и по конструкции. U,В А В рисунок 3.2. Вольт-амперная кривая С Д I, А

Аккумуляторы

Кислотные Щелочные с твёрдым электролитом с расплавленным (свинцовые) Ni-Cd, Ni-Fe (S-Na) электролитом

Рисунок 3.3. Классификация аккумуляторов по типу электролита

2. Свинцовые аккумуляторы

Свинцовые аккумуляторы в настоящее время являются наиболее распространёнными, в том числе на железнодорожном транспорте. Они состоят из двух решетчатых свинцовых пластин (для увеличения площади поверхности и ёмкости). Отрицательный электрод заполняется металлическим свинцом, положительный – диоксидом свинца PbO 2 . Электрохимическая схема:

Анод (-) Pb / H 2 SO 4 / PbO 2 (+) Катод

Электроды погружены в электролит – 25-30% раствор серной кислоты с плотностью 1,18 – 1,22 г/см 3 . Кроме электролита, решётки электродов разделяются пористыми сепараторами. Суммарная (токообразующая) реакция в аккумуляторе:

2 PbSO 4 + 2 H 2 O ↔ Pb + PbO 2 + 2H 2 SO 4 .

Прямая реакция в этой записи соответствует заряду аккумулятора, а обратная – его разряду (то есть его работе). При зарядке аккумулятора протекают следующие реакции: На аноде Pb +2 SO 4 + 2H 2 O – 2e - = Pb +4 O 2 + H 2 SO 4 , На катоде Pb +2 SO 4 + 2e - = Pb 0 + SO 4 2- . При разрядке аккумулятора (во время его работы): На аноде Pb +4 O 2 + 2H 2 SO 4 + 2e - = Pb +2 SO 4 + 2H 2 O + SO 4 2- ; На катоде Pb 0 + SO 4 2- - 2e - = Pb +2 SO 4 . Когда при разрядке напряжение падает до ≈ 1,8 В, дальнейшую разрядку производить нельзя – электроды покрываются толстым слоем сульфата свинца, аккумулятор выходит из строя. При работе кислотного свинцового аккумулятора нужно соблюдать ряд особенностей:

    Строго контролировать плотность электролита, с учётом условий работы аккумулятора; в частности, его концентрация зимой должна быть выше, чем летом. Следить за процессом заряда аккумулятора. Напряжение при заряде выше ЭДС (см рисунок 3.1.) и растёт в течение заряда, что ведёт в конце заряда к разложению воды по реакции 2Н 2 О = 2Н 2 + О 2 . Поэтому выделение пузырьков газа («кипение») служит признаком окончания заряда.
Достоинства кислотных аккумуляторов: высокие значения КПД (≈ 80%) и ЭДС (≈ 2 В), малое изменение напряжения при разряде, простота, невысокая цена, высокая удельная мощность (до 300 Вт/кг). Недостатки кислотных аккумуляторов: небольшая удельная энергия, высокий саморазряд при длительном хранении, относительно малый срок службы (около 5 лет), токсичность свинца.

3. Щелочные аккумуляторы

Среди аккумуляторов с щелочным электролитом наиболее распространены никель-кадмиевые (Ni-Cd) и никель-железные (Ni-Fe) аккумуляторы. Здесь положительный электрод содержит гидроксид никеля (III) Ni(OH) 3 (или NiOOH), а отрицательный – соответственно кадмий или железо. В качестве электролита используется 20-23% раствор гидроксида калия КОН, с плотностью 1,21 г/см 3 . Так, при работе Ni-Fe аккумулятора суммарное уравнение

Fe + 2Ni(OH) 3 ↔ Fe(OH) 2 + 2Ni(OH) 2 .

При разрядке на аноде Fe – 2e - = Fe 2+ , на катоде Ni(OH) 3 + e - = Ni(OH) 2 + OH - . Достоинства щелочных аккумуляторов: большой срок службы (до 10 лет), высокая механическая прочность; недостатки – невысокие КПД и разрядное напряжение. В последнее время получили распространение серебряно-цинковые и серебряно-кадмиевые аккумуляторы. Их достоинства – малый объём и вес, небольшое падение мощности при интенсивной работе; недостатки – высокая стоимость и нестабильная работа при низких температурах.

4. Стартерные батареи

Аккумуляторные стартерные батареи собираются в одном моноблоке – многоячеечном пластмассовом или эбонитовом корпусе. В каждой ячейке разделенные сепараторами электроды собраны в блок. Каждый электрод состоит из активной массы и металлической решетки, которая служит каркасом и токоотводом. Сепараторы изготавливают из пористой кислотостойкой пластмассы. В пробке, закрывающей отверстие для заливки электролита, имеются вентиляционное отверстие (для выхода газов) и отражатель (для предотвращения выплескивания). В последнее время в электродные массы таких АКБ добавляют сурьму и сплавы на основе свинца и кальция. Это приводит к более низкому газовыделению, снижению скорости саморазряда и незначительному расходу электролита. Основные неисправности стартерных батарей.

    Внешние – трещины в моноблоках, крышках, повреждение пробок, окисление или излом токоотводов. Внутренние – разрушение электродов, коррозия, оплывание активной массы, короткое замыкание, переполюсовка электродов, их сульфатация, повышенный саморазряд и т.д.
Для борьбы с внутренними неисправностями нужно избегать частых и длительных перезарядов АКБ, соблюдать плотность электролита, не допускать в нём посторонних примесей, применять для приготовления электролита только дистиллированную воду. Хранить заряженные АКБ с электролитом нужно в прохладных помещениях при постоянной температуре.

5. Аккумуляторы с расплавленным и твёрдым электролитом

В последние годы разрабатываются аккумуляторы с литиевым отрицательным электродом, неводным раствором электролита и положительным электродом на базе углерода, оксидов ванадия, никеля, кобальта и марганца. Представителем аккумуляторов с расплавленным электролитом является хлор-литиевый аккумулятор. На графитовом стержне адсорбирован газообразный хлор:

(–) Li / LiCl, KCl / Cl 2 , C (+)

Суммарный электрохимический процесс: 2Li + Cl 2 ↔ 2 LiCl. Преимущества такого аккумулятора – высокая удельная энергия (до 400 Вт*ч/кг) и мощность (до 2000 Вт/кг). Недостатки – высокая коррозионная активность электролита, токсичность хлора, взрывоопасность. Сейчас перспективными считаются аккумуляторы, где вместо чистого лития используются его сплавы с кремнием, алюминием, а катод состоит из хлористого теллура: (–) Li, Al / LiCl, KCl / TeCl 4 (+). Также активно разрабатываются аккумуляторы с твёрдыми и неводными электролитами (пропиленкарбонатом, фторуглеродами CF x , тионилхлоридом SOCl 2 и др.). Такие аккумуляторы уже сейчас дешевы, их ресурс составляет более 1000 циклов, у них высокая удельная энергия, однако пока они работают при малых токах.

6. Применение аккумуляторов на железнодорожном транспорте

Наиболее распространены и популярны на подвижном составе кислотные свинцовые аккумуляторы – этим они обязаны прежде всего стартерным батареям, предназначенным для различных средств передвижения. Они применяются для запуска двигателей внутреннего сгорания и являются тяговыми устройствами на маневровых электровозах, электрокарах и т.д. Закрытые свинцовые аккумуляторы (АБН-72, АБН-80 - антиблокировочные намазанные) используются в стационарных и напольных условиях для питания устройств железнодорожной автоматики, телемеханики и связи, а также на железнодорожных путях и сортировочных горках, имеющих электрическую и диспетчерскую централизацию. На их базе комплектуется большинство стационарных и вагонных батарей. Так, на тепловозах в основном применяют стартерные батареи 3-СТ-60 и 6-СТ-42 («3» или «6» - число последовательно соединенных аккумуляторов в АКБ, «60» или «42» - номинальная емкость при 10-часовом непрерывном режиме разряда). Щелочные аккумуляторы применяются также достаточно широко: на тепловозах, пассажирских вагонах, электрокарах, погрузчиках, рудничных электровозах, в переносной аппаратуре, для питания аппаратуры связи и электронной аппаратуры. Для переносных и портативных приборов и бытовой техники всё чаще используют литиевые аккумуляторы с расплавленным и твёрдым электролитом. Они имеют ёмкость до 10 А·ч и рассчитаны на длительный режим разрядки; являются многоцелевыми: обеспечивают работу радиоэлектронных и светотехнических изделий, переносных приборов и т.д. (транзисторных радиоприемников, карманных фонарей, тестеров, электрочасов, табло и пр.).

Лекция 4. Топливные элементы

    Основные понятия. Устройство топливных элементов (ТЭ). Водородно-кислородные элементы с различными электролитами. Установки с электрохимическим генератором. Применение топливных элементов.

1. Основные понятия

Топливные элементы (ТЭ) – это химические источники тока, в которых электроэнергия возникает за счёт химической реакции между топливом (восстановителем) и окислителем. Такие элементы могут работать длительное время, так как окислитель и восстановитель хранятся отдельно, вне элемента, а в процессе работы подаются к электродам – непрерывно и раздельно. В качестве топлива используются жидкие и газообразные восстановители: водород, метан и другие углеводороды, метиловый спирт, гидразин; основные окислители – это кислород и перекись водорода. Удельная энергия топливных элементов выше, чем у обычных гальванических элементов. Для большинства ТЭ ЭДС равна 1,0 – 1,5 В. Для уменьшения внутреннего сопротивления в ТЭ применяют электроды с высокой электрической проводимостью. Для уменьшения поляризации используют электроды с высокоразвитой поверхностью, на которые наносят различные катализаторы: платину, палладий, серебро, борид никеля и другие.

    Устройство топливных элементов (ТЭ). Водородно-кислородные элементы с различными электролитами.

Рассмотрим устройство ТЭ на примере наиболее распространенного кислородно-водородного элемента с щелочным электролитом. Превращение химической энергии в электрическую происходит при протекании реакции 2Н 2 +О 2 =2Н 2 О. При этом генерируется постоянный ток. К аноду подводится топливо (Н 2), к катоду – окислитель (О 2 или воздух). Между электродами находится электролит – раствор щелочи (в основном КОН).
Н 2 О N 2 1 2 3 Н 2 О 2 (воздух)

Рисунок 4.1. Устройство топливного элемента. 1 – анод, 2 – электролит, 3 – катод.

Схема данного элемента:

А (-) Н 2 , М / КОН/ М, О 2 (+) К

Здесь М – катализатор (проводник первого рода). Анодный процесс: Н 2 + 2 ОН - - 2е - = 2 Н 2 О; Катодный процесс: О 2 + 2 Н 2 О + 4е - = 4 ОН - . Суммарный процесс: 2 Н 2 + О 2 = 2 Н 2 О. Во внешней цепи происходит движение электронов от анода к катоду, а в растворе – движение ионов от катода к аноду. На практике также широко применяется кислородно-гидразиновый элемент, схема которого:

(-) Ni, N 2 H 4 / KOH / О 2 , С (+)

Здесь анодом является никелевый электрод, а катодом – графитовый стержень. При работе такого ТЭ на аноде N 2 H 4 + 4 OH - = N 2 + 4H 2 O + 4 e - , на катоде О 2 + 2Н 2 О + 4е - = 4 ОН - . Суммарная реакция N 2 H 4 + O 2 = N 2 + 2H 2 O. Вышеперечисленные ТЭ способны работать уже при комнатной температуре (их ещё называют низкотемпературными). Другие ТЭ (с электролитами из фосфорной кислоты, полимерными ионообменными мембранами) работают при температурах от 100 до 300 0 С. У данных ТЭ на аноде: 2Н 2 – 4е - = 4 Н + ; на катоде О 2 + 2Н 2 О + 4е - = 4 ОН - . Основные проблемы при функционировании ТЭ: чистота топлива (влияющая на его окисляемость), выбор катализатора (с целью удешевления ТЭ), повышение срока службы ТЭ. Сейчас в основном водород для ТЭ получают конверсией метана: СН 4 + 2Н 2 О = СО 2 + 4Н 2 .

3. Установки с электрохимическим генератором

В отличие от гальванических элементов ТЭ не могут работать без вспомогательных устройств. Для повышения напряжения, силы тока и мощности ТЭ соединяют в батареи. Система, состоящая из батареи ТЭ, устройств для подвода топлива и окислителя (а также их хранения и обработки), отвода продуктов реакции, регулировки температуры и преобразования тока и напряжения называется электрохимическим генератором (ЭХГ), или электрохимической установкой. Схема ЭХГ показана на рисунке 4.2.

Отвод продуктов реакции генератор отвод тепла Нагрузка Подача топлива батарея ТЭ подача окислителя

Система контроля температуры

Рисунок 4.2. Схема установки с ЭХГ.

4. Применение топливных элементов

ТЭ придаётся большое значение в связи с тем, что их КПД близок к 100%, и они могут применяться во многих отраслях хозяйства, не загрязняя окружающую среду. С каждым годом их применение всё шире. Основные сферы применения ТЭ: космические корабли и станции, электромобили и транспорт, стационарные энергоустановки. В настоящее время созданы кислородно-гидразиновые ЭХГ, имеющие мощность 50 кВт. Срок их службы – 2000 ч. Они производят электроэнергию в любое время суток, надёжны в эксплуатации, имеют малые размеры и способны выдерживать различные перегрузки. На космических кораблях и подводных лодках ЭХГ обеспечивают людей не только электроэнергией, но и водой. Наиболее распространены ЭХГ с щелочным электролитом, они обладают удельной энергией 400-800 Вт·ч/кг и КПД 70%, мощностью около 10 кВт. В последние годы всё больше уделяется внимание разработке ТЭ для различных мобильных приборов и устройств (ноутбуков, видеокамер и т.п.), а также ЭХГ для электромобилей, работающих на водороде или метаноле. Многочисленные публикации в научно-популярной прессе, сюжеты по ТВ подтверждают то, что дальнейшее совершенствование ТЭ является одним из самых перспективных направлений в развитии энергетики. ЭХГ ещё пока относительно дороги, однако сейчас ведутся интенсивные работы по их удешевлению с целью широкого использования экологически чистой энергии.

Лекция 5. Коррозия.

Теоретические вопросы в области коррозии

    Определение коррозии и значение коррозионной проблемы. Прямые и косвенные потери от коррозии. Причины возникновения коррозии. Химическая коррозия. Электрохимическая коррозия. Влияние водородного показателя среды на скорость коррозии. Оценка коррозионной стойкости металлов.

    Определение коррозии и значение коррозионной проблемы

Коррозия – это разрушение металлов в результате химической или электрохимической реакции. Разрушение металла, происходящее по физическим причинам, не является коррозией, а известно как эрозия, износ или истирание. В некоторых случаях химическое воздействие сопровождается физическим разрушением и называется коррозионным износом или фреттинг-коррозией. Это определение не распространяется на неметаллические материалы (пластмасса, дерево, гранит, цемент и бетон). Ржавлением называется коррозия железа и его сплавов, с образованием продуктов, состоящих в основном из гидратированных оксидов железа. При коррозии цветных металлов о ржавлении обычно не говорят. Ввиду того, что коррозия включает в себя химические превращения, для понимания теории коррозии необходимо знать основы электрохимии, так как коррозионные процессы в большинстве своем являются электрохимическими. Значение коррозионных исследований определяется тремя аспектами. Первый аспект – экономический. Его цель – уменьшение материальных потерь (в результате коррозии трубопроводов, резервуаров, котлов, деталей машин, судов, мостов, железнодорожных рельсов, подвижного состава). Второй аспект – повышение надежности оборудования, которое в результате коррозии может разрушаться с катастрофическими последствиями (трубопроводы высокого давления, контейнеры для токсичных материалов, лопасти и роторы турбин, деталей самолетов, АЭС, систем захоронения радиоактивных отходов и т.п.). Третий аспект – сохранность металлического фонда.

2. Прямые и косвенные потери от коррозии.

Различают прямые и косвенные потери от коррозии. Под прямыми потерями понимают стоимость замены прокорродированных конструкций или их частей. Другими примерами прямых потерь могут служить затраты на перекраску конструкций для предотвращения ржавления или эксплуатационные затраты, нанесение защитных металлических покрытий. Прямые потери легко подсчитать. Гораздо труднее поддаются расчетам косвенные потери, даже по приближенным оценкам они исчисляются миллиардами долларов по всему миру. Так, в США общая сумма прямых потерь – 4,2 % валового национального продукта. В России ежегодно до 20 % всего выплавляемого металла подвергается коррозии. Примеры косвенных потерь от коррозии:

    Простои (например, замена прокорродированной трубы или участка железнодорожного пути) – учитывается недовыработка продукции за время простоя. Потеря готовой продукции (утечка нефти, газа, воды). Потеря мощности – из-за отложения продуктов коррозии, так как, например, нарушается теплообмен или уменьшается полезный рабочий просвет трубопроводов. А в результате коррозии поршневых колец и стенок цилиндров ДВС увеличивается расход бензина и масла. Загрязнение продукции. Небольшие количества металлов в результате коррозии могут испортить партию продукции – поменять цвет красителей, ухудшить качество (особенно продуктов питания). Допуски на коррозию. Речь идёт о том, что приходится в ряде случаев в расчёте на коррозию изготавливать толщину стенок изделий больше, чем надо, а это затраты средств.
В ряде случаев косвенные потери не могут быть вообще выражены в денежных единицах – к ним можно отнести аварии, взрывы, пожары, крушения и пр., особенно связанные с человеческими жертвами. Как бы то ни было, коррозия приносит народному хозяйству огромные убытки. Коррозия сопровождается не только потерей металла, но и понижением его механической прочности.

3. Причины возникновения коррозии.

Основной причиной коррозии является термодинамическая неустойчивость металлов и сплавов в окружающей среде. Подавляющее большинство металлов в земной коре находится в виде оксидов, сульфидов и других соединений. При получении металлов в металлургии их переводят из такого стабильного состояния в элементарную форму, которая нестабильна. При контакте металла с внешней окислительной средой появляется движущая сила, стремящаяся превратить его в стабильные соединения, подобные тем, которые находятся в рудах. Примером является коррозия стали: железо переводится из элементарного состояния в окисленное (двух- и трехвалентное), которое соответствует таким минералам, как магнетит Fe 3 O 4 или лимонит Fe 2 O 3 ·H 2 O. Термодинамическая неустойчивость металлов количественно оценивается знаком и величиной изобарно-изотермического потенциала ΔG (энергии Гиббса). Самопроизвольно протекают те процессы, которые сопровождаются уменьшением энергии Гиббса, то есть для которых ΔG меньше нуля. Металлы, стоящие в ряду напряжений до водорода, имеют по сравнению с водородом более отрицательный потенциал, их окисленное состояние более устойчиво термодинамически, чем восстановленное. Для металлов, расположенных после водорода, восстановленное состояние термодинамически более устойчиво, то есть для них ΔG процесса окисления больше нуля. К этой группе металлов относятся коррозионно-стойкие золото, серебро, платина и др.

Учебно-методический комплекс

Основной целью преподавания дисциплины является формирование у студентов единого представления о процессе проектирования вагоноремонтного предприятия (вагонного депо или вагоноремонтного завода) как специализированного промышленного

  • Учебно-методический комплекс по дисциплине «Основы технической диагностики» (название)

    Учебно-методический комплекс
  • Учебно-методический комплекс по дисциплине «Холодильное оборудование вагонов» (название)

    Учебно-методический комплекс

    составлен в соответствии с требованиями Государственного образовательного стандарта высшего профессионального образования/основной образовательной программы по специальности/ направлению

  • Аккумулятор после разряда может повторно заряжаться от нескольких десятков до нескольких тысяч раз, в зависимости от конкретного типа. Наиболее распространенным является свинцовый кислотный аккумулятор , принцип устройства которого представлен на рис. 1.

    Рис. 1. Принцип устройства свинцового аккумулятора и электрохимическая схема разрядного процесса

    В заряженном состоянии анод (отрицательный электрод) такого аккумулятора состоит из свинца, а катод (положительный электрод) – из двуокиси свинца PbO2 . Оба электрода изготовлены пористыми, чтобы площадь их соприкосновения с электролитом была как можно больше. Конструктивное исполнение электродов зависит от назначения и емкости аккумулятора и может быть весьма разнообразным.

    Химические реакции при заряде и разряде аккумулятора представляются формулой

    Для заряда аккумулятора теоретически требуется удельная энергия 167 Wh/kg. Этим же числом выражается, следовательно, и теоретический его предел удельной аккумулирующей способности. Однако фактическая аккумулирующая способность намного меньше, вследствие чего из аккумулятора при разряде обычно получается электрическая энергия приблизительно 30 Wh/kg. Факторы, обусловливающие снижение аккумулирующей способности, наглядно представлены на рис. 2. Кпд аккумулятора (отношение энергии, получаемой при разряде, к энергии, расходуемой при заряде) обычно находится в пределах от 70 % до 80 %.

    Рис. 2. Теоретическая и фактическая удельная аккумулирующая способность свинцового аккумулятора

    Различными специальными мерами (повышением концентрации кислоты до 39 %, использованием пластмассовых конструкционных частей и медных соединительных частей и др.) в последнее время удалось повысить удельную аккумулирующую способность до 40 Wh/kg и даже немногим выше.

    Следует отметить, что еще в 1980-е годы примененялись открытые стационарные аккумуляторные батареи, удельная аккумулирующая способность которых находилась в пределах от 5 Wh/kg до 10 Wh/kg.

    Из вышеприведенных данных вытекает, что удельная аккумулирующая способность свинцового аккумулятора (а также, как будет показано в дальнейшем, и других типов аккумуляторов) существенно ниже, чем первичных гальванических элементов. Однако этот недостаток обычно компенсируется возможностью многократного заряда и, как результат, приблизительно десятикратным снижением стоимости получаемой из аккумулятора электроэнергии, возможностью составлять аккумуляторные батареи с очень большой энергоемкостью (при необходимости, например, до 100 MWh).

    Зависит от плотности электролита и может определяться экспериментальной формулой

    Согласно этой формуле, начальная ЭДС аккумулятора, в зависимости от конкретного типа, находится в пределах от 2,05 V до 2,10 V. Напряжение на зажимах аккумулятора может в конце разряда снизиться до 1,7 V, а в конце заряда повыситься до 2,6 V (рис. 3).

    Рис. 3. Изменение напряжения свинцового аккумулятора в некоторых возможных процессах заряда и разряда

    Каждый цикл заряда-разряда сопровождается некоторыми необратимыми процессами на электродах, в том числе медленным накапливанием невосстанавливающегося сернокислого свинца в массе электродов. По этой причине через определенное число (обычно приблизительно 1000) циклов аккумулятор теряет способность нормально заряжаться. Это может случиться и при длительном неиспользовании аккумулятора, так как электрохимический разрядный процесс (медленный саморазряд) протекает в аккумуляторе и тогда, когда он не соединен с внешней электрической цепью. Свинцовый аккумулятор теряет из-за саморазряда обычно от 0,5 % до 1 % своего заряда в сутки. Для компенсации этого процесса в электроустановках используется постоянный подзаряд при достаточно стабильном напряжении (в зависимости от типа аккумулятора, при напряжении от 2,15 V до 2,20 V).

    Другим необратимым процессом является электролиз воды («закипание» аккумулятора), возникающий в конце зарядного процесса. Потерю воды легко компенсировать путем доливки, но выделяющийся водород может вместе с воздухом привести к образованию взрывоопасной смеси в аккумуляторном помещении или отсеке. Во избежание опасности врыва должна предусматриваться соответствующая надежная вентиляция.

    В последние 20 лет появились герметически закрытые свинцовые аккумуляторы, в которых применяется не жидкий, а желеобразный электролит. Такие аккумуляторы могут устанавливаться в любом положении, а кроме того, учитывая, что во время заряда они не выделяют водорода, могут размещаться в любых помещениях.

    Кроме свинцовых выпускается более 50 видов аккумуляторов, основанных на различных электрохимических системах. В энергоустановках довольно часто находят применение щелочные (с электролитом в виде раствора гидроокиси калия KOH) никель-железные и никель-кадмиевые аккумуляторы, ЭДС которых находится в пределах от 1,35 V до 1,45 V, а удельная аккумулирующая способность – в пределах от 15 Wh/kg до 45 Wh/kg. Они менее чувствительны к колебаниям температуры окружающей среды и менее требовательны к условиям эксплуатации. Они обладают также бoльшим сроком службы (обычно от 1000 до 4000 циклов заряда-разряда), но их напряжение изменяется во время разряда в более широких пределах, чем у свинцовых аккумуляторов, и кпд у них несколько ниже (от 50 % до 70 %).

    В энергосистемах встречаются весьма мощные свинцовые и никель-кадмиевые аккумуляторные батареи, используемые в качестве резервных источников электропитания или для выравнивания электрических нагрузок. Самая крупная такая батарея была принята в эксплуатацию в 2003 году в Фэрбенксе (Fairbanks, Аляска, США); она состоит из 13 760 никель-кадмиевых элементов и присоединена через инвертор и трансформатор к сети напряжением 138 kV. Номинальное напряжение батареи составляет 5230 V и энергоемкость 9 MWh; срок службы элементов – от 20 до 30 лет. 99 % времени она работает в качестве компенсатора реактивной мощности, но может при необходимости в течение трех минут отдавать в сеть мощность в 46 MW (или в течение 15 min мощность 27 MW). Общая масса батареи составляет 1500 t, а ее изготовление обошлось в 35 млн. долларов. Имеются аккумуляторные батареи даже большей аккумулирующей способности; одна такая батарея (энергоемкостью 60 MWh) установлена в качестве резервного источника питания в Калифорнии (California, США) и может отдавать в сеть в течение 6 часов мощность 6 MW. =Аккумуляторные батареи с самого начала (со второй половины 19-го века) пытались использовать в средствах передвижения, так как питаемый от аккумулятора электропривод обладает, по сравнению с двигателями внутреннего сгорания, многими преимуществами. К ним относятся, например, намного более простая и компактная конструкция тягового двигателя (или двигателей), возможность использовать многодвигательные приводы (снабжая, например, каждое колесо отдельным двигателем), высокий кпд привода (от 80 % до 90 %), плавное регулирование скорости во всем требуемом диапазоне регулирования без применения редуктора (коробки скоростей), отсутствие специальной пусковой системы (аккумулятора и стартера), возможность аккумулировать энергию, освобождающуюся при торможении, более простые возможности использования автоматических систем управления и регулирования (в том числе беспроводных систем), более высокая надежность привода, меньшая потребность в обслуживании и больший срок службы, более безопасная эксплуатация (благодаря отсутствию огне- и взрывоопасного моторного топлива), отсутвие выхлопных газов и других выбросов, вредно действующих на окружающую среду, отсутствие дополнительных источников энергии (например, генераторов), малошумность.

    Применение свинцовых аккумуляторов в средствах передвижения (в автомобилях, на лодках, на поездах и др.) затруднено из-за их относительно большой массы, превышаюшей обычно массу двигателей внутреннего сгорания, а в случае приемлемой массы – слишком малым пробегом после заряда (обычно приблизительно 100 km). Поэтому для электромобилей и для других электрических средств передвижения предложены различные аккумуляторы с большей удельной аккумулирующей способностью.