Кинематическая вязкость масла какая лучше. Классификация и маркировка моторного масла по вязкости SAE. Какой параметр HTHS выбрать

Что такое индекс вязкости моторного масла 4.67 /5 (93.33%) 3 голос(ов)

Автомобилистов часто волнует вопрос, как разобраться в маркировке моторного масла. Ведь у каждого есть свой индекс вязкости моторного масла . Чем руководствоваться в данном в данном случае. Ответ на данный вопрос будет дан ниже.

Вязкость моторного масла – возможность масляной пленки задерживаться на стенках узлов двигателя, гарантируя этим качественное смазывание . Тем самым недопущение прямого контакта рабочих поверхностей, делая минимальное трение между ними. Таким образом, масляная пленка обеспечивает возможность деталям мотора долго служить, не изнашиваться и не допускать трения при высоких температурах.

Однако, вязкость – это не постоянный параметр. Т.е. вязкость моторного масла изменяется пропорционально перепаду температур.

Стоит помнить требования:

  1. Слишком низкая вязкость может способствовать повреждению узлов мотора, по причине трения метал о метал.
  2. При слишком большой вязкости узлам мотора достаточно затруднительно двигаться относительно друг друга. Густую жидкость сложнее прокачать по масляным каналам, приводит к недостаточной смазке и увеличению расхода горючего.

Узнать необходимую вязкость можно в техническом описании в руководстве по эксплуатации и техническому обслуживанию авто.

Автосервисы в Москве по замене моторного масла:

Загружаем автосервисы...

Индекс вязкости моторного масла – незаменимый параметр, обеспечения качественной работы мотора. Некоторые автовладельцы не интересуются этим, поэтому возникают трудности и различные поломки, в результате залива неподходящей жидкости.

Индекс вязкости моторного масла напрямую оказывает влияние на возможность жидкости находится на стенках мотора при изменении температуры.

Характеризует показатель жидкого состояния с повышением температуры.

Тем самым, чем ниже индекс, тем в более жидкое состояние переходит, таким образом, формируется тонкая масляная пленка. Большая вероятность того, что из-за ненадлежащей толщины пленки, увеличится изнашивание узлов. На практике, низкий индекс смазывающей жидкости вызывает тяжелый пуск мотора при низких температурах, либо большой износ при высоких температурах.

Автосервисы часто заливают дешевые масла вместо оригинальных. Чтобы этого избежать, кликните на любой из мессенджеров ниже, и узнаете 5 простых способов как избежать обмана 👇

Высокий индекс — широкий диапазоне температур, за счет чего обеспечивается качественное функционирование мотора и необходимая толщина масленой пленки.

Для квалификации смазывающих средств по определенным параметрам введен международный стандарт SAE. Указывается этикетке тары с моторной жидкостью.

Масла квалифицируются на зимние, летние и всесезонные. Такая квалификация приводится в технической литературе, так и в описаниях производителей. На самом же деле, в продаже, в большенстве, всесезонные.

  1. Летние масла обозначаются как SAE 20.
  2. Зимние SAE 20W.
  3. Индекс вязкости всесезонного моторного масла выглядит следующим образом *w-** , где * — это цифры (10W-40).

Рассмотрим это подробнее всесезонные.

  1. Буква w, это первая буква английского слова «winter» (с английского — зима). Цифры в индексе имеются слева и справа от «w». Таким образом, буква «w» обозначает, что данное моторное масло можно применять в любое время года. Такое масло более распространено на рынке. Летний вид масла будет иметь иное обозначение.
  2. Слева, отображают зимний параметр. Что это значит? Чем меньше цифра, тем более на низкую температуру рассчитано моторное масло. Рассчитывается достаточно просто. За основу берется значение 40. Если моторное масло 10w, то от значения слева от w вычитается 40, в итоге получаем -30C. Что и является максимально допустимой температурой, при которой моторное масло будет гарантированно прокачано в моторе.
  3. Цифры справа от «w» означают диапазон изменения вязкости масла. Таким образом, указывают на кинематическую вязкость в полностью разогретом моторе. Измеряется в сантистоксах. 1 сСт (сантистокс) – это вязкость воды при 20 градусов тепла. Вязкость с цифрой 40 будет от 13 до 16 сСт. Таким образом, чем выше цифры, тем более вязкой станет жидкость в нагретом моторе.

Цифры после тире с температурой в летний период никак не связаны. Многие автомобилисты считают, что цифры отображают температуру в летний период, для которого подходит масло. И это ошибочное мнение. Т.к. в разогретом двигателе масло достигает температуры свыше 100C.

Здесь квалификация немного иная. Обозначение содержит две буквы латинского алфавита:

  1. Первая S либо C. Для бензинового и дизельного двигателя, соответственно.
  2. Вторая характеризует класс качества. Чем ближе буква к концу алфавита, тем выше качество.

API для бензиновых моторов:

  • SC – авто до 1964 г.
  • SD – авто до 1964-1968 гг.
  • SE – авто до 1969-1972 гг.
  • SF – авто до 1973-1988 гг.
  • SG – авто до 1989-1994 гг.
  • SH – авто до 1995-1996 гг.
  • SJ – авто до 1997-2000 гг.
  • SL – авто до 2001-2003 г.
  • SM – авто после 2004 г.

API для дизельных моторов:

  • CB – авто до 1961 г.
  • CC – авто до 1983 г.
  • CD – авто до 1990 г.
  • CE – авто до 1990 г., для двигателя с турбиной.
  • CF – авто с 1990 г., для двигателя с турбиной.
  • CG-4 – авто с 1994 г., для двигателя с турбиной.
  • CH-4 – авто с 1998 г.
  • CI-4 – современные авто, для двигателя с турбиной.
  • CI-4 plus – значительно выше класс.

Таким образом, для бензиновых двигателей (годом выпуска после 2004 г) высшим классом качества считается моторное масло SM , а для дизельных (современные автомобили) CI – 4 plus .

Если вы собираетесь производить замену моторного масла, то следует идти по возрастающим характеристикам, но только лишь пару пунктов. Например, с SJ переходить на SL. Но никак нельзя переходить с SD на SL, т.к. масло может оказать слишком агрессивным.

Стандарт ACEA

  1. С А1 по А5 – моторное масло для бензиновых моторов
  2. С В1 по В5 – для дизельных двигателей.

Стоит знать, что А5 и В5, по данному стандарту, обладают низкой вязкостью, предназначены исключительно для определенных моторов.

Что случится с двигателем, если во время прогрева, в мороза, если вязкость моторного масла окажется слишком высокой, вполне очевидно. Увеличение силы трения приведет к увеличению температуры двигателя до тех пор, пока вязкость не станет оптимальной. Ничего плохого в этом нет, однако мотор будет работать при более высокой температуре, чем было рекомендовано производителем. Соответственно, способствует более быстрому износу узлов мотора. Возникает большая вероятность поломки. Касаемо автоматических коробок передач, стоит учесть, что придется производить частичную замену масла акпп чаще, т.к. повышенная температура увеличивает расход масла в двигателе .

Намного хуже, если залить жидкость вязкостью ниже, чем это требуется. То, что мотор может заклинить при высоких оборотах, вполне реально.

В заключение…

Чем старее авто, тем быстрее изнашиваются узлы двигателя. Выходит так, что жидкость с малой вязкостью уже не сможет обеспечить необходимую смазку и покрытие масляной пленкой узлов. Поэтому и нужно переходить на более вязкие моторное масла.

Руководствуясь данной статьей, можно определить, что наиболее оптимальный индекс вязкости моторного масла для моторов, проработавшие более 75% своего ресурса, будет для лета 15w-50, для зимы 0w или 5w. Для более новых авто, с малым пробегом лучше всего подойдет масло с индексом 5w-20 либо 5w-30.

Важным показателем смазочных свойств является вязкость масла. Она определяется химическим составом и структурой соединений в смазке. По сути, от данной характеристики зависит, в какой мере жидкость смазывает поверхности трущихся деталей силового агрегата. На её свойства влияют внешние факторы, такие как, температура, нагрузка и скорость сдвига. Именно поэтому, рядом с конкретным значением указаны условия испытания.

Что такое кинематическая и динамическая вязкость масла?

Для того чтобы понимать разницу, давайте рассмотрим их характеристики.
Кинематическая вязкость моторного масла, единицы измерения которой мм2 /с (сСТ), показывает его текучесть при нормальной и высокой температуре. Для замера этого показателя используют стеклянный вискозиметр. Засекают время, за которое смазка стекает по капилляру при заданной температуре. В данном случае используется низкая скорость сдвига, и кинематическая вязкость масла замеряется при 100 0С.

Динамическая вязкость измеряется ротационным вискозиметром, который имитирует условия, максимально близки к реальным.

Методы, которые определяют вязкость моторного масла предустановлены в спецификации SAE J300 APR97. Следуя именно этой сертификации, все смазочные жидкости разделяют на 3 типа:
- летние;
- зимние;
- всесезонные.

Если в названии используется только цифры, например, SAE 30, SAE 50 и т.д., то данные жидкости относятся к летним моторным смазкам. Если используется цифра и буква W, например, SAE 5W SAE 10W – зимние смазки. Когда в обозначении класса используется 2 этих вида, такая жидкость называется всесезонная.

Давайте ниже разберём, что означает вязкости масла по SAE.
Классификация SAE (Ассоциация автомобильных инженеров) разделяет все масла по своей способности оставаться в жидком состоянии (течь), и хорошо смазывать все детали силового агрегата при разных температурных показателях.

Выше приведены показатели температур, в зависимости от значения, которое определяет вязкость моторного масла. Таблица показывает, при каких температурных показателях текучесть конкретной жидкости не будет терять своих смазочных свойств.

Почему при замене смазочной жидкости нужно учитывать вязкость масла и что означают цифры?

Простой пример для наглядности. Как известно, низкая вязкость масла для двигателей способствует их нормальной работе зимой (SAE 0W, 5W). Если текучесть низкая, соответственно масляная пленка, покрывающая детали силового агрегата, будет тонкой. Производитель в техническом руководстве указывает допустимые значения, а также допуски для каждого типа двигателя. Если залить смазку с высокой текучестью, мотор будет работать с нагрузкой при повышенной температуре. Это резко снижает его моторесурс.

А теперь наоборот. Вы заливаете жидкость с текучестью ниже обозначенного уровня. В этом случае при эксплуатации случаются разрывы смазочной пленки, и мотор может заклинить. Вязкость масла в зависимости от температуры. Не нужно думать, что залив в двигатель «супер смазку», которое используется на спортивных автомобилях, ваше авто начнёт «летать». Нужно заливать ту жидкость, которую рекомендует производитель.
Еще одним заблуждением является то, что некоторые автолюбители не отличают тип смазочных материалов от их текучести. Так, например, вязкость синтетических масел может быть такая же, как минеральных, или полусинтетических. В данном случае они отличаются составом, а не физическими свойствами.

Какую вязкость масла выбрать для двигателя своего автомобиля.

В первую очередь необходимо посмотреть в техническое руководство. Производитель указывает в мануале, какая вязкость масла лучше подойдёт для двигателя, чтобы обеспечить его долговечную работу. Если нет возможности посмотреть рекомендуемую вязкость масла, то тогда важно определить несколько моментов:

  • при какой минимальной и максимальной температуре будет эксплуатироваться ваш автомобиль;
  • будет ли использоваться нагрузка (прицеп, дополнительный груз или внедорожная езда);
  • какое состояние двигателя (новый или бывший в эксплуатации).

Следуя этим показателям, вы должны подобрать ту вязкость автомобильного масла, которая идеально будет смазывать детали силового агрегата.

Несколько слов о других видах смазочных материалов

Трансмиссионные жидкости

Трансмиссионные жидкости, отвечают классификации SAE J306. Вязкость трансмиссионного масла зависит от температурных условий эксплуатации. Также, как моторные, трансмиссионные жидкости условно делят на:

  • зимние (SAE 70W, 75W, 80W, 85W);
  • летние (SAE 80, 85, 90, 140, 250);
  • комбинированные (например, SAE 75W-85).

Чтобы понять, какую смазку использовать в коробке вашего авто, необходимо смотреть рекомендации и допуски производителя КПП.

Гидравлические смазки

Помимо своей основной функции – передача давления, гидравлические жидкости выполняют смазку деталей гидравлических насосов. Исходя из этого, их делят на классы. Вязкость гидравлического масла бывает низкой, средней и высокой. Ниже приведена таблица, в которой показаны возможные классы гидравлических смазочных жидкостей.

Важнейшими эксплуатационными свойствами моторных масел являются: вязкостно-температурные (вязкость, индекс вязкости, температура застывания), противоизносные, противоокислительные, диспергирующие (моющие), коррозионные и др.

Вязкостно-температурные свойства. Вязкость и ее зависимость от температуры являются важнейшим показателем качества моторных масел.

От вязкости масла зависит его способность обеспечить жидкостное, гидродинамическое трение в подшипниках, а, следовательно, их нормальную работу. Вязкость масла влияет на изнашивание шеек коленчатого вала и вкладышей подшипников. От вязкости масла зависит количество отводимой от узла трения теплоты. Чем меньше вязкость, тем лучше охлаждается подшипник, так как через него прокачивается больше масла, а следовательно, и больше теплоты отводится вместе с ним из зоны трения.

Выбор оптимальной вязкости масла усложняется тем, что она очень зависит от температуры. Например, при понижении температуры от 100 до 50 °С вязкость может увеличиться в 4-5 раз. При охлаждении моторных масел до 0 С и тем более до отрицательных температур их вязкость увеличивается в сотни и тысячи раз.

За многие годы изучения зависимости вязкости от температуры было предложено много способов построения вязкостно-температурных характеристик и формул, выражающих эту зависимость. Но лишь немногие из них дают удовлетворительную сходимость результатов расчета и практического определения вязкости вискозиметром. Это объясняется в первую очередь тем, что масла представляют собой жидкости, молекулы которых, имея сложное строение, образуют различные структуры, зависящие как от молекулярной массы, так и от группового химического состава масла.

Для описания зависимости вязкости моторных масел от температуры практически используют уравнения Вальтера и советского химмотолога Рамайя.

Формула Вальтера в экспоненциальной форме имеет вид

где - кинематическая вязкость, мм 2 /с, при температуре t , °С; Т - абсолютная температура; а - коэффициент, зависящий от индивидуальных свойств жидкости.

Для современных масел лучшие совпадения с опытными данными получаются при а = 0,6.

Формула Рамайя имеет вид

,

где - динамическая вязкость масла;Т - абсолютная температура;

А и В - коэффициенты, постоянные для данного масла.

Формула позволяет представить вязкостно-температурную характеристику масла в координатах аргумент 1/Т - функция
.

Практическое применение обеих формул показало удовлетворительное совпадение результатов расчета с опытными данными. Несколько большую точность дает формула Рамайя. Принципиальным недостатком этих уравнений является их эмпирический характер, не вскрывающий сущности физических явлений, происходящих в маслах при изменении их температуры.

На основе уравнений Вальтера и Рамайя построены и напечатаны специальные координатные сетки, на которых можно быстро построить вязкостно-температурные кривые различных моторных масел.

Практически зависимость кинематической вязкости от температуры можно изображать в трех системах координат. В диапазоне температур 50-100 °С проще всего вязкостно-температурную характеристику строить в координатах t и (рис. 1). При более широком диапазоне температур, например, от температуры застывания масла до 100 °С, рекомендуется применять сетку координат Рамайя (рис. 2).

Очень важной является задача количественной оценки крутизны вязкостно-температурной кривой. Предложено несколько таких оценочных параметров.

1. Отношение кинематиче ских вязкостей v so и v 100 . Этот простой и надежный параметр характеризует крутизну вязкостно-температурной кривой в относительно узком диапазоне температур прогретого масла, но не позволяет оценить ее в наиболее важной области низких температур, оказывающих решающее влияние на пусковые характеристики двигателя. Для моторных масел, применяемых летом или в условиях жаркого климата, v 50 /v 100 < 6; для масел, предназначенных к применению зимой и особенно в северных районах, v 50 /v 100 < 4.

2. Температурный коэффициент вязкости (ТКВ) при температурах от 0 до 100 °С

ТКВ 0 -100 = (v 0 - v 100)/v 50 .

При оценке крутизны вязкостно-температурной кривой в условиях низких температур ТКВ дает более четкую картину, чем отношение v 50 /v 100 . Для зимних масел ТКВ 0-100 <: 22, для всесезонных < 25, для летних < 35-40.

3. Индекс вязкости (ИВ). В современных отечественных и зарубежных стандартах для оценки крутизны вязкостно-температурной кривой применяют показатель ИВ, основанный на сравнении масла с двумя эталонами.

Один из этих эталонов характеризуется крутой вязкостно-температурной кривой, а другой - пологой. Эталону:

- с крутой кривой присвоен индекс вязкости, равный 0,

- а эталону с пологой кривой - 100.

Чем выше ИВ масла, тем более пологая вязкостно-температурная кривая и тем лучше масло для зимней эксплуатации.

На рис. 3 приведен график, поясняющий принцип определения вязкостно-температурных свойств масел с помощью ИВ. На графике изображены вязкостно-температурные характеристики трех масел: двух эталонных (верхняя и нижняя кривые) и одного исследуемого (средняя кривая).

Практически ИВ вычисляют по формуле (ГОСТ 25371-82)

ИВ = (v - v 1)/(v - v 2), или ИВ = (v - v 1)/v 3 ,

где v - кинематическая вязкость масла при 40 °С с ИВ = 0 и имеющим при 100 °С такую же кинематическую вязкость, как испытуемое масло, мм 2 /с; v 1 - кинематическая вязкость испытуемого масла при 40 °С, мм 2 /с; v 2 - кинематическая вязкость масла при 40 °С с ИВ = 100 и имеющим при 100 °С такую же кинематическую вязкость, как испытуемое масло, мм 2 /с; v 3 = v-v 2 .

Вязкостью называется свойство жидкости оказывать сопротивление при перемещении ее слоев под действием внешней силы. Это свойство является следствием трения, возникающего между молекулами жидкости. Различают динамическую и кинематическую вязкость.

Вязкость существенно меняется с изменением температуры. С понижением температуры взаимодействие между молекулами усиливается, и вязкость масла увеличивается. Так, например, при изменении температуры на 100 °С вязкость масла может изменяться в 250 раз. Учитывая линейный характер зависимости, можно по номограмме определить вязкость масла при любой температуре.

С повышением давления вязкость масла возрастает. Величины давления в масляной пленке, заключенной между трущимися поверхностями, могут быть значительно выше, чем сами нагрузки на эти поверхности. В масляной пленке коренного подшипника коленчатого вала двигателя величина давления достигает 500 МПа.

С повышением давления вязкость более жидких масел (с пологой вязкостно-температурной характеристикой) возрастает в меньшей степени, чем более вязких масел (с более крутой вязкостно-температурной характеристикой).

При давлении (1,5-2,0)10 3 МПа минеральное масло затвердевает. Вводимые присадки в базовое масло способствуют сохранению несущей способности масляного слоя при увеличении нагрузки.

Вязкость является основным параметром при подборе масла, поэтому она всегда указана в маркировке масла. Для маркировки вязкость определяют при тех температурах, при которых работают узлы трения. Моторные масла для двигателей внутреннего сгорания маркируют по кинематической вязкости мм 2 /с (Сст) при температуре 100 °С, которая принята в качестве средней температуры масла в двигателе (картер, система смазки).

Для получения масел с хорошими вязкостно-температурными свойствами в качестве базовых используют маловязкие масла, имеющие вязкость менее 5 мм 2 /с при температуре +100 °С, и добавляют в них вязкостные присадки (загустители). В качестве присадок применяют такие полимерные соединения, как полиизобутилен, полиметакрилаты, полиалкилстиролы и др.

С понижением температуры объем макромолекул полимера уменьшается (молекулы «свертываются» в клубки). При повышении температуры клубки макромолекул «разворачиваются» в длинные разветвленные цепи, присоединяя молекулы базового масла, объем их становится больше, и вязкость масла возрастает.

Загущенные присадками масла обладают необходимым уровнем вязкости при положительных температурах 50-100 °С, пологой кривой изменения вязкости (рис. 4) и, следовательно, высоким индексом вязкости, равным 115-140. Такие масла получили название всесезонных, так как имеют одновременно свойства одного из зимних классов и одного из летних.

Рис. 4. Влияние вязкостной присадки на вязкость масла

при различных температурах:

1 – маловязкое масло; 2 – то же масло с вязкостной

присадкой (загущенное)

В системах смазки современных автомобильных двигателей применяются именно загущенные всесезонные масла. При их использовании мощность двигателя повышается на 3-7 % (что обеспечивается высоким индексом вязкости и способностью загущенных масел снижать вязкость в парах трения при высоких скоростях сдвига), облегчается пуск и сокращается время прогрева, снижаются механические потери на трение, и, как следствие, расход топлива, увеличиваются долговечность деталей и срок службы масел. Экономия топлива достигает 5 % при больших пробегах и 15 % при коротких пробегах в зимнее время с частыми пусками двигателя (рис. 5).

Рис. 5. Снижение расхода бензина при движении автомобиля

по мере прогрева двигателя

К недостаткам загущенных масел относят низкую стабильность загущенных присадок при высоких температурах, что вызывает ухудшение вязкостно-температурных характеристик масел при длительной бессменной работе их в двигателях.

Индекс вязкости (ИВ), оценивающий вязкостно-температурные свойства масел, является условным показателем, характеризующим степень изменения вязкости масла в зависимости от температуры и определяемый путем сравнения вязкости данного масла с двумя эталонными маслами, вязкостно-температурные свойства одного из которых приняты за 100, а второго - за 0 единиц.

Индекс вязкости определяют по номограмме (рис. 6), расчетным путем или по специальным таблицам. Для определения ИВ по номограмме необходимо знать значения кинематической вязкости масла при температурах +50 °С и +100 0 С.

Рис. 6. Номограмма для определения индекса вязкости моторных масел

Чем выше ИВ, тем более пологой кривой (рис. 7) характеризуется масло и тем лучше его вязкостно-температурные свойства. Из двух масел с одинаковой вязкостью при температуре +100 °С, но с разными ИВ, одно (1) можно применять только в теплое время, так как при низких температурах оно теряет подвижность, а другое (2) - всесезонно, так как оно обеспечит легкий пуск двигателя при низких температурах воздуха и жидкостное трение при рабочих температурах.

Рис. 7. Зависимость вязкости моторных масел от температуры

для различных значений индекса вязкости: 1 – ИВ 90; 2 – ИВ 140

Учитывая то обстоятельство, что вязкость масла и индекс вязкости определяют работоспособность узла трения, то в стандартах на масла эти параметры нормируются в количественном выражении. Для автомобильных масел ИВ должен быть не ме нее 90.

Поэтому при производстве моторных масел необходимо лю быми доступными и эффективными методами уменьшить зависимость вязкости масла от температуры, т. е. увеличить их ИВ и понизить температуру застывания. Это относится в первую очередь к зимним и всесезонным маркам масел.

Температурные характеристики моторных масел следующие:

Температура вспышки – самая низкая температура, при которой пары нагреваемого в стандартных условиях масла образуют с воздухом смесь, которая вспыхивает от открытого огня, но быстро гаснет из-за недостаточно интенсивного испарения.

Температура воспламенения – та температура, при которой пары нагреваемого в стандартных условиях масла образуют с воздухом такую смесь, которая воспламеняется и горит от открытого огня не менее 5 с. Температура вспышки является показателем пожароопасного масла. По ней можно судить о присутствии в масле летучих фракций, которые могут быстро испаряться в работающем двигателе и увеличивать расход масла на угар. Понижение температуры вспышки масла свидетельствует о разбавлении масла топливом.

Температура застывания (температура начала текучести) – самая низкая температура, при которой масло еще обладает некоторой текучестью. Определяемая в стандартных условиях температура застывания на 3 °С выше действующей температуры затвердевания, при которой в течение 5 с масло находится в неподвижном состоянии.

Температура помутнения – та, при которой появляются мелкие кристаллы парафина и масло мутнеет. В последующем кристаллы образуют каркас и масло теряет подвижность. Между кристаллами масло остается еще жидким и при сильном встряхивании текучесть масла может восстановиться. Температура помутнения зависит от скорости охлаждения, термической обработки масла и от механических воздействий.

Температура застывания служит предельной минимальной температурой разливки и, частично, эксплуатации масла. Минимальная температура эксплуатации моторных масел определяется по низкотемпературным характеристикам вязкости и перекачки.

Застывание - свойство, определяющее потерю текучести масла. При понижении температуры до определенной величины текучесть масла снижается, а при дальнейшем понижении оно застывает. С увеличением вязкости масла из него выделяются наиболее высокоплавкие углеводороды (парафин, церезин), а при полной потере текучести масла микрокристаллы твердых углеводородов (парафина) образуют пространственную кристаллическую решетку, связывающую все масло в единую неподвижную массу.

Температуру, при которой масло теряет текучесть, называют температурой застывания. Нижний температурный предел применения масла примерно на 8-12 °С выше температуры застывания, т.е.:

t ОВ = t 3 - (8-12) °C,

где: t ов - нижний температурный предел окружающего воздуха (применения данной марки моторного масла), 0 С;

t 3 - температура застывания определенной марки масла, регламентируемая стандартом, 0 С.

Снижения температуры застывания масел добиваются путем депарафинизации (частичного удаления парафинов) или добавлением присадок-депрессоров в процессе их производства. Депрессоры предотвращают образование кристаллической решетки, когда кристаллы парафина объединяются в объемные структуры. Понижая температуру застывания масла, депрессоры не влияют на его вязкостные свойства.

Противоизносные (смазываю щие) свойства характеризуют способность масла препятствовать износу поверхностей трения. Образующаяся на трущихся поверхностях прочная пленка исключает непосредственный контакт деталей. Высокие противоизносные свойства масла особенно востребованы при небольших частотах вращения коленчатого вала, когда высоки удельные нагрузки, а также когда геометрические формы или размеры деталей имеют существенные отклонения, что чревато задирами, схватыванием и разрушением трущихся поверхностей.

Противоизносные свойства масла зависят от его вязкости, вязкостно-температурной характеристики, смазывающей способности, чистоты масла.

С повышением температуры масла адсорбционный слой ослабляется, а при достижении критической температуры 150-200 °С, на грани прочности пленки и сухого трения, разрушается. Масла с высокими противоизносными свойствами способны формировать для предупреждения изнашивания такой режим трения, который исключает непосредственный контакт трущихся поверхностей металлов. Поэтому возможное в данном случае изнашивание вызывается цикличностью нагрузок на отдельных участках поверхностей трения и усталостными разрушениями металла (усталостные трещины в галтелях коленчатых валов).

О смазывающей способности («маслянистости») масла судят по его химическому составу, вязкости, наличию присадок. На маслянистость влияют содержащиеся в маслах и обладающие высокими поверхностно-активными свойствами смолистые вещества, высокомолекулярные кислоты, сернистые соединения.

Правильный выбор вязкости масла в значительной мере влияет на скорость изнашивания. Высоковязкие масла при низкой температуре загустевают и плохо поступают к трущимся поверхностям деталей. В то же время пуск и прогрев двигателя на менее вязких (жидких) маслах облегчается, режим жидкостного трения наступает быстрее.

Для снижения потерь на трение в моторные масла вводят антифрикционные присадки, основой которых служат беззольные органические соединения, содержащие благородные элементы (никель, кобальт, хром, молибден). Малорастворимые поверхностно-активные вещества такого типа образуют в узлах трения многослойные защитные пленки с внедрением легирующих металлов в зону трения. Особое место при этом принадлежит молибдену, атомы которого способны связывать атомы железа и образовывать структуры, стойкие к питтингу (местному выкрашиванию металла), фреттинг-коррозии и др. Более того, только этот металл образует в результате окисления поверхностных слоев оксиды, температура плавления и твердость которых на порядок ниже, чем у металла поверхности трения.

Смазочные свойства моторного масла , как и масел для других машин и механизмов, обусловлены его вязкостью и маслянистостью, влияние и механизм действия которых различны.

Вязкость как свойство, связанное с внутренним (молекулярным) трением, проявляет себя при жидкостном (гидродинамическом) трении. Маслянистость же масла важна при возникновении граничного трения. В этих условиях прочность масляной пленки является решающим фактором, препятствующим непосредственному контакту трущихся деталей.

Установлено, что прочность масляной пленки зависит от полярной активности молекул масла, т. е. от их способности образовывать прочные слои строго ориентированных молекул.

Ориентировочное поле полярно-активных молекул образует на поверхности трущихся деталей своеобразный ворс. Чем длиннее полярно-активные молекулы масла и чем прочнее они соединяются с поверхностью трущихся деталей, тем выше маслянистость масла. Но это очень упрощенное объяснение, позволяющее понять лишь основную сущность этого явления.

В действительности в реальных условиях возникают обычно не мономолекулярные, а мультимолекулярные ориентированные слои, в которых внутримолекулярное трение приобретает особый характер, заключающийся в том, что происходит трение между отдельными слоями молекул, а не между отдельными молекулами. При соответствующем подборе полярно-активных веществ, входящих в масло, число слоев может доходить до тысячи и более, а их суммарная толщина до 1,5-2 мкм. С повышением температуры верхние слои, не имеющие прочной связи с поверхностью детали, дестабилизируются и разрушаются, но первый мономолекулярный слой разрушить трудно.

Экспериментально установлено, что коэффициент трения между деталями мало зависит от числа мономолекулярных слоев и практически одинаков как при одном, так и при нескольких десятках таких слоев. Этим можно объяснить тот факт, что достаточно добавить в масло очень немного веществ, обладающих высокой полярной активностью, как маслянистость масла, т. е. прочность его масляной пленки резко возрастает.

Процессы, связанные с маслянистостью, изучают на специальных машинах трения. Количественное определение смазывающих свойств масел ведут с помощью четырехшариковой машины (ГОСТ 9490-75*). Принцип действия этой машины заключается в следующем.

Три шарика диаметром 12,7 мм из стали ШХ-15 (подшипниковой серии) устанавливают неподвижно в виде треугольника в специальной чашеобразной обойме, в которую затем наливают испытуемое масло. На эти шарики накладывают сверху такой же шарик (четвертый), закрепленный во вращающемся, как у сверлильного станка, шпинделе.

Частота вращения шпинделя 1460±70 мин -1 . Проворачивание нижних шариков при испытании не допускается.

На четырехшариковой машине проводят серию определений, каждое из которых выполняют на новой пробе испытуемого масла и новых шариках. На машине определяют критическую нагрузку, нагрузку сваривания, индекс задира и показа тель износа . При определении первых трех параметров продолжительность испытаний составляет 100,2 с, при оценке показателя износа - 600,5 мин. Режимосевой нагрузки должен быть выдержан в соответствии со стандартом.

Индекс задира и критическая нагрузка характеризуют способность масла защищать трущиеся поверхности от повреждений и задиров, а нагрузка сваривания оценивает предельную нагрузку, которую может выдержать данное масло. Показатель износа определяет влияние смазочного материала на изнашивание смазываемых поверхностей.

Его оценивают по диаметру пятен (следов) на всех трех нижних шариках. Измерения осуществляют посредством микроскопа с 24-кратным увеличением и отсчетной шкалой с ценой деления не более 0,01 мм. Каждое пятно измеряют в двух направлениях: в направлении скольжения и перпендикулярном ему.

Результатом считается среднее арифметическое всех измерений по трем нижним шарикам.

Принцип действия четырехшариковой машины показан на рис. 8.

Рис. 8. Принцип действия четырехшариковой машины

для определения противоизносных и противозадирных свойств масел:

а - схема нагружения шариковой пирамиды; б - схема

четырехшариковой обоймы; в - конструкция основного узла;

1 - неподвижные шарики; 2 - вращающийся шарик;

3 - исследуемое масло

Противоокислительные свойства характеризуются стойкостью масла к окислению и полимеризации в процессе работы двигателя, а также разложению при хранении и транспортировании.

Продолжительность работы масла в двигателе зависит от его химической стабильности, под которой понимается способность масла сохранять свои первоначальные свойства и противостоять внешнему воздействию при нормальных температурах.

На стабильность моторных масел оказывают влияние следующие факторы : химический состав, температурные условия, длительность окисления, каталитическое действие металлов и продуктов окисления, площадь поверхности окисления, присутствие воды и механических примесей. Повышенное давление воздуха ускоряет процесс окисления масла, так как усиливается процесс его взаимной диффузии с воздухом.

На процесс окисления решающее влияние оказывает температура . Масла, хранящиеся при температуре 18-20 °С, сохраняют свои первоначальные свойства в течение 5 лет. Начиная с 50-60 °С, скорость окисления удваивается с увеличением температуры на каждые 10 °С. Поэтому высокая тепловая напряженность деталей форсированных двигателей, с которыми приходится контактировать моторному маслу, и взаимодействие с прорывающимися в картер газами из камер сгорания (на такте сжатия их температура составляет около 150-450 °С для бензиновых двигателей и около 500-700 °С для дизелей) резко ухудшают условия их работы. Повышение тепловой напряженности моторных масел связано также с отдельными конструктивными решениями: использование наддува; применение герметизированной системы охлаждения (увеличивает температуру поршня на 10-20 0 С); уменьшение объема системы смазки двигателя; масляное охлаждение поршней и др.

Термоокислительную ста бильность определяют как устойчивость масла к окислению в тонком слое при повышенной температуре методом оценки прочности масляной пленки.

Для замедления реакций окисления и уменьшения образования отложений в двигателе в масла вводят противоокислительные присадки.

Детергентно - диспергирующим (моющим) свойством масла называют его способность препятствовать слипанию углеродистых частиц и удерживать их в состоянии устойчивой суспензии, что значительно снижает процессы образования лаковых отложений и нагара на горячих поверхностях деталей двигателя.

При использовании масел с хорошими диспергирующими свойствами детали двигателей выглядят чистыми, как бы вымытыми, отсюда и появление термина «моющие».

Диспергирующие свойства масел оценивают в баллах от 0 до 6 по методу ПЗВ. Образование лаковых отложений на деталях двигателя, работающего на маслах с моющими присадками, уменьшается в 3-6 раз, т.е. с 3-4,5 до 0,5-1,5 балла.

Моющие присадки бывают зольными и беззольными. Зольные присадки содержат бариевые и кальциевые соли сульфикислот (сульфонаты), а также алкилфеноляты щелочноземельных металлов бария и кальция. Масла с зольными присадками в количестве 2-10 %, сгорая, образуют золу, прилипающую к поверхности деталей. Беззольные моющие присадки не образуют золы при сгорании масел, так как не содержат металлов.

Коррозионные свойства масел зависят от наличия в них органических кислот, перекисей и других продуктов окисления, сернистых соединений, неорганических кислот, щелочей и воды.

Коррозионность свежего масла, в котором присутствуют природные органические кислоты и сернистые соединения, незначительна, но резко возрастает в процессе эксплуатации. Присутствие в свежих маслах органических (нафтеновых) кислот связано с их неполным удалением в процессе очистки.

Коррозионное действие масел связано также с содержанием в них 15-20 % сернистых соединений в виде сульфидов и. компонентов остаточной серы, которые при высоких температурах приводят к выделению сероводорода, меркаптанов и других активных продуктов. В условиях высоких температур сернистые соединения особенно агрессивны по отношению к серебру, меди, свинцу. В процессе использования масла содержание кислот в нем возрастает в 3-5 раз, что зависит от его химической стабильности, содержания антиокислителей и условий работы.

Оценку коррозионной стойкости производят по кислотному числу, которое для свежих масел не превышает 0,4 мг КОН на 1 г масла. В коррозионном отношении эта концентрация практически не опасна.

Коррозионные процессы в двигателях замедляют нейтрализацией кислых продуктов путем введения антикоррозионных присадок; замедлением процессов окисления путем добавления в масла антиокислительных присадок; созданием на поверхности металла (при изготовлении деталей) стойкой защитной пассивированной пленки из органических соединений, содержащих серу и фосфор.

Известны присадки и ингибиторы коррозии и их композиции, которые снижают все виды износа.

Подбор масла с оптимальными значениями эксплуатационных свойств зависит от конструкции и режима работы узла трения.

Вязкость - одно из важнейших свойств масла, имеющее многостороннее эксплуатационное значение. От вязкости в значительной степени зависит режим смазки пар трения, отвод тепла от рабочих поверхностей и уплотнение зазоров, энергетические потери в двигателе, его эксплуатационные свойства. Быстрота пуска двигателя, прокачивание масла по системе смазки, охлаждение трущихся поверхностей деталей и их очистка от загрязнений также зависят от вязкостно-температурных свойств масла.

Масла повышенной вязкости используются для высоконагруженных, низкооборотных или работающих в условиях напряженного теплового режима двигателей. При этом, чем выше вязкость масла в работающем двигателе, тем надежнее уплотнения, меньше вероятность прорыва газов, ниже угар масла. Поэтому масла с большой вязкостью применяют в случаях, когда двигатель изношен, зазоры увеличены или условия эксплуатации характеризуются высокой запыленностью, повышенной температурой, изменяющимися в больших пределах нагрузками.

Масла с меньшей вязкостью применяют для легконагруженных высокооборотных двигателей. Они облегчают пуск двигателя, лучше прокачиваются по системе смазки и очищаются от механических примесей, обеспечивают хороший отвод тепла от рабочих поверхностей деталей.

Температура масла значительно влияет на его кинематическую вязкость. С понижением температуры вязкость увеличивается, а с повышением - уменьшается. Чем меньше перепад вязкости в зависимости от температуры, тем в большей степени масло удовлетворяет эксплуатационным требованиям.

Увеличение вязкости масел с понижением температуры приводит к значительным трудностям при использовании автомобилей, особенно в зимнее время года при пуске двигателей. При отрицательных температурах в диапазоне от -10 °С до -30 °С резко увеличивается момент сопротивления проворачиванию коленчатого вала двигателя, медленнее достигается минимальная пусковая частота вращения, ухудшается подача масла к трущимся поверхностям деталей.

Надежный пуск бензиновых двигателей осуществляется при значениях частоты вращения коленчатого вала в пределах 35 - 50 мин -1 при температуре окружающего воздуха -10 0 С... -20 0 С, а дизелей с различным способом смесеобразования - в среднем в интервале 100 - 200 мин -1 при температуре 0 0 С. Вязкость моторного масла, при которой пусковая система современных двигателей различной конструкции не обеспечивает вращения коленчатого вала, изменяется в пределах (4 - 10) ·10 3 мм 2 /с. Поэтому для обеспечения пуска двигателя в холодное время моторные масла должны обладать низкой вязкостью при отрицательных температурах.

В настоящее время на российском рынке автомобильной химии наблюдается изобилие продукции. Моторные масла, их марки и характеристики представлены в таком богатом ассортименте, что вызывают затруднение в выборе даже у опытных водителей. Один из главных показателей, по которому необходимо выбрать подходящий продукт для своего авто, – вязкость моторного масла.

Что означает «вязкость»

О вязкости моторных масел существует много различных мнений – как среди профессионалов, так и среди любителей. Некоторые утверждают, что степень вязкости, или текучести – это показатель густоты смазки, то есть чем выше вязкость, тем она гуще. На самом деле вязкость расшифровывается не так просто. Для того чтобы это понять, нужно познакомиться со спецификацией SAE. Данный стандарт определяет температурный диапазон, в котором вязкостные качества масел для автомобилей соответствуют нужному уровню. Эти характеристики измеряются лабораторным путём при определённых температурах.

Классификация SAE

Более 100 лет назад в США образовалось сообщество инженеров, работавших в автомобильном производстве. Уже в то время проблема хороших смазочных материалов для авто стояла остро. Результатом сотрудничества и обмена идеями явился классификатор SAE, которым пользуются сегодня во всём мире.

Согласно SAE , каждый смазочный материал для автомобилей имеет такие характеристики, как низкотемпературная и высокотемпературная вязкость.

Сегодня многие автомобилисты-любители утверждают, что существуют моторные масла, имеющие параметры только низкотемпературной или только высокотемпературной вязкости. Они называют их, соответственно, «зимними» и «летними». А если в обозначении присутствуют оба свойства моторных масел, разделенные буквой W (что, по их утверждению, означает слово «зима») – значит, это всесезонные смазки. На самом деле, подобная трактовка неверна.

Вряд ли кто-либо встречал в продаже только «летнее» или только «зимнее» моторное масло. На прилавках магазинов присутствуют всесезонные моторные жидкости, имеющие оба вязкостных показателя. Далее подробно рассмотрим эти значения.

Низкотемпературные показатели

Вязкость моторного масла при низких температурах определяют такие показатели, как «проворачиваемость» и «прокачиваемость» масляного состава. Путём лабораторных исследований определяется, до какой минимальной температуры можно безболезненно запускать двигатель, то есть проворачивать его коленвал. Нормальный старт двигателя авто возможен только тогда, когда смазка ещё не загустела.

Кроме того, смазочный состав за кратчайшее время должен достичь пар трения. Это означает, что при минимальной температуре проворачивания масло должно быть ещё достаточно текучим, чтобы свободно перемещаться по узким каналам системы. Например, для масел категории 0W30 уровень низкотемпературной вязкости – это первая цифра (0). Для этого показателя нижний предел прокачиваемости – 40 градусов мороза. В то же время проворачиваемость мотора возможна до -35°С. Соответственно, такое моторное масло может хорошо работать при температурах до -35°С.

Если взять другой показатель – 5W20, то здесь температуры будут, соответственно, -35 и -30°С. То есть чем больше первая цифра – тем меньше рабочий диапазон в области низких температур. В классификаторе SAE на сегодняшний день есть 6 «зимних» вязкостных категорий – 0W, 5W, 10W, 15W, 20W, 25W. Эти показатели привязаны к температуре окружающей среды, поскольку от неё зависит температура холодного мотора.

Высокотемпературные показатели

Вязкость моторного масла в диапазоне температур работающего двигателя не имеет отношения к температуре окружающего воздуха. Она почти одинакова как при 10 градусах мороза, так и при 30 градусах жары. В авто её держит стабильной система охлаждения двигателя. В то же время в интернете почти каждая таблица рисует разные верхние пределы окружающей температуры для той или иной «летней» вязкости. Наглядный пример – сравнение смазочных жидкостей с показателями 5w30 и 5w20. Считается, что первая из них (5W30) будет хорошо работать до температуры воздуха +35°С. Второй показатель (5W20) в таблицах вообще не отображается.

Такое представление неправильно. Кроме того, термин «летняя» вязкость, или «летнее» масло с профессиональной точки зрения некорректен. Это объясняется на представленном видео . Всё дело в том, что данный параметр представляет собой режим кинематической и динамической вязкости, замеряемых при температурах +40, +100 и +150°С. Хотя рабочий диапазон температур в разных зонах моторов автомобилей колеблется от +40 до +300°С, берут его усреднённое значение.

Кинематическая вязкость – это текучесть (плотность) масляной жидкости в диапазоне температур от +40°С до +100°С. Чем жиже смазка – тем ниже этот показатель, и наоборот. Динамическая вязкость – это сила сопротивления, возникающая при перемещении двух слоёв масла, расположенных на расстоянии 10 мм друг от друга, со скоростью 1 см/сек. Площадь каждого слоя – 1 см 2 . Другими словами, испытания, проводимые с помощью специальных приборов (ротационных вискозиметров), позволяют имитировать реальные условия работы масел. Этот показатель не зависит от плотности моторного масла.

Ниже представлена таблица вязкостных параметров, по которым определяют те или иные их значения.

Таблица отражает кинематические и динамические вязкостные технические параметры при определённых температурах (+100 и +150°С), а также градиенте скорости сдвига. Этот градиент представляет собой отношение скорости перемещения поверхностей трущейся пары относительно друг друга к толщине зазора между ними. Чем выше этот градиент, тем более вязким оказывается масло для авто. Если говорить простыми словами, уровень вязкости при высоких температурах даёт информацию о том, какова толщина масляной плёнки между зазорами и насколько она прочна. На сегодняшний день спецификация SAE предусматривает 5 уровней высокотемпературных вязкостных показателей масел для автомобилей – 20, 30, 40, 50 и 60.

Индекс вязкости

Кроме вышеуказанных параметров производятся также измерения индекса вязкости. На него часто не обращают внимания. Тем не менее это важнейший параметр.

Индекс вязкости определяет температурный диапазон, в котором вязкостные свойства остаются на уровне, обеспечивающем нормальную работу двигателя. Чем этот индекс выше, тем более качественным является смазочный состав.

Независимо от того какое значение по SAE, будь то 0W30, 5W20 или 5W30, индекс вязкости масла не привязывается к нему. Он напрямую зависит от состава базовой основы. Например, у минеральных масел он имеет величину от 85 до 100, у полусинтетических 120–140, а у настоящих синтетических составов этот показатель доходит до 160–180 единиц. Это значит, что такие маловязкие масла, как 5w20 или 5W30, можно применять в моторах с турбонаддувом, имеющих температурный режим работы с широким диапазоном.

Для того чтобы увеличить индекс вязкости, в масляную смесь часто добавляют так называемые вяжущие присадки. Они расширяют диапазон температур, в котором масло будет сохранять свои основные вязкостные качества. То есть двигатель будет хорошо запускаться в морозную погоду. А при высоких температурах смазочный состав будет создавать устойчивую и вязкую плёнку в зоне соприкосновения поверхностей деталей.

Какую вязкость лучше выбрать?

По этому поводу есть много суждений, и большинство из них – ошибочные. Например:

К спортивным моделям совсем другие требования. Там главное – чтобы мотор выдержал режим предельных нагрузок и температур на протяжении гонки и не заклинил от перегрева. О долгосрочном его использовании никто не думает. При критических температурах только вязкое масло способно сохранить вяжущие свойства. Другое просто превратится в жидкость. Поэтому после каждого соревнования двигатели разбираются и тщательно диагностируются. Критичные детали тут же меняются. О маленьких зазорах в парах трения не может быть и речи.

Как же определить, какую вязкость лучше всего использовать для своего авто? В технической документации для всех автомобилей есть рекомендации производителей о том, какими должны быть вязкостные значения моторного масла. При первом ознакомлении может возникнуть недоумение – почему, например, производитель допускает применение масел с параметрами 5w20, 5W30 и 5W40? Какое же лучше заливать?

  1. Если авто ещё новое и не прошло 25% от заявленного ресурса до первого капремонта – следует применять маловязкие смазывающие составы. Такие как 5W20 или 5W30. Кстати, именно малая вязкость (5W20) рекомендуется для сервисной заливки во многие марки японских гарантийных авто.
  2. Если пробег составляет от 25 до 75%, должны использоваться составы с вязкостями 5W В зимний период рекомендуется также применять 5W30.
  3. Если мотор уже изношен и проехал более 75% от своего ресурса – для таких автомобилей рекомендуют летом использовать 15W50, а зимой подойдёт 5W

Чем старше двигатель авто, тем больше изнашиваются его детали. Соответственно, зазоры между парами трения увеличиваются. Маловязкие составы уже не могут обеспечить нормальную смазку, масляная плёнка рвётся. Вот почему рекомендуют переводить свои авто на более вязкие моторные масла.

Исходя из всего вышеизложенного, подбор наилучшего моторного масла для тех или иных марок автомобилей – не такая простая задача, как кажется на первый взгляд. Кроме вязкостных показателей следует учесть ещё много других качественных параметров.

Степени вязкости SAE
В настоящее время единственной признанной в зарубежных странах системой классификации автомобильных моторных масел является спецификация SAE J300. SAE - это аббревиатура Общества Автомобильных Инженеров США (Society of Automotive Engineers). Вязкость масла по этой системе выражается в условных единицах - степенях вязкости SAE (SAE Viscosity Grade - SAE VG). Численные значения степеней являются условными символами комплекса вязкостных свойств (см. табл. 1).

В таблице указаны два ряда степеней вязкости: зимний - с буквой "W" (Winter), и летний - без буквенного обозначения. Сезонные (моновязкие) масла (single viscosity grade oils) зимнего ряда различаются по максимальным вязкостям низкотемпературной проворачиваемости и прокачиваемости, и по минимальной кинематической вязкости при 100°С. Степень вязкости сезонных масел летнего ряда определяется по минимальной и максимальной кинематическим вязкостям при 100°С, и по минимальной вязкости при 150°С и скорости сдвига 106 с-1.
Всесезонные масла (multiviscosity-grade oils) должны удовлетворять одновременно двум следующим критериям:
1. Максимальным вязкостям низкотемпературной проворачиваемости и прокачиваемости со степенью зимнего ряда (W).
2. Максимальной и минимальной кинематическими вязкостями при 100°С и минимальной вязкости при 150°С и скорости сдвига 106 с-1 в соответствии со степенью летнего ряда (без буквы W).

Классификация SAE J300 используется производителями двигателей для определения степеней вязкости моторных масел пригодных для использования в их двигателях и производителями масел при разработке новых составов, производстве и маркировке готовых продуктов.

Стандартные ряды вязкости:
зимний ряд: SAE 0w, 5w, 10w, 15w, 20w, 25w;
летний ряд: SAE 20, 30, 40, 50, 60.

Всесезонные (multigrade) масла, состоят из комбинации зимнего и летнего ряда разделенные знаком "тире" (например, SAE 10w-40), другие виды записи являются неверными, и использование аббревиатуры SAE для них недопустимо (например SAE 10w/40 или SAE 10w40).
Серия всесезонных масел: SAE 0w-20, 0w-30, 0w-40, 0w-50, 0w-60, 5w-20, 5w-30, 5w-40, 5w-50, 5w-60, 10w-30, 10w-40, 10w-50, 10w-60, 15w-30, 15w-40, 15w-50, 15w-60, 20w-30, 20w-40, 20w-50, 20w-60.

Классификация моторных масел по вязкости SAE J300 DEC99
В первый день июня 2001 года прекращено одновременное действие двух спецификаций "SAE J300 APR97" и "SAE J300 DEC99". С этого момента спецификация 99-го года полностью вступила в свои права.

Изменения
Изменения коснулись только лимитов вязкости проворачивания, определяемой на "имитаторе холодного пуска" CCS (Cold Cranking Simulator). Согласно новой спецификации, температура при которой проводят измерение вязкости проворачивания, понижена на 5 °С, а предельные значения вязкости проворачивания значительно увеличены для всех w-степеней.
Новые предельные значения вязкости выбирались не случайно. Для производства моторных масел 10w/15w/20w /25w-XX чаще всего применяют базовые масла с индексами вязкости менее 120 единиц. Низкотемпературная вязкость таких масел повышается приблизительно в 2 раза, при каждом понижении температуры измерения на 5 °С. Предельные значения новой спецификации для этих степеней увеличены в два раза, по сравнению с прежними. При производстве всесезонных моторных масел 0w/5w-XX, все большее применение находят синтетические и высокоочищенные гидрокрекинговые базовые масла с высокими индексами вязкости. Низкотемпературные вязкости таких масел каждый раз повышаются менее чем в два раза при понижении температуры измерения с шагом 5 °С. Предельные значения для этих степеней увеличены менее чем в два раза.
Новые лимиты вязкости подобраны таким образом, чтобы уменьшить вероятность того, что моторные масла ранее классифицированные по спецификации SAE J300 APR97 получат более низкотемпературную степень вязкости W исключительно благодаря изменениям в спецификации SAE J300.

Причины изменения
Известно, что ограничения по максимальной вязкости проворачивания включены в набор требований стандарта SAE J300 не случайно. Производители двигателей получали информацию о температурах, при которых динамическая вязкость масел различных степеней достигает значений 3250-6000 мПа*с (диапазон вязкостей обусловлен различием температур испытаний от - 30 °С до - 5 °С, что существенно влияет на мощность аккумуляторной батареи и воспламеняемость топлива). По результатам прежних испытаний на полноразмерных двигателях было установлено, что при таких вязкостях и соответвующих температурах еще возможно проворачивание коленчатого вала стартером со скоростью, обеспечивающей успешный запуск двигателя.
В отличие от двигателей, которые использовались при определении прежних лимитов, современные двигатели демонстрируют успешный запуск при более высоких значениях вязкости и при более низких температурах. После проведения необходимых испытаний, отдел Топлив и Смазочных материалов SAE утвердил новые значения лимитов температур и вязкостей:

Таблица 1. Степени вязкости моторных масел SAE J300 DEC99 (1)
Степень вязкости SAE Вязкость (cP), проворачивания при низкой температуре (2)

MAX

Вязкость (cP), прокачивания при низкой температуре (3)

MAX

Кинематическая вязкость (4) , (cSt), при 100 °C, и малой скорости сдвига Вязкость (cP), при высокой скорости сдвига (5) при 150°C

MIN

MIN MAX
0w 6 200
при - 35 °С
60 000
при - 40 °C
3,8 - -
5w 6 600
при - 30 °С
60 000
при - 35 °С
3,8 - -
10w 7 000
при - 25 °С
60 000
при - 30 °С
4,1 - -
15w 7 000
при - 20 °С
60 000
при - 25 °С
5,6 - -
20w 9 500
при - 15 °С
60 000
при - 20 °С
5,6 - -
25w 13 000
при - 10 °С
60 000
при - 15 °С
9,3 - -
20 - - 5,6 < 9,3 2,6
30 - - 9,3 < 12,6 2,9
40 - - 12,6 < 16,3 2,9
(0w-40;5w-40;10w-40)
40 - - 12,6 < 16,3 3,7
(15w-40;20w-40;25w-40)
50 - - 16,3 < 21,9 3,7
60 - - 21,9 < 26,1 3,7

Примечания: 1 cP = 1 мПа с; 1 cSt = 1 мм 2 /с
(1) Все значения являются предельными по определению ASTM D3244 (Section 3)
(2) ASTM D5293
(3) ASTM D4684. Присутствие любого напряжения сдвига обнаруживаемое данным методом означает непрохождение теста независимо от значения вязкости.
(4) ASTM D445
(5) ASTM D4683, CEC-L-36-A-90 (ASTM D4741
и ASTM D5481).


Рис. 1. Зависимость вязкости моторного масла от температуры (сезонных SAE 10w и SAE 40 и всесезонного SAE 10w-40)

По спецификации SAE J300, вязкости масел определяются при условиях, близких к реальным. Летнее масло имеет достаточную вязкость, чтобы обеспечить надежное смазывание при высокой температуре, но оно слишком вязкое при низкой температуре, в результате чего при низкой температуре воздуха затрудняется пуск двигателя. Маловязкое зимнее масло облегчает холодный пуск двигателя при низкой температуре, но не обеспечивает его смазывание летом, когда температура масла в двигателе превышает 100°С. Именно по этим причинам наибольшее распространение сегодня получили всесезонные сорта масел, имеющие меньшую зависимость вязкости от температуры.

Таким образом степень вязкости SAE помогает определить диапазон температуры окружающей среды, при котором масло обеспечит нормальную работу двигателя - его проворачивание стартером, прокачивание масла насосом по смазочной системе при холодном пуске и надежное смазывание летом при длительной работе в режиме максимальных скоростей и нагрузок.

Показатели низкотемпературной вязкости
максимальная допустимая вязкость масла при запуске холодного двигателя, обеспечивающая проворачиваемость коленчатого вала со скоростью, необходимой для успешного запуска двигателя, а также температура, соответствующая такой вязкости;
прокачиваемость масла определяется как наименьшая температура, при которой вязкость не превышает определенной величины (60 000 мПа с), обеспечивающей прокачивание по масляной системе.

Методы тестирования

Максимальная низкотемпературная вязкость проворачиваемости определяется на имитаторе запуска холодного двигателя (CCS) по стандарту ASTM D 5293 и измеряется в сантипуазах (мПа с). Установлено, что от этой вязкости зависит число оборотов коленвала двигателя во время "зимнего пуска".

Вязкость прокачиваемости определяется по стандарту ASTM D 4684 и характеризует возможность притока масла в масляный насос и создания нужного давления в системе смазки при запуске двигателя. Определение вязкости прокачиваемости было введено после того, как было замечено, что некоторые масла (SAE 10w-30 и SAE 10w-40) после пребывания определенного времени (более 24 часов) при низкой температуре, теряют текучесть и становятся желеобразными.

Производители масел часто приводят сравнение легкости запуска двигателя и скорости достижения маслом удаленных точек смазывания при разных степенях вязкости применяемых масел. Подобные аргументы позволяют убедить потребителей в необходимости применения новых высококачественных продуктов с улучшенными низкотемпературными свойствами (рис. 2).

Рисунок 2 наглядно показывает, что масла зимнего ряда с более низкой степенью низкотемпературной вязкости (SAE 5w....., SAE 10w...) выгодно применять для облегчения запуска двигателя и существенного снижения его износа, поскольку в первые секунды работы двигателя, при недостаточном поступлении масла к удаленным точкам смазывания, проявляется наиболее сильное изнашивание.

Рис. 2. Сравнение вязкости при 0°С масел с разной степенью вязкости по SAE

В качестве дополнительной информации о низкотемпературной вязкости при создании нового масла или при изменении рецептуры, SAE рекомендует определять некоторые новые характеристики: температуру прокачиваемости по методу ASTM D 3829, вязкость при низкой температуре и низкой скорости сдвига (тенденцию к желеобразованию или индекс желатинизации) на сканирующем вискозиметре Брукфильда по методу ASTM D 5133, 5133, а также фильтруемость моторных масел при низкой температуре, которая показывает тенденцию образования твердых парафинов или других неоднородностей, способных к закупориванию масляного фильтра.

Показатели высокотемпературной вязкости
Показатели высокотемпературной вязкости моторных масел оцениваются на основе следующих значений:
. минимальной и максимальной вязкости масла (сСт) при температуре 100°С (по стандарту ASTM D 445);
. минимальной вязкости при температуре 150°С и высокой скорости сдвига (106 с-1) (метод ASTM D 4683 или, в Европе, метод СЕС L-36-А-90).

При эксплуатации двигателя особенно важна высокотемпературная вязкость при большой скорости сдвига, которая показывает поведение масла в узких узлах трения двигателя - в подшипниках коленчатого и распределительного валов, кривошипно-шатунного механизма и т.д.

Необходимая степень вязкости
Необходимая вязкость масла определяется на основании следующих факторов:
. особенности конструкции;
. степень износа двигателя;
. температура окружающей среды;
. режим работы двигателя.

При выборе степени вязкости моторного масла, следует руководствоваться рекомендациями производителя конкретного двигателя. Эти рекомендации основываются на конструктивных особенностях двигателя - степень нагрузок на масло, гидродинамическое сопротивление масляной системы, производительность масляного насоса, максимальные температуры масла в различных зонах двигателя в зависимости от температуры окружающей среды (особенности систем охлаждения).

Категории масел для дизельных двигателей коммерческих автомобилей
Данные категории обозначаются буквой С (commercial). Старые категории API CA и CB не обсуждаются.

категория API CC (устаревшая):
. Категория введена в 1961 году. Масла для дизельных двигателей без наддува. Допускается применение для двигателей с турбонаддувом, работающих в легком или среднем режиме и для бензиновых двигателей большой мощности. Масла данной категории содержат антикоррозийные присадки и присадки предотвращающие образование высоко- и низкотемпературных отложений.

категория API CD (устаревшая):
. Категория введена в 1955 году. Типичная категория масел для дизельных двигателей с турбонаддувом и без, для которых требуется эффективный контроль за накоплением продуктов износа. Допускается применение топлива с повышенным содержанием серы. Масла содержат присадки предотвращающие образование высокотемпературных отложений и предохраняющие подшипники от коррозии.
. Соответствует требованиям MIL-L-2104C/D.

категория API CD + (устаревшая):
. Категория создана для удовлетворения требованиям японских автопроизводителей. Масла обладают повышенной устойчивостью к окислению, загущению (под влиянием накопления сажи) и повышенной защитой клапанного механизма от износа.

категория API CD-II (устаревшая):
. Категория введена в 1987 году. Масла данной категории предназначены для двухтактных дизельных двигателей. Эффективно подавляют износ и образование шлама.
. Соответствует всем требованиям категории API CD.

категория API CE (устаревшая):
. Категория введена в 1987 году. Масла предназначены для форсированных и мощных дизельных двигателей с турбонаддувом и без, работающих как при малых оборотах и больших нагрузках, так и при больших оборотах и больших нагрузках.
. Заменяет масла категорий API CC и CD в более старых двигателях.

категория API CF (действующая):
. Категория введена в 1994 году. Масла предназначены для внедорожной техники, для двигателей с распределенным впрыском, включая двигатели работающие на топливе с содержанием серы более 0,5% от массы. Масла данной категории эффективно подавляют образование нагара на поршнях и коррозию медных сплавов подшипников.
. Заменяет масла категории API CD в более старых двигателях.

категория API CF-2 (действующая):
. Категория введена в 1994 году. Масла предназначены для высоконагруженных двухтактных дизельных двигателей. Эффективно подавляют износ цилиндров и залегание (закоксование) поршневых колец.
. Заменяет масла категории API CD-II в более старых моделях.

категория API CF-4 (действующая):
. Категория введена в 1990 году. Масла предназначены для высокоскоростных мощных четырехтактных дизельных двигателей с турбонаддувом и без него, устанавливаемых на мощных магистральных тягачах. Отвечают всем требованиям качества категории API CE и, кроме того, обладают меньшим расходом на угар и меньшей склонностью к нагарообразованию на поршнях. При согласовании с требованиями категории API SG (API CF-4/SG), могут быть применены для бензиновых двигателей легковых и малых грузовых автомобилей. Отвечают повышенным требованиям по токсичности отработанных газов.
. Заменяет масла категории API CE в более старых двигателях.

категория API CG-4 (действующая):
. Категория представлена в 1995 году. Масла предназначены для высоконагруженных, высокоскоростных, четырехтактных дизельных двигателей грузовых автомобилей магистрального типа использующих топливо с содержанием серы менее 0,05% от массы и немагистрального типа (содержание серы может достигать 0,5% от массы). Эффективно подавляют образование высокотемпературного нагара на поршнях, износ, пенообразоване, окисление, образование сажи (эти свойства необходимы для двигателей новых магистральных тягачей и автобусов). Категория создана для удовлетворения требованиям стандартов США по токсичности отработанных газов (редакция 1994 года).
. Заменяет масла категорий API CD, API CE и API CF-4. Основным недостатком, ограничивающим применение масел данной категории в мире, является относительно большая зависимость ресурса масла от качества применяемого топлива.

категория API CH-4 (действующая):
. Проектное название API PC-7. Категория представлена 1 декабря 1998 года. Масла данной категории предназначены для высокоскоростных, четырехтактных двигателей выполняющих требования жестких стандартов 1998 года по токсичности отработанных газов. Отвечают высочайшим требованиям не только американских, но и европейских производителей дизельных двигателей. Специально сформулированы для применения в двигателях, использующих топливо с содержанием серы до 0,5% от массы. В отличие от категории API CG-4, допускается применение дизельного топлива с содержанием серы более 0,5%, что является важным преимуществом в странах, в которых распространены высокосернистые топлива (Южная Америка, Азия, Африка). Масла удовлетворяют повышенным требованиям по уменьшению износа клапанов и уменьшению образования нагара.
. Заменяют масла категорий API CD, API CE, API CF-4 и API CG-4.

категория API PC-7.5 (проект)
. В январе 1999 года требования по токсичности отработанных газов были существенно ужесточены. Для удовлетворения этим требованиям североамериканские автопроизводители внесли ряд конструктивных изменений в свои двигатели, что привело к увеличению уровня образования сажи в моторных маслах в три-пять раз. Для предотвращения вредных последствий наличия сажи в моторном масле (увеличение степени износа деталей двигателя и загущение масла), необходимо было ввести ряд дополнительных требований и испытаний. С этой целью предполагалось создать новую категорию с проектным названием API PC-7.5. Однако "Mack Truck" и "Cummins" создали новые методы испытаний Mack T-8E, Mack T-9, Cummins M-11 и выпустили собственные спецификации - Mack EO-M Plus и Cummins CES 20076. Требования данных спецификаций были признаны достаточными для удовлетворения требований к новым маслам со стороны других автопроизводителей и были включены, как дополнительные, в категорию API CH-4. Потребность в новой категории API PC-7.5 отпала.

категория API PC-8 (проект)
. Проект создавался для удовлетворения потребностей японских автомобилестроителей. Был рекомендован для двигателей с пониженной эмиссией выхлопных газов. Не получил большой известности в связи с созданием нового японского стандарта JASO DX-1.

категория API PС-9 (проект)
. Эта категория проектируется в связи с новыми экологическими требованиями, которые сформулированы Американским агентством по охране окружающей среды (EPA). Основным способом удовлетворения этих требований является система рециркуляции отработанных газов (AGR - exhaust gas recirculation). Для этого требуются изменение конструкции двигателей и придание новых эксплуатационных свойств моторным маслам. Одновременно прогнозируется повышение удельных мощностей двигателей. Основные отличия работы моторного масла в условиях рециркуляции выхлопных газов и повышенной удельной мощности:
. - тенденция к образованию сильных кислот;
. - повышенное образование сажи и, в связи с этим, загущение масла и повышенный износ деталей двигателя;
. - более высокотемпературный режим работы двигателя и масла.
. Для оценки повышенных эксплуатационных свойств, вводятся новые моторные испытания на стендовых двигателях с рециркуляцией выхлопных газов:
. - Cat 1Q,
. - Mack T-10,
. - Cummins M-11.
. Категорию API PC-9 предполагается ввести в действие в 2002 году.

Таблица 4. Сравнение требований к новейшим американским категориям моторных масел для дизельных двигателей.

Испытание

API
CD
API
CD-II
API
CE
API
CF
API
CF-2
API
CF-4
API
CG-4
APICH-4
(PC-7)
CRC-l 38. Коррозия подшипников, чистота поршня + + + ++ ++ + +++ +++
Последовательность IIIE. Высокотемпературное окисление, износ и загущение масла - - - - - - ++ +++
CAT 1G2. Отложения на поршне + + + - - - - -
CAT 1 M-PC. Отложения на поршне и расход масла - - - + ++ - - -
CAT 1K. Отложения на поршне и расход масла - - - - - ++ - -
CAT 1N. Отложения на поршне и расход масла - - - - - - +++ +++
Detroit Diesel 6V-92TA. Износ кольца и втулки в двухтактных двигателях - + - - ++ - - -
Mack T7. Прирост вязкости масла - - + - - + - -
Mack T8. Прирост вязкости масла от сажи - - - - - - ++ ++
Mack T6. Износ колец и втулок, расход масла - - + - - + - -
Cummins NTC-400. расход масла, износ, отложения - - + - - ++ - -
GM 6,2 L, RFWT. Износ ролика-толкателя - - - - - - + +
Стендовое испытание коррозии - - - - - + + +
Пенообразование - - - - - - + +
HEU 1, Аэрация - - - - - - + +
Caterpillar TO-4 - - - - - - - +
Allison C-4 - - - - - - - +
Примечание к уровню требований: + - низкий; ++ - средний; +++ - высокий.

Таблица 5. Примерный состав присадок в американских моторных маслах для дизельных двигателей, в % (от массы)

Присадки

API
CC
API
SD/CD
API
SE/CD
API
SG/CE
API
CF-4/SH
API
CG-4/SH
Дисперсант беззольный
Тиофосфонат
1,5
0,8
4,0
-
5,5
-
6,0
-
6,0
-
7,5
-
Сульфонаты металлов базовый
Фенат кальция базовый
0,5
-
3,0
2,0
3,0
2,0
2,0
2,0
2,0
2,0
2,0
2,0
Другие антиоксиданты
ZDDP
-
0,7
-
0,7
-
2,0
0,3
1,0
0,6
1,0
0,6
1,3

По старой системе API, основные свойства и назначение масла обозначались принятыми терминами и буквами. На сегодня эта система отменена, но в названиях современных марок масел иногда встречаются применявшиеся ране термины. Основные обозначения:
. Regular oil - минеральное масло без присадок, полученное путем вакуумной дистилляции без дальнейшей обработки (straight mineral oil);
. Premium oil - минеральное масло с противоокислительными присадками;
. Heavy Duty oil, HD oil - масло с противоокислительными, моющими и диспергирующими присадками для мощных двигателей;
. ML - масло для бензиновых двигателей, работающих в легких условиях (L - light);
. ММ - масло для бензиновых двигателей, работающих в умеренно тяжелых условиях (М - moderate);
. MS - масло для бензиновых двигателей, работающих в тяжелых условиях (S - severe);
. DG - масло для дизельных двигателей, работающих в легких условиях (G - general);
. DM - масло для дизельных двигателей, работающих в умеренно тяжелых условиях (М - moderate);
. DS - масло для дизельных двигателей, работающих в тяжелых условиях (S - severe).

Категория энергосберегающих масел
Моторные масла, отличающиеся низкой вязкостью как при низкой, так и при высокой температуре могут быть сертифицированы на соответствие категории API EC "энергосберегающее" масло ("Energy Conserving" Oil). Ранее энергосбережение определялось по методике Последовательности VI (Sequence VI, ASTM RR D02 1204). Данная методика использовалась для сертификации масел категории API SH на уровни (степени) энергосбережения: API SH/EC - 1,5% экономии топлива и API SH/ECII - 2,7% экономии топлива, по сравнению с эталонным маслом SAE 20w-30.
С 1 августа 1997 года экономия топлива определяется по новой методике ASTM RR D02 1364, Последовательность VIA (Sequence VIA), согласно которой маслу может быть присвоена только одна степень энергосбережения (ЕС). Пример: API SJ/EС.
Энергосберегающие масла предназначены для легковых и грузовых автомобилей малой грузоподъемности. В настоящее время разрабатывается аналогичная категория масел для мощных дизелей.

Подробнее с текущей ситуацией и прогнозом развития рынка смазочных масел можно познакомиться в отчете в отчете Академии Конъюнктуры Промышленных Рынков « Рынок масел в России ».