Как работают топливные элементы

Топливная ячейка (Fuel Cell ) – это устройство, превращающее химическую энергию в электрическую. Она похожа по принципу действия на обычную батарейку, но отличается тем, что для ее работы необходима постоянная подача извне веществ для протекания электрохимической реакции. В топливные элементы подаются водород и кислород, а на выходе получают электричество, воду и тепло. К их достоинствам относится экологическая чистота, надёжность, долговечность и простота эксплуатации. В отличие от обычных аккумуляторов электрохимические преобразователи могут работать практически неограниченное время, пока поступает топливо. Их не надо часами заряжать до полной зарядки. Более того, сами ячейки могут заряжать АКБ во время стоянки автомобиля с выключенным мотором.

Наибольшее распространение в водородомобилях получили топливные ячейки с протонной мембраной (PEMFC) и твердооксидные топливные ячейки (SOFC).

Топливная ячейка с протонной обменной мембраной работает следующим образом. Между анодом и катодом находятся специальная мембрана и катализатор с платиновым покрытием. На анод поступает водород, а на катод - кислород (например, из воздуха). На аноде водород при помощи катализатора разлагается на протоны и электроны. Протоны водорода проходят через мембрану и попадают на катод, а электроны отдаются во внешнюю цепь (мембрана их не пропускает). Полученная таким образом разность потенциалов приводит к возникновению электрического тока. На стороне катода протоны водорода окисляются кислородом. В результате возникает водяной пар, который и является основным элементом выхлопных газов автомобиля. Обладая высоким КПД, РЕМ-элементы имеют один существенный недостаток - для их работы требуется чистый водород, хранение которого является достаточно серьезной проблемой.

Если будет найден такой катализатор, который заменит в этих ячейках дорогую платину, тогда сразу же будет создан дешевый топливный элемент для получения электроэнергии, а значит, мир избавится от нефтяной зависимости.

Твердооксидные ячейки

Твердооксидные ячейки SOFC значительно менее требовательны к чистоте топлива. Кроме того, благодаря использованию РОХ-реформера (Partial Oxidation - частичное окисление) такие ячейки в качестве топлива могут потреблять обычный бензин. Процесс превращения бензина непосредственно в электричество выглядит следующим образом. В особом устройстве - реформере при температуре около 800 °С бензин испаряется и разлагается на составные элементы.

При этом выделяется водород и углекислый газ. Далее, также под воздействием температуры и при помощи непосредственно SOFС (состоящих из пористого керамического материала на основе окиси циркония), водород окисляется кислородом, находящимся в воздухе. После получения из бензина водорода процесс протекает далее по описанному выше сценарию, с одной лишь разницей: топливная ячейка SOFC, в отличие от устройств, работающих на водороде, менее чувствительна к посторонним примесям в исходном топливе. Так что качество бензина не должно повлиять на работоспособность топливного элемента.

Высокая рабочая температура SOFC (650–800 градусов) является существенным недостатком, процесс прогрева занимает около 20 минут. Зато избыточное тепло проблемы не представляет, поскольку оно полностью выводится оставшимся воздухом и выхлопными газами, производимыми реформером и самой топливной ячейкой. Это позволяет интегрировать SOFC-систему в автомобиль в виде самостоятельного устройства в термически изолированном корпусе.

Модульная структура позволяет добиваться необходимого напряжения путем последовательного соединения набора стандартных ячеек. И, возможно, самое главное с точки зрения внедрения подобных устройств - в SOFC нет весьма дорогостоящих электродов на основе платины. Именно дороговизна этих элементов является одним из препятствий в развитии и распространении технологии PEMFC.

Виды топливных ячеек

В настоящее время существуют такие виды топливных ячеек:

  • AFC – Alkaline Fuel Cell (щелочная топливная ячейка);
  • PAFC – Phosphoric Acid Fuel Cell (фосфорно-кислотная топливная ячейка);
  • PEMFC – Proton Exchange Membrane Fuel Cell (топливная ячейка с протонной обменной мембраной);
  • DMFC – Direct Methanol Fuel Cell (топливная ячейка с прямым распадом метанола);
  • MCFC – Molten Carbonate Fuel Cell (топливная ячейка расплавленного карбоната);
  • SOFC – Solid Oxide Fuel Cell (твердооксидная топливная ячейка).

Преимущества топливных элементов/ячеек

Топливный элемент / ячейка – это устройство, которое эффективно вырабатывает постоянный ток и тепло из богатого водородом топлива путем электрохимической реакции.

Топливный элемент подобен батарее в том, что он вырабатывает постоянный ток путем химической реакции. Топливный элемент включает анод, катод и электролит. Однако, в отличие от батарей, топливные элементы/ячейки не могут накапливать электрическую энергию, не разряжаются и не требуют электричества для повторной зарядки. Топливные элементы/ячейки могут постоянно вырабатывать электроэнергию, пока они имеют запас топлива и воздуха.

В отличие от других генераторов электроэнергии, таких как двигатели внутреннего сгорания или турбины, работающие на газе, угле, мазуте и пр., топливные элементы/ячейки не сжигают топливо. Это означает отсутствие шумных роторов высокого давления, громкого шума при выхлопе, вибрации. Топливные элементы/ячейки вырабатывают электричество путем бесшумной электрохимической реакции. Другой особенностью топливных элементов/ячеек является то, что они преобразуют химическую энергию топлива напрямую в электричество, тепло и воду.

Топливные элементы высокоэффективны и не производят большого количества парниковых газов, таких как углекислый газ, метан и оксид азота. Единственным продуктом выброса при работе - являются вода в виде пара и небольшое количество углекислого газа, который вообще не выделяется, если в качестве топлива используется чистый водород. Топливные элементы/ячейки собираются в сборки, а затем в отдельные функциональные модули.

История развития топливных элементов/ячеек

В 1950х и 1960х годах одна из самых ответственных задач для топливных элементов родилась из потребности Национального управления по аэронавтике и исследованиям космического пространства США (NASA) в источниках энергии для длительных космических миссий. Щелочной топливный элемент/ячейка NASA использует в качестве топлива водород и кислород, соединяя эти два химических элемента в электрохимической реакции. На выходе получаются три полезных в космическом полете побочных продукта реакции – электричество для питания космического аппарата, вода для питья и систем охлаждения и тепло для согревания астронавтов.

Открытие топливных элементов относится к началу XIX века. Первое свидетельство об эффекте топливных элементов было получено в 1838 году.

В конце 1930х начинается работа над топливными элементами со щелочным электролитом и к 1939 году построен элемент, использующую никелированные электроды под высоким давлением. В ходе Второй Мировой Войны разрабатываются топливные элементы/ячейки для подлодок британского флота и в 1958 году представлена топливная сборка, состоящая из щелочных топливных элементов/ячеек диаметром чуть более 25 см.

Интерес возрос в 1950-1960е годы, а также в 1980е, когда промышленный мир пережил нехватку нефтяного топлива. В этот же период мировые страны также озаботились проблемой загрязнения воздуха и рассматривали способы экологически чистого получения электроэнергии. В настоящее время технология производства топливных элементов/ячеек переживает этап бурного развития.

Принцип работы топливных элементов/ячеек

Топливные элементы/ячейки вырабатывают электроэнергию и тепло вследствие происходящей электрохимической реакции, используя электролит, катод и анод.


Анод и катод разделяются электролитом, проводящим протоны. После того, как водород поступит на анод, а кислород - на катод, начинается химическая реакция, в результате которой генерируются электрический ток, тепло и вода.

На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Ионы водорода (протоны) проводятся через электролит к катоду, в то время как электроны пропускаются электролитом и проходят по внешней электрической цепи, создавая постоянный ток, который может быть использован для питания оборудования. На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном, и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Ниже приведена соответствующая реакция:

Реакция на аноде: 2H 2 => 4H+ + 4e -
Реакция на катоде: O 2 + 4H+ + 4e - => 2H 2 O
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

Типы и разновидность топливных элементов/ячеек

Подобно существованию различных типов двигателей внутреннего сгорания, существуют различные типы топливных элементов – выбор подходящего типа топливного элемента зависит от его применения.

Топливные элементы делятся на высокотемпературные и низкотемпературные. Низкотемпературные топливные элементы требуют в качестве топлива относительно чистый водород. Это часто означает, что требуется обработка топлива для преобразования первичного топлива (такого как природный газ) в чистый водород. Этот процесс потребляет дополнительную энергию и требует специального оборудования. Высокотемпературные топливные элементы не нуждаются в данной дополнительной процедуре, так как они могут осуществлять "внутреннее преобразование" топлива при повышенных температурах, что означает отсутствие необходимости вкладывания денег в водородную инфраструктуру.

Топливные элементы/ячейки на расплаве карбоната (РКТЭ)

Топливные элементы с расплавленным карбонатным электролитом являются высокотемпературными топливными элементами. Высокая рабочая температура позволяет непосредственно использовать природный газ без топливного процессора и топливного газа с низкой теплотворной способностью топлива производственных процессов и из других источников.

Работа РКТЭ отличается от других топливных элементов. Данные элементы используют электролит из смеси расплавленных карбонатных солей. В настоящее время применяется два типа смесей: карбонат лития и карбонат калия или карбонат лития и карбонат натрия. Для расплавки карбонатных солей и достижения высокой степени подвижности ионов в электролите, работа топливных элементов с расплавленным карбонатным электролитом происходит при высоких температурах (650°C). КПД варьируется в пределах 60-80%.

При нагреве до температуры 650°C, соли становятся проводником для ионов карбоната (CO 3 2-). Данные ионы проходят от катода на анод, где происходит объединение с водородом с образованием воды, диоксида углерода и свободных электронов. Данные электроны направляются по внешней электрической цепи обратно на катод, при этом генерируется электрический ток, а в качестве побочного продукта – тепло.

Реакция на аноде: CO 3 2- + H 2 => H 2 O + CO 2 + 2e -
Реакция на катоде: СO 2 + 1/2O 2 + 2e - => CO 3 2-
Общая реакция элемента: H 2 (g) + 1/2O 2 (g) + CO 2 (катод) => H 2 O(g) + CO 2 (анод)

Высокие рабочие температуры топливных элементов с расплавленным карбонатным электролитом имеют определенные преимущества. При высоких температурах, происходит внутренний риформинг природного газа, что устраняет необходимость использования топливного процессора. Помимо этого, к числу преимуществ можно отнести возможность использования стандартных материалов конструкции, таких как листовая нержавеющая сталь и никелевого катализатора на электродах. Побочное тепло может быть использовано для генерации пара высокого давления для различных промышленных и коммерческих целей.

Высокие температуры реакции в электролите также имеют свои преимущества. Применение высоких температур требует значительного времени для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. Данные характеристики позволяют использовать установки на топливных элементах с расплавленным карбонатным электролитом в условиях постоянной мощности. Высокие температуры препятствуют повреждению топливного элемента окисью углерода.

Топливные элементы с расплавленным карбонатным электролитом подходят для использования в больших стационарных установках. Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью 3,0 МВт. Разрабатываются установки с выходной мощностью до 110 МВт.

Топливные элементы/ячейки на основе фосфорной кислоты (ФКТЭ)

Топливные элементы на основе фосфорной (ортофосфорной) кислоты стали первыми топливными элементами для коммерческого использования.

Топливные элементы на основе фосфорной (ортофосфорной) кислоты используют электролит на основе ортофосфорной кислоты (H 3 PO 4) с концентрацией до 100%. Ионная проводимость ортофосфорной кислоты является низкой при низких температурах, по этой причине эти топливные элементы используются при температурах до 150–220°C.

Носителем заряда в топливных элементах данного типа является водород (H+, протон). Схожий процесс происходит в топливных элементах с мембраной обмена протонов, в которых водород, подводимый к аноду, разделяется на протоны и электроны. Протоны проходят по электролиту и объединяются с кислородом, получаемым из воздуха, на катоде с образованием воды. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток. Ниже представлены реакции, в результате которых генерируется электрический ток и тепло.

Реакция на аноде: 2H 2 => 4H + + 4e -
Реакция на катоде: O 2 (g) + 4H + + 4e - => 2 H 2 O
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

КПД топливных элементов на основе фосфорной (ортофосфорной) кислоты составляет более 40% при генерации электрической энергии. При комбинированном производстве тепловой и электрической энергии, общий КПД составляет около 85%. Помимо этого, учитывая рабочие температуры, побочное тепло может быть использовано для нагрева воды и генерации пара атмосферного давления.

Высокая производительность теплоэнергетических установок на топливных элементах на основе фосфорной (ортофосфорной) кислоты при комбинированном производстве тепловой и электрической энергии является одним из преимуществ данного вида топливных элементов. В установках используется окись углерода с концентрацией около 1,5%, что значительно расширяет возможность выбора топлива. Помимо этого, СО 2 не влияет на электролит и работу топливного элемента, данный тип элементов работает с риформированным природным топливом. Простая конструкция, низкая степень летучести электролита и повышенная стабильность также являются преимущества данного типа топливных элементов.

Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью до 500 кВт. Установки на 11 МВт прошли соответствующие испытания. Разрабатываются установки с выходной мощностью до 100 МВт.

Твердооксидные топливные элементы/ячейки (ТОТЭ)

Твердооксидные топливные элементы являются топливными элементами с самой высокой рабочей температурой. Рабочая температура может варьироваться от 600°C до 1000°C, что позволяет использовать различные типы топлива без специальной предварительной обработки. Для работы с такими высокими температурами используемый электролит представляет собой тонкий твердый оксид металла на керамической основе, часто сплав иттрия и циркония, который является проводником ионов кислорода (О 2-).

Твердый электролит обеспечивает герметичный переход газа от одного электрода к другому, в то время как жидкие электролиты расположены в пористой подложке. Носителем заряда в топливных элементах данного типа является ион кислорода (О 2-). На катоде происходит разделение молекул кислорода из воздуха на ион кислорода и четыре электрона. Ионы кислорода проходят по электролиту и объединяются с водородом, при этом образуется четыре свободных электрона. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток и побочное тепло.

Реакция на аноде: 2H 2 + 2O 2- => 2H 2 O + 4e -
Реакция на катоде: O 2 + 4e - => 2O 2-
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

КПД производимой электрической энергии является самым высоким из всех топливных элементов – около 60-70%. Высокие рабочие температуры позволяют осуществлять комбинированное производство тепловой и электрической энергии для генерации пара высокого давления. Комбинирование высокотемпературного топливного элемента с турбиной позволяет создать гибридный топливный элемент для повышения КПД генерирования электрической энергии до 75%.

Твердооксидные топливные элементы работают при очень высоких температурах (600°C–1000°C), в результате чего требуется значительное время для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. При таких высоких рабочих температурах не требуется преобразователь для восстановления водорода из топлива, что позволяет теплоэнергетической установке работать с относительно нечистым топливом, полученным в результате газификации угля или отработанных газов и т.п. Также данный топливный элемент превосходно подходит для работы с высокой мощностью, включая промышленные и крупные центральные электростанции. Промышленно выпускаются модули с выходной электрической мощностью 100 кВт.

Топливные элементы/ячейки с прямым окислением метанола (ПОМТЭ)

Технология использования топливных элементов с прямым окислением метанола переживает период активного развития. Она успешно зарекомендовала себя в области питания мобильных телефонов, ноутбуков, а также для создания переносных источников электроэнергии. на что и нацелено будущее применение данных элементов.

Устройство топливных элементов с прямым окислением метанола схоже с топливных элементах с мембраной обмена протонов (МОПТЭ), т.е. в качестве электролита используется полимер, а в качестве носителя заряда – ион водорода (протон). Однако, жидкий метанол (CH 3 OH) окисляется при наличии воды на аноде с выделением СО 2 , ионов водорода и электронов, которые направляются по внешней электрической цепи, при этом генерируется электрический ток. Ионы водорода проходят по электролиту и вступает в реакцию с кислородом из воздуха и электронами, поступающих с внешней цепи, с образованием воды на аноде.

Реакция на аноде: CH 3 OH + H 2 O => CO 2 + 6H + + 6e -
Реакция на катоде: 3/2O 2 + 6 H + + 6e - => 3H 2 O
Общая реакция элемента: CH 3 OH + 3/2O 2 => CO 2 + 2H 2 O

Достоинством данного типа топливных элементов являются небольшие габариты, благодаря использованию жидкого топлива, и отсутствие необходимости использования преобразователя.

Щелочные топливные элементы/ячейки (ЩТЭ)

Щелочные топливные элементы – одни из самых эффективных элементов, используемых для генерации электричества, эффективность выработки электроэнергии доходит до 70%.

В щелочных топливных элементах используется электролит, то есть водный раствор гидроксида калия, содержащийся в пористой стабилизированной матрице. Концентрация гидроксида калия может меняться в зависимости от рабочей температуры топливного элемента, диапазон которой варьируется от 65°C до 220°C. Носителем заряда в ЩТЭ является гидроксильный ион (ОН -), движущийся от катода к аноду, где он вступает в реакцию с водородом, производя воду и электроны. Вода, полученная на аноде, движется обратно к катоду, снова генерируя там гидроксильные ионы. В результате этого ряда реакций, проходящих в топливном элементе, производится электричество и, как побочный продукт, тепло:

Реакция на аноде: 2H 2 + 4OH - => 4H 2 O + 4e -
Реакция на катоде: O 2 + 2H 2 O + 4e - => 4 OH -
Общая реакция системы: 2H 2 + O 2 => 2H 2 O

Достоинством ЩТЭ является то, что эти топливные элементы - самые дешевые в производстве, поскольку катализатором, который необходим на электродах, может быть любое из веществ, более дешевых чем те, что используются в качестве катализаторов для других топливных элементов. ЩТЭ работают при относительно низкой температуре и являются одними из самых эффективных топливных элементов - такие характеристики могут соответственно способствовать ускорению генерации питания и высокой эффективности топлива.

Одна из характерных особенностей ЩТЭ – высокая чувствительность к CO 2 , который может содержаться в топливе или воздухе. CO 2 вступает в реакцию с электролитом, быстро отравляет его, и сильно снижает эффективность топливного элемента. Поэтому использование ЩТЭ ограничено закрытыми пространствами, такими как космические и подводные аппараты, они должны работать на чистом водороде и кислороде. Более того, такие молекулы, как CO, H 2 O и CH4, которые безопасны для других топливных элементов, а для некоторых из них даже являются топливом, вредны для ЩТЭ.

Полимерные электролитные топливные элементы/ячейки (ПЭТЭ)

В случае полимерных электролитных топливных элементов полимерная мембрана состоит из полимерных волокон с водными областями, в которых существует проводимость ионов воды H 2 O + (протон, красный) присоединяется к молекуле воды). Молекулы воды представляют проблему из-за медленного ионного обмена. Поэтому требуется высокая концентрация воды как в топливе, так и на выпускных электродах, что ограничивает рабочую температуру 100°C.

Твердокислотные топливные элементы/ячейки (ТКТЭ)

В твердокислотных топливных элементах электролит (CsHSO 4) не содержит воды. Рабочая температура поэтому составляет 100-300°C. Вращение окси анионов SO 4 2- позволяет протонам (красный) перемещаться так, как показано на рисунке. Как правило, твердокислотный топливный элемент представляет собой бутерброд, в котором очень тонкий слой твердокислотного компаунда располагается между двумя плотно сжатыми электродами, чтобы обеспечить хороший контакт. При нагреве органический компонент испаряется, выходя через поры в электродах, сохраняя способность многочисленных контактов между топливом (или кислородом на другом конце элементы), электролитом и электродами.

Различные модули топливных элементов. Батарея топливного элемента

  1. Батарея топливных элементов
  2. Остальное оборудование, работающее при высокой температуре (интегрированный парогенератор, камера сгорания, устройство смены теплового баланса)
  3. Теплостойкая изоляция

Модуль топливного элемента

Сравнительный анализ типов и разновидностей топливных элементов

Инновационные энергосберегающие коммунально-бытовые теплоэнергетические установки обычно построены на твердооксидных топливных элементах (ТОТЭ), полимерных электролитных топливных элементах (ПЭТЭ), топливных элементах на фосфорной кислоте (ФКТЭ), топливных элементах с мембраной обмена протонов (МОПТЭ) и щелочных топливных элементах (ЩТЭ). Обычно имеют следующие характеристики:

Наиболее подходящими следует признать твердооксидные топливные элементы (ТОТЭ), которые:

  • работают при более высокой температуре, что уменьшает необходимость в дорогих драгоценных металлах (таких, как платина)
  • могут работать на различных видах углеводородного топлива, в основном на природном газе
  • имеют большее время запуска и потому лучше подходят для длительного действия
  • демонстрируют высокую эффективность выработки электроэнергии (до 70%)
  • из-за высоких рабочих температур установки могут быть скомбинированы с системами обратной теплоотдачи, доводя общую эффективность системы до 85%
  • имеют практически нулевой уровень выбросов, работают бесшумно и предъявляют низкие требованиями к эксплуатации в сравнении с существующими технологиями выработки электроэнергии
Тип топливной элементы Рабочая температура Эффективность выработки электроэнергии Тип топлива Область применения
РКТЭ 550–700°C 50-70% Средние и большие установки
ФКТЭ 100–220°C 35-40% Чистый водород Большие установки
МОПТЭ 30-100°C 35-50% Чистый водород Малые установки
ТОТЭ 450–1000°C 45-70% Большинство видов углеводородного топлива Малые, средние и большие установки
ПОМТЭ 20-90°C 20-30% Метанол Переносные
ЩТЭ 50–200°C 40-70% Чистый водород Космические исследования
ПЭТЭ 30-100°C 35-50% Чистый водород Малые установки

Поскольку малые теплоэнергетические установки могут подключаться к обычной сети подачи газа, топливные элементы не требуют отдельной системы подачи водорода. При использовании малых теплоэнергетических установок на основе твердооксидных топливных ячеек вырабатываемое тепло может интегрироваться в теплообменники для нагрева воды и вентиляционного воздуха, увеличивая общую эффективность системы. Эта инновационная технология наилучшим образом подходит для эффективной выработки электричества без необходимости в дорогой инфраструктуре и сложной интеграции приборов.

Применение топливных элементов/ячеек

Применение топливных элементов/ячеек в системах телекоммуникации

Вследствие быстрого распространения систем беспроводной связи во всем мире, а также роста социально-экономических выгод технологии мобильных телефонов, необходимость надежного и экономичного резервного электропитания приобрела определяющее значение. Убытки электросети на протяжении года вследствие плохих погодных условий, стихийных бедствий или ограниченной мощности сети представляют собой постоянную сложную проблему для операторов сети.

Традиционные телекоммуникационные решения в области резервного электропитания включают батареи (свинцово-кислотный элемент аккумуляторной батареи с клапанным регулированием) для резервного питания в течение непродолжительного времени и дизельные и пропановые генераторы для более продолжительного резервного питания. Батареи являются относительно дешевым источником резервного питания на 1 – 2 часа. Однако батареи не подходят для более продолжительного резервного питания, так как их техническое обслуживание является дорогим, они становятся ненадежными после долгой эксплуатации, чувствительны к температурам и опасны для окружающей среды после утилизации. Дизельные и пропановые генераторы могут обеспечить продолжительное резервное электропитание. Однако генераторы могут быть ненадежными, требуют трудоемкого технического обслуживания, выделяют в атмосферу высокие уровни загрязнений и газов, вызывающих парниковый эффект.

С целью устранения ограничений традиционных решений в области резервного электропитания была разработана инновационная технология экологически чистых топливных ячеек. Топливные ячейки надежны, не производят шума, содержат меньше подвижных деталей, чем генератор, имеют более широкий диапазон рабочих температур, чем батарея: от -40°C до +50°C и, как результат, обеспечивают чрезвычайно высокий уровень энергосбережения. Кроме того, затраты на такую установку на протяжении срока эксплуатации ниже затрат на генератор. Более низкие затраты на топливную ячейку являются результатом всего одного посещения с целью технического обслуживания в год и значительно более высокой производительностью установки. В конце концов, топливная ячейка представляет собой экологически чистое технологическое решение с минимальным воздействием на окружающую среду.

Установки на топливных ячейках обеспечивают резервное электропитание для критически важных инфраструктур сети связи для беспроводной, постоянной и широкополосной связи в системе телекоммуникаций, в диапазоне от 250 Вт до 15 кВт, они предлагают множество непревзойденных инновационных характеристик:

  • НАДЕЖНОСТЬ – малое количество подвижных деталей и отсутствие разрядки в режиме ожидания
  • ЭНЕРГОСБЕРЕЖЕНИЕ
  • ТИШИНА – низкий уровень шумов
  • УСТОЙЧИВОСТЬ – рабочий диапазон от -40°C до +50°C
  • АДАПТИВНОСТЬ – установка на улице и в помещении (контейнер/защитный контейнер)
  • ВЫСОКАЯ МОЩНОСТЬ – до 15 кВт
  • НИЗКАЯ ПОТРЕБНОСТЬ В ТЕХНИЧЕСКОМ ОБСЛУЖИВАНИИ – минимальное ежегодное техническое обслуживание
  • ЭКОНОМИЧНОСТЬ - привлекательная совокупная стоимость владения
  • ЭКОЛОГИЧЕСКИ ЧИСТАЯ ЭНЕРГИЯ – низкий уровень выбросов с минимальным воздействием на окружающую среду

Система все время чувствует напряжение шины постоянного тока и плавно принимает критические нагрузки, если напряжение шины постоянного тока падает ниже заданного значения, определенного пользователем. Система работает на водороде, который поступает в батарею топливных ячеек одним из двух путей – либо из промышленного источника водорода, либо из жидкого топлива из метанола и воды, при помощи встроенной системы риформинга.

Электричество производится батареей топливных элементов в виде постоянного тока. Энергия постоянного тока передается на преобразователь, который преобразует нерегулируемую электроэнергию постоянного тока, исходящую от батареи топливных ячеек, в высококачественную регулируемую электроэнергию постоянного тока для необходимых нагрузок. Установка на топливных ячейках может обеспечивать резервное электропитание на протяжении многих дней, так как продолжительность действия ограничена только имеющимся в запасе количеством водорода или топлива из метанола/воды.

Топливные элементы предлагают высокий уровень энергосбережения, повышенную надежность системы, более предсказуемые эксплуатационные качества в широком спектре климатических условий, а также надежную эксплуатационную долговечность в сравнении с комплектами батарей со свинцово-кислотными элементами с клапанным регулированием промышленного стандарта. Затраты на протяжении срока эксплуатации также более низкие, вследствие значительно меньшей потребности в техническом обслуживании и замене. Топливные ячейки предлагают конечному пользователю экологические преимущества, так как затраты на утилизацию и риски ответственности, связанные со свинцово-кислотными элементами, вызывают растущее беспокойство.

На эксплуатационные характеристики электрических батарей может отрицательно повлиять широкий спектр факторов, таких как уровень зарядки, температура, циклы, срок службы и другие переменные факторы. Предоставляемая энергия будет различной в зависимости от этих факторов, ее нелегко предсказать. Эксплуатационные характеристики топливной ячейки с мембраной обмена протонов (МОПТЯ) относительно не подвержены влиянию этих факторов и могут обеспечивать критически важное электропитание, пока есть топливо. Повышенная предсказуемость является важным преимуществом при переходе на топливные ячейки для критически важных сфер использования резервного электропитания.

Топливные элементы генерируют энергию только при подаче топлива, подобно газотурбинному генератору, но не имеют подвижных деталей в зоне генерирования. Поэтому, в отличие от генератора, они не подвержены быстрому износу и не требуют постоянного технического обслуживания и смазки.

Топливо, используемое для приведения в действие преобразователя топлива с повышенной продолжительностью действия, представляет собой топливную смесь из метанола и воды. Метанол является широкодоступным, производимым в промышленных масштабах топливом, которое в настоящее время имеет множество применений, среди прочего стеклоомыватели, пластиковые бутылки, присадки для двигателя, эмульсионные краски. Метанол легко транспортируется, может смешиваться с водой, обладает хорошей способностью к биоразложению и не содержит серы. Он имеет низкую точку замерзания (-71°C) и не распадается при длительном хранении.

Применение топливных элементов/ячеек в сетях связи

Сети засекреченной связи нуждаются в надежных решениях в области резервного электропитания, которые могут функционировать на протяжении нескольких часов или нескольких дней в чрезвычайных ситуациях, если электросеть перестала быть доступной.

При наличии незначительного числа подвижных деталей, а также отсутствии снижения мощности в режиме ожидания, инновационная технология топливных ячеек предлагает привлекательное решение в сравнении с существующими в настоящий момент системами резервного электропитания.

Самым неопровержимым доводом в пользу применения технологии топливных ячеек в сетях связи является повышенная общая надежность и безопасность. Во время таких происшествий, как отключения электропитания, землетрясения, бури и ураганы, важно, чтобы системы продолжали работать и были обеспечены надежной подачей резервного электропитания на протяжении длительного периода времени, независимо от температуры или срока эксплуатации системы резервного электропитания.

Линейка устройств электропитания на основе топливных ячеек идеально подходит для поддержки сетей засекреченной связи. Благодаря заложенным в конструкцию принципам энергосбережения, они обеспечивают экологически чистое, надежное резервное питание с повышенной продолжительностью действия (до нескольких дней) для использования в диапазоне мощностей от 250 Вт до 15 кВт.

Применение топливных элементов/ячеек в сетях передачи данных

Надежное электропитание для сетей передачи данных, таких как сети высокоскоростной передачи данных и оптико-волоконные магистрали, имеет ключевое значение во всем мире. Информация, передаваемая по таким сетям, содержит критически важные данные для таких учреждений, как банки, авиакомпании или медицинские центры. Отключение электропитания в таких сетях не только представляет опасность для передаваемой информации, но и, как правило, приводит к значительным финансовым потерям. Надежные инновационные установки на топливных ячейках, обеспечивающие резервное электропитание, предоставляют надежность, необходимую для обеспечения непрерывного электропитания.

Установки на топливных ячейках, работающие на жидкой топливной смеси из метанола и воды, обеспечивают надежное резервное электропитание с повышенной продолжительностью действия, вплоть до нескольких дней. Кроме того, эти установки отличаются значительно сниженными требованиями в отношении технического обслуживания в сравнении с генераторами и батареями, необходимо лишь одно посещение с целью технического обслуживания в год.

Типичные характеристики мест применений для использования установок на топливных ячейках в сетях передачи данных:

  • Применения с количествами потребляемой энергии от 100 Вт до 15 кВт
  • Применения с требованиями в отношении автономной работы > 4 часов
  • Повторители в оптико-волоконных системах (иерархия синхронных цифровых систем, высокоскоростной Интернет, голосовая связь по IP-протоколу…)
  • Сетевые узлы высокоскоростной передачи данных
  • Узлы передачи по протоколу WiMAX

Установки на топливных ячейках для резервного электропитания предлагают многочисленные преимущества для критически важных инфраструктур сетей передачи данных в сравнении с традиционными автономными батареями или дизельными генераторами, позволяя повысить возможности использования на месте:

  1. Технология жидкого топлива позволяет решить проблему размещения водорода и обеспечивает практически неограниченную работу резервного электропитания.
  2. Благодаря тихой работе, малой массе, устойчивости к перепадам температур и функционированию практически без вибраций топливные элементы можно устанавливать вне здания, в промышленных помещениях/контейнерах или на крышах.
  3. Приготовления к использованию системы на месте быстры и экономичны, стоимость эксплуатации низкая.
  4. Топливо обладает способностью к биоразложению и представляет собой экологически чистое решение для городской среды.

Применение топливных элементов/ячеек в системах безопасности

Самые тщательно разработанные системы безопасности зданий и системы связи надежны лишь настолько, насколько надежно электропитание, которое поддерживает их работу. В то время как большинство систем включает некоторые типы систем резервного бесперебойного питания для краткосрочных потерь мощности, они не создают условия для более продолжительных перерывов в работе электросети, которые могут иметь место после стихийных бедствий или терактов. Это может стать критически важным вопросом для многих корпоративных и государственных учреждений.

Такие жизненно важные системы, как системы мониторинга и контроля доступа с помощью системы видеонаблюдения (устройства чтения идентификационных карт, устройства для закрытия двери, техника биометрической идентификации и т.д.), системы автоматической пожарной сигнализации и пожаротушения, системы управления лифтами и телекоммуникационные сети, подвержены риску при отсутствии надежного альтернативного источника электропитания питания продолжительного действия.

Дизельные генераторы производят много шума, их тяжело разместить, также хорошо известно о проблемах с их надежностью и техническим обслуживанием. В противоположность этому, установка на топливных ячейках, обеспечивающая резервное электропитание, не производит шума, является надежной, выбросы, выделяемые ей, равны нулю или весьма низки, ее легко установить на крыше или вне здания. Она не разряжается и не теряет мощность в режиме ожидания. Она обеспечивает непрерывную работу критически важных систем, даже после того, как учреждение прекратит работу и здание будет покинуто людьми.

Инновационные установки на топливных ячейках защищают дорогостоящие вложения критически важных сфер применения. Они обеспечивают экологически чистое, надежное резервное питание с повышенной продолжительностью действия (до многих дней) для использования в диапазоне мощностей от 250 Вт до 15 кВт в сочетании с многочисленными непревзойденными характеристиками и, особенно, высоким уровнем энергосбережения.

Установки на топливных ячейках для резервного электропитания предлагают многочисленные преимущества для использования в критически важных сферах применения, таких как системы обеспечения безопасности и управления зданиями, в сравнении с традиционными автономными батареями или дизельными генераторами. Технология жидкого топлива позволяет решить проблему размещения водорода и обеспечивает практически неограниченную работу резервного электропитания.

Применение топливных элементов/ячеек в коммунально-бытовом отоплении и электрогенерации

На твердооксидных топливных ячейках (ТОТЯ) построены надежные, энергетически эффективные и не дающие вредных выбросов теплоэнергетические установки для выработки электроэнергии и тепла из широко доступного природного газа и возобновляемых источников топлива. Эти инновационные установки используется на самых различных рынках, от домашней выработки электричества до поставок электроэнергии в удаленные районы, а также в качестве вспомогательных источников питания.

Применение топливных элементов/ячеек в распределительных сетях

Малые теплоэнергетические установки предназначены для работы в распределенной сети выработки энергии, состоящей из большого числа малых генераторных установок вместо одной централизованной электростанции.


На рисунке ниже указаны потери эффективности выработки электроэнергии при ее выработке на ТЭЦ и передаче в дома через традиционные сети электропередач, используемые на данный момент. Потери эффективности при централизованной выработке включают потери с электростанции, низковольтной и высоковольтной передачи, а также потери при распределении.

Рисунок показывает результаты интеграции малых теплоэнергетических установок: электричество вырабатывается с эффективностью выработки до 60% на месте использования. В дополнение к этому, домохозяйство может использовать тепло, вырабатываемое топливными ячейками, для нагрева воды и помещений, что увеличивает общую эффективность переработки энергии топлива и повышает уровень энергосбережения.

Использование топливных элементов для защиты окружающей среды-утилизация попутного нефтяного газа

Одной из важнейших задач в нефтедобывающей промышленности является утилизация попутного нефтяного газа. Существующие методы утилизации попутного нефтяного газа имеют массу недостатков, основной из них – они экономически невыгодны. Попутный нефтяной газ сжигается, что наносит огромный вред экологии и здоровью людей.

Инновационные теплоэнергетические установки на топливных элементах, использующие попутный нефтяной газ в качестве топлива, открывают путь к радикальному и экономически выгодному решению проблем по утилизации попутного нефтяного газа.

  1. Одно из основных преимуществ установок на топливных элементах заключается в том, что они могут надежно и устойчиво работать на попутном нефтяном газе переменного состава. Благодаря беспламенной химической реакции, лежащей в основе работы топливного элемента, снижение процентного содержания, например метана, вызывает лишь соответствующее уменьшение выходной мощности.
  2. Гибкость по отношению к электрической нагрузке потребителей, перепаду, набросу нагрузки.
  3. Для монтажа и подключения теплоэнергетических установок на топливных ячейках их внедрения не требуются идти на капитальные затраты, т.к. установки легко монтируются на неподготовленные площадки вблизи месторождений, удобны в эксплуатации, надежны и эффективны.
  4. Высокая автоматизация и современный дистанционный контроль не требуют постоянного нахождения персонала на установке.
  5. Простота и техническое совершенство конструкции: отсутствие движущихся частей, трения, систем смазки дает значительные экономические выгоды от эксплуатации установок на топливных элементах.
  6. Потребление воды: отсутствует при температуре окружающей среды до +30 °C и незначительное при более высоких температурах.
  7. Выход воды: отсутствует.
  8. Кроме того, теплоэнергетические установки на топливных элементах не шумят, не вибрируют, не дают вредных выбросов в атмосферу

В течение двух ближайших лет на рынке мобильных компьютеров и портативных электронных устройств ожидается появление большого количества серийно выпускаемых моделей, оснащенных источниками питания на базе химических топливных элементов.

Экскурс в историю

ервые эксперименты по созданию топливных элементов были проведены еще в XIX столетии. В 1839 году английский физик Гроув при проведении электролиза воды обнаружил, что после отключения внешнего источника тока между электродами возникает постоянный ток. Однако открытия в этой области, сделанные рядом выдающихся ученых XIX века, не нашли практического применения, став достоянием лишь академической науки.

К созданию топливных элементов для прикладного использования ученые вернулись лишь в начале 50-х годов XX века. В этот период возможности практического применения химических реакторов для получения электроэнергии начали активно изучать коллективы исследователей в США, Японии, СССР и ряде западноевропейских стран.

Первой областью практического применения топливных элементов стала космонавтика. Топливные элементы различных конструкций использовались на американских космических кораблях Gemini, Apollo и Shuttle, а также на созданном в СССР многоразовом космическом челноке «Буран».

Следующая волна интереса к химическим топливным элементам была вызвана энергетическим кризисом 70-х годов. В тот период многие компании занялись исследованиями в области использования альтернативных источников энергии для транспорта, а также для бытового и промышленного применения. Кстати, именно на этом поприще начинала свою деятельность ныне известная компания АРС.

В настоящее время можно выделить четыре основные сферы применения энергоустановок на базе топливных элементов: энергоустановки для различных транспортных средств (от скутеров до автобусов), стационарные решения крупного и мелкого масштаба, а также источники питания для мобильных устройств. В этой статье мы рассмотрим главным образом решения для портативных устройств.

Что такое топливные элементы

режде всего необходимо уточнить, о чем пойдет речь. Топливные элементы представляют собой специализированные химические реакторы, предназначенные для прямого преобразования энергии, высвобождающейся в ходе реакции окисления топлива, в электрическую энергию.

Следует отметить, что топливные элементы имеют по крайней мере два принципиальных отличия от гальванических батарей, также относящихся к устройствам, преобразующим энергию протекающих в них химический реакций в электричество. Во-первых, в топливных элементах используются не расходуемые в процессе работы электроды, а во-вторых, необходимые для проведения реакции вещества подаются извне, а не закладываются внутрь элемента изначально (как это происходит в случае обычных батареек).

Применение нерасходуемых электродов позволяет значительно увеличить срок службы топливных элементов по сравнению с гальваническими батареями. Кроме того, благодаря использованию внешней системы подачи топлива значительно упрощается и удешевляется процедура восстановления работоспособности топливных элементов.

Типы химических топливных элементов

Топливные элементы с ионообменной мембраной (Proton Exchange Membrane, PEM)

Технология изготовления элементов данного типа была разработана в 50-х годах XX века инженерами компании General Electric. Подобные топливные элементы использовались для получения электроэнергии на американском космическом корабле Gemini.

Отличительной особенностью PEM-элементов является применение графитовых электродов и твердополимерного электролита (или, как его еще называют, ионообменной мембраны — Proton Exchange Membrane). В качестве топлива в PEM-элементах используется чистый водород, а роль окислителя выполняет содержащийся в воздухе кислород. Водород подается со стороны анода, где происходит электрохимическая реакция:

2H 2 -> 4H + + 4e .

Ионы водорода перемещаются от анода к катоду через электролит (ионный проводник), в то время как электроны — через внешнюю цепь. На катоде, со стороны которого подается окислитель (кислород или воздух), происходит реакция окисления водорода с образованием чистой воды:

O 2 + 4H + + 4e -> 2H 2 O .

Рабочая температура PEM-элементов составляет около 80 °С. При таких условиях электрохимические реакции протекают слишком медленно, поэтому в конструкции элементов данного типа используется катализатор — обычно тонкий слой платины на каждом из электродов.

Одна ячейка такого элемента, состоящая из пары электродов и ионообменной мембраны, способна генерировать напряжение порядка 0,7 В. Для увеличения выходного напряжения массив отдельных ячеек соединяется в батарею.

PEM-элементы способны работать при относительно низкой температуре окружающей среды и обладают довольно высокой эффективностью (КПД составляет от 40 до 50%). В настоящее время на базе PEM-элементов созданы действующие прототипы энергоустановок мощностью до 50 кВт; в стадии разработки находятся устройства мощностью до 250 кВт.

Существует несколько ограничений, препятствующих более широкому распространению данной технологии. Это относительно высокая стоимость материалов для изготовления мембран и катализатора. Кроме того, в качестве топлива можно использовать только чистый водород.

Щелочные топливные элементы (Alkaline Fuel Cells, AFC)

Конструкция первого щелочного топливного элемента была разработана русским ученым П.Яблочковым в 1887 году. В качестве электролита в щелочных элементах используется концентрированный гидроксид калия (КОН) либо его водный раствор, а основным материалом для изготовления электродов является никель.

В качестве топлива применяется чистый водород, а качестве окислителя — чистый кислород. Реакция окисления водорода протекает через электроокисление водорода на аноде:

2H 2 + 4OH – — 4e -> 4H 2 O

и электровосстановление кислорода на катоде:

O 2 + 2H 2 O + 4e -> 4OH – .

Гидроксид-ионы двигаются в электролите от катода к аноду, а электроны — по внешней цепи от анода к катоду.

Щелочные элементы работают при температуре около 80 °С, однако значительно (примерно на порядок) уступают PEM-элементам по удельной мощности, вследствие чего их габариты (при сравнимых характеристиках) значительно больше. Однако себестоимость производства щелочных элементов значительно ниже, чем PEM. Основной недостаток щелочных элементов заключается в необходимости использования чистых кислорода и водорода, поскольку содержание в топливе или окислителе примесей углекислого газа (CO2) приводит к карбонизации щелочи.

Фосфорнокислые топливные элементы (Phosphoric Acid Fuel Cells, PAFC)

В качестве электролита в фосфорнокислых элементах используется жидкая фосфорная кислота, обычно заключенная в порах матрицы из карбида кремния. Для изготовления электродов применяется графит. Происходящие в фосфорнокислых элемента реакции электроокисления водорода аналогичны тем, которые протекают в PEM-элементах.

Рабочая температура фосфорнокислых элементов несколько выше по сравнению с PEM- и щелочными и колеблется в пределах от 150 до 200 °С. Тем не менее для обеспечения необходимой скорости электрохимических реакций необходимо использовать катализаторы (платину либо сплавы на ее основе). Благодаря более высокой рабочей температуре фосфорнокислые элементы менее чувствительны к химической чистоте топлива (водорода), чем PEM- и щелочные элементы. Это позволяет применять топливную смесь, содержащую 1-2% оксида углерода. В качестве окислителя можно использовать обычный воздух, поскольку содержащиеся в нем вещества не вступают в реакцию с электролитом.

Фосфорнокислые элементы обладают относительно невысоким КПД (порядка 40%) и требуют некоторого времени для выхода на рабочий режим при холодном старте. Однако PAFC имеют и целый ряд преимуществ, в том числе более простую конструкцию, а также высокую стабильность и низкую летучесть электролита.

В настоящее время на базе фосфорнокислых элементов создано и запущено в коммерческую эксплуатацию большое количество энергоустановок мощностью от 200 кВт до 20 МВт.

Топливные элементы с прямым окислением метанола (Direct Methanol Fuel Cells, DMFC)

Элементы с прямым окислением метанола являются одним из вариантов реализации элементов с ионообменной мембраной. Топливом для DMFC-элементов служит водный раствор метилового спирта (метанола). Необходимый для реакции водород (и побочный продукт в виде углекислого газа) получается за счет прямого электроокисления раствора метанола на аноде:

CH 3 OH + H 2 O -> CO 2 + 6H + + 6e.

На катоде происходит реакция окисления водорода с образованием воды:

3/2O 2 + 6H + + 6e -> 3H 2 O .

Рабочая температуры DMFC-элементов составляет примерно 120 °С, что немного выше по сравнению с водородными PEM-элементами. Недостатком низкотемпературного преобразования является более высокая потребность в катализаторах. Это неизбежно приводит увеличению стоимости таких топливных элементов, однако данный недостаток компенсируется удобством использования жидкого топлива и отсутствием необходимости в применении внешнего конвертора для получения чистого водорода.

Топливные элементы с электролитом из расплава карбоната лития и натрия (Molten Carbonate Fuel Cells, MCFC)

Данный тип топливных элементов относится к высокотемпературным устройствам. В них применяется электролит, состоящий из карбоната лития (Li 2 CO 3) либо карбоната натрия (Na 2 CO 3), находящегося в порах керамической матрицы. В качестве материала для анода используется никель, легированный хромом, а для катода — литированный оксид никеля (NiO + LiO 2). При нагревании до температуры порядка 650 °С компоненты электролита расплавляются, в результате чего образуются ионы углекислой соли, движущиеся от катода к аноду, где они вступают в реакцию с водородом:

CO 3 2– + H 2 -> H 2 O + CO 2 + 2e.

Высвободившиеся электроны движутся по внешней цепи обратно к катоду, где происходит реакция:

CO 2 + 1/2 O 2 + 2e -> CO 3 2– .

Высокая рабочая температура данных элементов позволяет применять в качестве топлива природный газ (метан), преобразуемый встроенным конвертором в водород и монооксид углерода:

CH 4 + H 2 O <-> CO + 3H 2 .

MCFC-элементы обладают высоким КПД (до 60%) и позволяют использовать в качестве катализатора не платину, а более дешевый и доступный никель. Вследствие большого количества выделяемого при работе тепла данный вид топливных элементов хорошо подходит для создания стационарных источников электрической и тепловой энергии, однако малопригоден для эксплуатации в мобильных условиях. В настоящее время на базе MCFC-элементов уже созданы стационарные энергоустановки мощностью до 2 МВт.

Топливные элементы с твердым электролитом (Solid Oxide Fuel Cells, SOFC)

Данный тип элементов имеет еще более высокую рабочую температуру (от 800 до 1000 °С), чем вышеописанный MCFC. В SOFC применяется керамический электролит на основе оксида циркония (ZrO 2), стабилизированного оксидом иттрия (Y 2 O 3). На катоде происходит электрохимическая реакция с образованием отрицательно заряженных ионов кислорода:

O 2 + 4e -> 2O 2– .

Отрицательно заряженные ионы кислорода движутся в электролите по направлению от катода к аноду, где происходит окисление топлива (обычно — смеси водорода с монооксидом углерода с образованием воды и углекислого газа:

H 2 + 2O 2– -> H 2 O + 2e;

CO + 2O 2– -> CO 2 + 2e.

Элементы типа SOFC обладают теми же достоинствами, что и MCFC, включая возможность использования в качестве топлива природного газа. Компоненты SOFC обладают более высокой химической стабильностью, однако себестоимость их производства несколько выше по сравнению с MCFC.

Работа химических топливных элементов поддерживается путем подачи двух применяемых для поддержания реакции компонентов — топлива и окислителя. В зависимости от типа топливного элемента, в качестве топлива могут использоваться газообразный водород, природный газ (метан), а также жидкое углеводородное топливо (например, метиловый спирт). В роли окислителя обычно выступает содержащийся в воздухе кислород, а некоторые типы топливных элементов могут работать только с чистым кислородом.

Конструкция любого химического топливного элемента состоит из двух электродов (катода и анода) и находящегося между ними слоя электролита — среды, обеспечивающей перемещение ионов от одного электрода к другому и блокирующей движение электронов. Для того чтобы реакция протекала с более высокой скоростью, в электродах часто используют катализаторы. В зависимости от химических и физических особенностей применяемого электролита топливные элементы подразделяются на несколько различных типов (подробнее см. во врезке «Типы химических топливных элементов»).

Преимущества топливных элементов

о сравнению с широко распространенными в настоящее время источниками автономного электропитания, используемыми в мобильных ПК и портативных устройствах, химические топливные элементы имеют ряд важных преимуществ.

В первую очередь стоит отметить высокий коэффициент полезного действия топливных элементов, составляющий, в зависимости от типа, от 40 до 60%. Высокий кпд позволяет изготавливать источники питания с более высокой удельной энергоемкостью, благодаря чему достигается уменьшение их массогабаритных показателей при сохранении мощности и времени автономной работы. Кроме того, более энергоемкие источники питания позволяют значительно продлить время автономной работы существующих устройств, не увеличивая их размеры и вес.

Другим важным достоинством химических топливных элементов является возможность практически мгновенного возобновления их энергоресурса даже при отсутствии внешних источников электропитания — для этого достаточно установить новую емкость (картридж) с используемым топливом. Применение не расходуемых в процессе реакции электродов позволяет создавать топливные элементы с очень большим сроком службы и малой совокупной стоимостью владения.

Нельзя не отметить и значительно более высокую экологическую чистоту химических топливных элементов по сравнению с гальваническими батареями. Расходным материалом для топливных элементов служат лишь емкости с топливом, а основным продуктом реакции является обычная вода. Замена используемых в настоящее время батареек и аккумуляторов на топливные элементы позволит значительно сократить объем подлежащих переработке отходов, содержащих ядовитые и вредные для окружающей среды вещества.

Платиновая проблема

есмотря на очевидные преимущества химических топливных элементов перед многими ныне распространенными источниками электропитания портативных ПК и электронных устройств, на пути массового внедрения новой технологии имеются определенные препятствия.

Наиболее подходящими для применения в портативных устройствах относительно небольшого размера являются топливные элементы с низкой рабочей температурой — такие как PEM и DMCF. Однако для обеспечения приемлемой скорости прохождения химических реакций в таких элементах необходимо использовать катализаторы. В настоящее время в PEM- и DMCF-элементах применяются катализаторы из платины и ее сплавов. Учитывая относительно небольшие природные запасы этого вещества, а также его высокую стоимость, одной из главных задач разработчиков источников питания на базе топливных элементов является поиск и создание новых катализаторов. Другим возможным решением проблемы является использование высокотемпературных топливных элементов, однако по целому ряду причин в настоящее время подобные источники питания практически непригодны для эксплуатации в портативных устройствах.

Движение вперед: прототипы

есмотря на наличие ряда проблем, в течение двух последних лет активность коллективов разработчиков, занимающихся созданием топливных элементов для портативных ПК и электронных устройств, заметно возросла. Кроме того, увеличилось и количество компаний, ведущих подобные работы.

Если говорить об используемых технологиях, то наиболее популярными решения в рассматриваемом сегменте являются топливные элементы PEM и DMFC. Из компаний, занимающихся разработкой топливных элементов для мобильных устройств, около 45% сделали ставку на технологию PEM, примерно 40% — на DMFC и менее 10% — на SOFC. Удобство и простота использования жидкого топлива является значительным преимуществом DMFC перед PEM, и в прошедшем году стало очевидно, что большинство стоящих на пороге коммерциализации проектов базируется именно на технологии DMFC.

Прототип КПК с интегрированным топливным элементом, созданный разработчиками Hitachi

В начале прошлого года компания Hitachi продемонстрировала прототип КПК с интегрированным топливным элементом и заявила о своем намерении начать продажи пробной партии подобных устройств в 2005 году. Для перезаправки топливного элемента используется картридж цилиндрической формы (диаметром 1 см и высотой 5 см), содержащий 20-процентный водный раствор метанола. По словам разработчиков, содержащегося в картридже топлива достаточно для того, чтобы обеспечить активную работу с КПК в течение 6-8 часов.

В июне минувшего года компания Toshiba представила прототип компактного DMFC-элемента, предназначенного для использования в качестве источника питания цифровых медиаплееров и мобильных телефонов. Габариты этого блока — 22Ѕ56Ѕ4,5 мм, вес — 8,5 г. В качестве топлива в нем применяется концентрированный метанол (99,5%). Одной заправки топлива (2 см3) достаточно для обеспечения питанием нагрузки мощностью 100 мВт (например, портативного МР3-плеера) в течение 20 часов. При разработке данного прототипа было применено несколько новых решений, в частности была оптимизирована структура электродов и полимерной мембраны, позволяющая использовать в качестве топлива концентрированный метанол.

Известно, что один из производителей мобильных телефонов — компания KDDI — внимательно присматривается к разработкам Toshiba и Hitachi в области малогабаритных топливных элементов. KDDI планирует выпустить на рынок мобильные телефоны с питанием от топливных элементов в течение ближайших двух лет.

Некоторые компании уже продемонстрировали прототипы решений для портативных ПК. В частности, Casio представила прототип ноутбука, оснащенный источником питания, который содержит PEM-элемент и конвертор метанола. В начале минувшего года компания Samsung представила прототип ноутбука на мобильной платформе Centrino, оснащенный топливным элементом, обеспечивающим работу устройства в течение 10 часов.

В ноябре 2004 года сотрудники токийского института исследований в области материалов и энергетики (Materials and Energy Research Institute Tokyo, MERIT) обнародовали информацию о работах по созданию топливного элемента собственной конструкции, который будет более дешевым и компактным по сравнению с DMFC. В качестве топлива в нем будет использоваться борогидрид натрия. По мнению разработчиков, благодаря этому время работы топливного элемента увеличится в четыре раза по сравнению с заправленным таким же объемом метанола DMFC-элементом.

Представленный сотрудниками MERIT прототип топливного элемента выполнен в корпусе размером 80Ѕ84,6Ѕ3 мм и способен работать с нагрузкой мощностью до 20 Вт. Для питания более мощных устройств можно использовать батареи, состоящие из нескольких элементов. Согласно существующим планам развертывание серийного производства подобных элементов намечено на начало 2006 года.

Лед тронулся…

Середине декабря компания Intermec Technologies начала продажи портативного прибора для считывания информации с радиочастотных индентификаторов — первого серийно выпускаемого устройства, оснащенного малогабаритным DMFC-элементом. Используемый в устройстве топливный элемент Mobion разработан компанией MTI MicroFuel Cells, которая планирует наладить выпуск подобных источников питания для КПК, смартфонов и других портативных устройств. Как отмечают разработчики MTI MicroFuel Cells, элемент Mobion позволяет в несколько раз увеличить время работы устройств без подзарядки по сравнению с литий-ионными аккумуляторами такого же размера.

По мнению многих экспертов, в наступившем году следует ожидать появления целого ряда серийно выпускаемых портативных устройств, оснащенных топливными элементами. И от того, насколько успешным окажется их дебют, во многом будет зависеть будущее рынка источников питания портативных устройств.

Топливный элемент - что это такое? Когда и как он появился? Зачем он нужен и почему о них в наше время так часто говорят? Каковы его область примения, характеристики и свойства? Неудержимый прогресс требует ответов на все эти вопросы!

Что такое топливный элемент?

Топливный элемент - это химический источник тока или электрохимический генератор, это устройство для преобразования химической энергии в электрическую. В современной жизни химические источники тока используются повсеместно и представляют собой аккумуляторы мобильных телефонов, ноутбуков, КПК, а также аккумуляторные батареи в автомобилях, источниках бесперебойного питания и т.п. Следующим этапом развития данной области будет повсеместное распространение топливных элементов и это уже никем неопровергаемый факт.

История топливных элементов

История топливных элементов - это ещё одна история о том, как некогда открытые на Земле свойства вещества нашли широкое применение далеко в космосе, а на рубеже тысячелетий вернулись с небес на Землю.

Всё началось в 1839 году , когда немецкий химик Кристиан Шёнбейн опубликовал принципы работы топливного элемента в «Философском журнале». В этом же году англичанин, выпускник Оксфорда, Уильям Роберт Гроув сконструировал гальванический элемент, в последствии названный гальваническим элементом Гроува, он же признан первым топливным элементом. Само название "топливный элемент" было подарено изобретению в год его юбилея - в 1889 году. Людвиг Монд и Карл Лангер - авторы термина.

Немного ранее, в 1874г., Жюль Верн в романе «Таинственный остров» предсказал нынешнюю энергетическую ситуацию, написав, что «Вода в один прекрасный день будет использоваться в качестве топлива, применяться будут водород и кислород, из которых она состоит».

Тем временем, новая технология электроснабжения постепенно совершенствовалась, а начиная с 50-х годов XX века уже и года не проходило без анонсов новейших изобретений в этой области. В 1958 году в США появился первый трактор, работающий на топливных элементах, в 1959г. вышел в свет 5кВт-ный источник питания для сварочной машины, и т.д. В 70-х годах водородные технологии взлетели в космос: появились самолёты и ракетные двигатели на водороде. В 60-х годах РКК "Энергия"разрабатывала топливные элементы для советской лунной программы. Программа "Буран" также не обошлась без них: были разработаны щелочные 10кВт-ные топливные элементы. А ближе к концу века топливные элементы пересекли нулевую высоту над уровнем моря - на их основе разработано электроснабжение немецкой подводной лодки. Возвращаясь на Землю, в 2009 году в США запустили в эксплуатацию первый локомотив. Естественно, на топливных элементах.

Во всей прекрасной истории топливных элементов интересно то, что колесо по-прежнему остается неимеющим аналогов в природе изобретением человечества. Дело в том, что по своему устройству и принципу действия топливные элементы аналогичны биологической клетке, которая, по сути, представляет собой миниатюрный водородно-кислородный топливный элемент. В итоге человек в очередной раз изобрел то, чем природа пользуется уже миллионы лет.

Принцип работы топливных элементов

Принцип работы топливных элементов очевиден даже из школьной программы по химии и именно он был заложен в опытах Уильяма Гроува 1839 года. Всё дело в том, что процесс электролиза воды (диссоциации воды) является обратимым. Как верно то, что, при пропускании электрического тока через воду, последняя расщепляется на водород и кислород, так верно и обратное: водород и кислород можно соединить с получением воды и электричества. В опыте Гроува два электрода размещались в камере, в которую подавались под давлением ограниченные порции чистого водорода и кислорода. В силу небольших объемов газа, а также благодаря химическим свойствам угольных электродов в камере происходила медленная реакция с выделением тепла, воды и, самое главное, с образованием разности потенциалов между электродами.

Простейший топливный элемент состоит из специальной мембраны, используемой как электролит, по обе стороны которой нанесены порошкообразные электроды. Водород поступает на одну сторону (анод), а кислород (воздух) - на другую (катод). На каждом электроде происходят разные химические реакции. На аноде водород распадается на смесь протонов и электронов. В некоторых топливных элементах электроды окружены катализатором, обычно выполненным из платины или других благородных металлов, способствующих протеканию реакции диссоциации:

2H 2 → 4H + + 4e -

где H 2 - двухатомная молекула водорода (форма, в которой водород присутствует в виде газа); H + - ионизированный водород (протон); е - - электрон.

С катодной стороны топливного элемента протоны (прошедшие через электролит) и электроны (которые прошли через внешнюю нагрузку) воссоединяются и вступают в реакцию с подаваемым на катод кислородом с образованием воды:

4H + + 4e - + O 2 → 2H 2 O

Суммарная реакция в топливном элементе записывается так:

2H 2 + O 2 → 2H 2 O

Работа топливного элемента основана на том, что электролит пропускает через себя протоны (по направлению к катоду), а электроны - нет. Электроны движутся к катоду по внешнему проводящему контуру. Это движение электронов и есть электрический ток, который может быть использован для приведения в действие внешнего устройства, подсоединенного к топливному элементу (нагрузка, например, лампочка):

В своей работе топливные элементы используют водородное топливо и кислород. Проще всего с кислородом - он забирается из воздуха. Водород может подаваться непосредственно из некой ёмкости или путем выделения его из внешнего источника топлива (природного газа, бензина или метилового спирта - метанола). В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. В настоящее время большинство технологий топливных элементов, разрабатываемых для портативных устройств, задействуют именно метанол.

Характеристики топливных элементов

    Топливные элементы являются аналогами существующих аккумуляторов в том смысле, что в обоих случаях электрическая энергия получается из химической. Но есть и принципиальные отличия:

    • они работают только пока топливо и окислитель поступают от внешнего источника (т.е. они не могут накапливать электрическую энергию),

      химический состав электролита в процессе работы не изменяется (топливный элемент не нуждается в перезарядке),

      они полностью не зависимы от электричества (в то время как обычные аккумуляторы запасают энергию из электросети).

    Каждый топливный элемент создаёт напряжение в 1В . Большее напряжение достигается последовательным их соединением. Увеличение мощности (тока) реализуется через параллельное соединение каскадов из последовательно соединенных топливных элементов.

    У топливных элементов нет жёсткого ограничения на КПД , как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).

    Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в дизель-генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 42%, чаще же составляет порядка 35-38%. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80% ,

    КПД почти не зависит от коэффициента загрузки ,

    Ёмкость в несколько раз выше , чем в существующих аккумуляторах,

    Полное отсутствие экологически вредных выбросов . Выделяется только чистый водяной пар и тепловая энергия (в отличие от дизельных генераторов, имеющих загрязняющие окружающую среду выхлопы и требующих их отвода).

Виды топливных элементов

Топливные элементы классифицируются по следующим признакам:

    по используемому топливу,

    по рабочему давлению и температуре,

    по характеру применения.

В целом, выделяют следующие типы топливных элементов :

    Твердооксидный топливный элемент (Solid-oxide fuel cells - SOFC);

    Топливный элемент с протонообменной мембраной (Proton-exchange membrane fuel cell - PEMFC);

    Обратимый топливный элемент (Reversible Fuel Cell - RFC);

    Прямой метанольный топливный элемент (Direct-methanol fuel cell - DMFC);

    Расплавной карбонатный топливный элемент (Molten-carbonate fuel cells - MCFC);

    Фосфорнокислый топливный элемент (Phosphoric-acid fuel cells - PAFC);

    Щелочной топливный элемент (Alkaline fuel cells - AFC).

Одним из типов топливных элементов, работающих при нормальных температурах и давлениях с использованием водорода и кислорода, являются элементы с ионообменной мембраной. Образующаяся вода не растворяет твердый электролит, стекает и легко отводится.

Проблемы топливных элементов

    Главная проблема топливных элементов связана с необходимостью наличия "упакованного" водорода, который можно было бы свободно приобрести. Очевидно, проблема должна решиться со временем, но пока ситуация вызывает легкую улыбку: что первично - курица или яйцо? Топливные элементы ещё не настолько развиты, чтобы строить водородные заводы, но их прогресс немыслим без этих заводов. Здесь же отметим проблему источника водорода. На настоящий момент водород получают из природного газа, но повышение стоимости энергоносителей повысит и цену водорода. При этом в водороде из природного газа неизбежно присутствие CO и H 2 S (сероводород), которые отравляют катализатор.

    Распространенные платиновые катализаторы используют очень дорогой и невосполнимый в природе металл - платину. Однако данную проблему планируется решить использованием катализаторов на основе ферментов, являющихся дешевым и легкопроизводимым веществом.

    Проблемой является и выделяющееся тепло. Эффективность резко возрастет, если генерируемое тепло направить в полезное русло - производить тепловую энергию для системы теплоснабжения, использовать в качестве бросового тепла в абсорбционных холодильных машинах и т.п.

Топливные элементы на метаноле (DMFC): реальное применение

Наивысший практический интерес на сегодняшний день представляют топливные элементы прямого действия на основе метанола (Direct Methanol Fuel Cell, DMFC). Ноутбук Portege M100, работающий на топливном элементе DMFC выглядит следующим образом:

Типичная схема DMFC-элемента содержит, помимо анода, катода и мембраны, несколько дополнительных комплектующих: картридж с топливом, датчик метанола, насос для циркуляции топлива, воздушный насос, теплообменник и т.д.

Время работы, например, ноутбука по сравнению с аакумуляторами планируется увеличить в 4 раза (до 20 часов), мобильного телефона - до 100 часов в активном режиме и до полугода в режиме ожидания. Подзарядка будет осуществляться добавлением порции жидкого метанола.

Основной задачей является поиск вариантов использования раствором метанола с наивысшей его концентрацией. Проблема в том, что метанол - достаточно сильный яд, смертельный в дозах от нескольких десятков граммов. Но концентрация метанола напрямую влияет на длительность работы. Если ранее применялся 3-10%-й раствор метанола, то уже появились мобильные телефоны и КПК с использованием 50%-го раствора, а в 2008 году в лабораторных условиях специалистами MTI MicroFuel Cells и, чуть позже, Toshiba получены топливные элементы, работающие на чистом метаноле.

За топливными элементами - будущее!

Наконец, об очевидности большого будущего топливных элементов говорит тот факт, что международная организация IEC (International Electrotechnical Commission), определяющая индустриальные стандарты для электронных устройств, уже объявила о создании рабочей группы для разработки международного стандарта на миниатюрные топливные элементы.

В США приняты несколько инициатив, направленных на разработку водородных топливных элементов, инфраструктуры и технологий, чтобы сделать автомобили на топливных элементах практичными и экономичными к 2020 году. На эти цели выделено более, чем один миллиард долларов.

Топливные элементы вырабатывают электричество тихо и эффективно, без загрязнения окружающей среды. В отличие от источников энергии, использующих ископаемое топливо, побочными продуктами от работы топливных элементов являются тепло и вода. Как это работает?

В этой статье мы кратко рассмотрим каждую из существующих топливных технологий на сегодняшний день, а так же расскажем об устройстве и работе топливных элементов, сравним их с другими формами получения энергии. Мы также обсудим некоторые из препятствий, с которыми сталкиваются исследователи, чтобы сделать топливные элементы практичными и доступными для потребителей.

Топливные элементы — это электрохимические устройства преобразования энергии . Топливный элемент преобразует химические вещества, водород и кислород в воду, в процессе чего вырабатывает электричество.

Другое электрохимическое устройство, с которым мы все хорошо знакомы, — аккумулятор . Батарея имеет все необходимые химические элементы внутри себя и превращает этих вещества в электричество. Это означает, что аккумулятор, в конце концов, «умирает» и вы либо выбрасываете, либо снова заряжаете его.

В топливном элементе химические вещества постоянно поступают в него, чтобы он никогда не «умирал». Электричество будет вырабатываться так долго, сколько будет происходить поступление химических веществ в элемент. Большинство топливных элементов, применяемых сегодня, используют водород и кислород.

Водород — наиболее распространенный элемент в нашей Галактике. Однако водород практически не существует на Земле в его элементарной форме. Инженеры и ученые должны извлекать чистый водород из водородных соединений, включая ископаемое топливо или воду. Чтобы добыть водород из этих соединений, нужно затратить энергию в виде высокой температуры или электричества.

Изобретение топливных элементов

Сэр Уильям Гроув изобрел первый топливный элемент в 1839 году. Гроув знал, что воду можно разделить на водород и кислород путем пропускания электрического тока через нее (процесс, называемый электролизом ). Он предположил, что в обратном порядке можно было бы получить электричество и воду. Он создал примитивный топливный элемент и назвал ее газовой гальванической батареей . Поэкспериментировав со своим новым изобретением, Гроув доказал свою гипотезу. Пятьдесят лет спустя, ученые Людвиг Монд и Чарльз Лангер придумали термин топливные элементы при попытке построить практическую модель для производства электроэнергии.

Топливный элемент будет конкурировать со многими другими устройствами конвертации энергии, в том числе с газовыми турбинами на городских электростанциях, двигателями внутреннего сгорания в автомобилях, а так же всевозможными аккумуляторами. Двигатели внутреннего сгорания, так же как и газовые турбины, сжигают различные виды топлива и используют давление, создаваемое путем расширения газов, чтобы выполнять механическую работу. Аккумуляторы преобразовывают химическую энергию в электрическую энергию, когда это необходимо. Топливные элементы должны выполнять эти задачи более эффективно.

Топливный элемент обеспечивает напряжение DC (постоянный ток), который может быть использован для питания электродвигателей, освещения и других электроприборов.

Существует несколько различных типов топливных элементов, каждый из которых использует различные химические процессы. Топливные элементы обычно классифицируются по их рабочей температуре и типу электролита, который они используют. Некоторые типы топливных элементов, хорошо годятся для использования в стационарных электростанциях. Другие могут быть полезными для небольших портативных устройств или для питания автомобилей. Основные типы топливных элементов включают в себя:

Топливный элемент с полимерной мембраной обмена Polymer exchange membrane fuel cell (PEMFC)

PEMFC рассматривается в качестве наиболее вероятного кандидата для применения на транспорте. PEMFC имеет как высокую мощность, так и относительно низкую рабочую температуру (в диапазоне от 60 до 80 градусов по Цельсию). Низкая рабочая температура означает, топливные элементы быстро смогут разогреться, чтобы начать генерацию электроэнергии.

Твердооксидные топливные элементы Solid oxide fuel cell (SOFC)

Эти топливные элементы наиболее подходят для крупных стационарных генераторов энергии, которые могли бы обеспечить электроэнергией фабрики или города. Этот тип топливных элементов работает при очень высоких температурах (от 700 до 1000 градусов по Цельсию). Высокая температура составляет проблему надежности, потому что часть топливных элементов может выйти из строя после нескольких циклов включения и выключения. Однако, твердооксидные топливные элементы являются очень стабильными при непрерывной работе. В самом деле, SOFC продемонстрировали самый длинный срок эксплуатации любых топливных элементов при определенных условиях. Высокая температура также имеет преимущество: пар, вырабатываемый топливными элементами, может быть направлен в турбины и генерировать больше электроэнергии. Этот процесс называется когенерацией тепла и электроэнергии и повышает общую эффективность системы.

Щелочной топливный элемент Alkaline fuel cell (AFC)

Это один из древнейших образцов для топливных элементов, используемый с 1960-х годов. AFC являются очень восприимчивыми к загрязнению, так как требуют чистый водород и кислород. Кроме того, они очень дороги, поэтому этот тип топливных элементов, вряд ли будет запущен в серийное производство.

Топливный элемент с расплавленным карбонатным электролитом Molten-carbonate fuel cell (MCFC)

Как SOFC, эти топливные элементы также лучше всего подходят для больших стационарных электростанций и генераторов. Они работают при 600 градусов по Цельсию, так что могут генерировать пар, который, в свою очередь, может быть использован, чтобы генерировать еще больше энергии. Они имеют более низкую рабочую температуру, чем твердооксидные топливные элементы, что означает, что они не нуждаются в таких термоустойчивых материалах. Это делает их немного дешевле.

Топливный элемент на фосфорной кислоте Phosphoric-acid fuel cell (PAFC)

Топливный элемент на фосфорной кислоте имеет потенциал для использования в небольших стационарных энергетических системах. Он работает на более высокой температуре, чем топливный элемент с полимерной мембраной обмена, поэтому он дольше разогревается, что делает его непригодным для использования в автомобилях.

Метаноловые топливные элементы Direct methanol fuel cell (DMFC)

Метаноловые топливные элементы сравнимы с PEMFC в отношении рабочей температуры, но не так эффективны. Кроме того, DMFC требуют довольно большого количества платины, выступающей в качестве катализатора, который делает эти топливные элементы дорогими.

Топливный элемент с полимерной мембраной обмена

Топливный элемент с полимерной мембраной обмена (PEMFC) является одной из наиболее перспективных технологий топливных элементов. PEMFC использует одну из простейших реакций среди любых топливных элементов. Рассмотрим, из чего он состоит.

1. Анод – негативная клемма топливного элемента. Он проводит электроны, которые высвобождаются из молекул водорода, после чего они могут быть использованы во внешней цепи. В нем выгравированы каналы, по которым газообразный водород распределяется равномерно по поверхности катализатора.

2. Катод — позитивная клемма топливного элемента, также имеет каналы для распределения кислорода по поверхности катализатора. Он также проводит электроны обратно из внешней цепи катализатора, где они могут соединиться с ионами водорода и кислорода с образованием воды.

3. Электролит-протонообменная мембрана . Это специально обработанный материал, который проводит только положительно заряженные ионы и блокирует электроны. У PEMFC, мембрана должна быть увлажненной, чтобы нормально функционировать и оставаться стабильной.

4. Катализатор — это специальный материал, который способствует реакции кислорода и водорода. Обычно он изготавливается из наночастиц платины, очень тонко нанесенных на копировальную бумагу или ткань. Катализатор имеет такую структуру поверхности, чтобы максимальная площадь поверхности платины могла быть подвержена воздействию водорода или кислорода.

На рисунке показан газообразный водород (H2), входящий под давлением в топливный элемент со стороны анода. Когда молекула H2 соприкасается с платиной на катализаторе, она разделяется на два H+ иона и два электрона. Электроны проходят через анод, где они используются во внешней схеме (выполнение полезной работы, например, вращение двигателя) и возвращаются к стороне катода топливного элемента.

Между тем, на стороне катода топливного элемента, кислород (O2) из воздуха проходит через катализатор, где формирует два атома кислорода. У каждого из этих атомов есть сильный отрицательный заряд. Этот отрицательный заряд привлекает два H+ иона через мембрану, где они объединяются с атомом кислорода и двумя электронами, пришедшими из внешней схемы, чтобы сформировать молекулу воды (H2O).

Эта реакция в одиночном топливном элементе производит только приблизительно 0,7 Вольт. Чтобы повысить напряжение до разумного уровня, много отдельных топливных элементов должны быть объединены, чтобы сформировать стек топливного элемента. Биполярные пластины используются для соединения одного топливного элемента с другим и подвергаются окислению с уменьшением потенциала. Большая проблема биполярных пластин – их стабильность. Металлические биполярные пластины могут разъедаться коррозией, и побочные продукты (железо и ионы хрома) уменьшают эффективность мембран топливного элемента и электродов. Поэтому низкотемпературные топливные элементы используют легкие металлы, графит и композитные соединения углерода и термореактивного материала (термореактивный материал — своего рода пластмасса, которая остается твердой, даже когда подвергается высоким температурам) в виде биполярного листового материала.

Эффективность топливного элемента

Сокращение загрязнения — одна из основных целей топливного элемента. Сравнивая автомобиль, приведенный в действие топливным элементом с автомобилем, приведенным в действие бензиновым двигателем и автомобилем, работающим от аккумулятора, вы увидите, как топливные элементы могли бы повысить эффективность автомобилей.

Так как у всех трех типов автомобилей есть многие одни и те же самые компоненты, мы проигнорируем эту часть автомобиля и сравним полезные действия до пункта, где производится механическая энергия. Давайте начнем с автомобиля на топливных элементах.

Если топливный элемент приведен в действие чистым водородом, его КПД может составить до 80 процентов. Таким образом, он преобразовывает 80 процентов энергетического содержания водорода в электроэнергию. Однако мы еще должны преобразовать электроэнергию в механическую работу. Это достигается электродвигателем и инвертором. КПД двигателя + инвертора также составляет приблизительно 80 процентов. Это дает полную эффективность приблизительно 80*80/100=64 процентов. У концептуального транспортного средства Хонды FCX по сообщениям есть 60-процентная эффективность использования энергии.

Если топливный источник не будет в виде чистого водорода, то транспортное средство будет также нуждаться в риформаторе. Риформаторы превращают углеводородные или спиртовые топлива в водород. Они вырабатывают тепло и производят CO и CO2 помимо водорода. Для очистки полученного водорода в них используются различные устройства, но эта очистка недостаточна и понижает эффективность топливного элемента. Поэтому исследователи решили сконцентрироваться на топливных элементах для транспортных средств, работающих на чистом водороде, несмотря на проблемы, связанные с производством и хранением водорода.

Эффективность бензинового двигателя и автомобиля на электрических батареях

Эффективность автомобиля, приведенного в действие бензином — удивительно низкая. Вся высокая температура, которая выходит в виде выхлопа или поглощается радиатором, является потраченной впустую энергией. Двигатель также использует много энергии, вращающей различные насосы, вентиляторы и генераторы, которые поддерживают его работу. Таким образом, полная эффективность автомобильного бензинового двигателя составляет приблизительно 20 процентов. Таким образом, только приблизительно 20 процентов содержания тепловой энергии бензина преобразуются в механическую работу.

У работающего от аккумулятора электромобиля есть довольно высокая эффективность. Батарея имеет КПД, приблизительно, 90 процентов (большинство батарей вырабатывает некоторое тепло или требует нагревания), и электродвигатель + инвертор с КПД, приблизительно 80 процентов. Это дает полную эффективность, приблизительно, 72 процента.

Но это не все. Для того, чтобы электромобиль двигался, электричество должно быть сначала где-нибудь произведено. Если это была электростанция, которая использовала процесс сгорания ископаемого топлива (а не ядерную, гидроэлектрическую, солнечную или ветровую энергию), то только приблизительно 40 процентов топлива, потребленного электростанцией, были преобразованы в электричество. Плюс, процесс зарядки автомобиля требует преобразования мощности переменного тока (AC) к мощности постоянного тока (DC). У этого процесса КПД приблизительно 90 процентов.

Теперь, если мы смотрим на целый цикл, эффективность электромобиля составляет 72 процента для самого автомобиля, 40 процентов для электростанции и 90 процентов для зарядки автомобиля. Это дает полную эффективность 26 процентов. Полная эффективность значительно варьируется в зависимости от того, какая электростанция используется для зарядки аккумулятора. Если электричество для автомобиля произведено, например, гидроэлектростанцией, то эффективность электромобиля составит приблизительно 65 процентов.

Ученые исследуют и совершенствуют проекты, чтобы продолжать повышать эффективность топливного элемента. Один из новых подходов должен объединить топливный элемент и работающие от аккумулятора транспортные средства. Разрабатывается концептуальное транспортное средство, приводимое в действие гибридной трансмиссией с подпиткой от топливного элемента. Оно использует литиевую батарею, приводящую автомобиль в действие, в то время как топливный элемент перезаряжает батарею.

Транспортные средства на топливных элементах потенциально так же эффективны как работающий от аккумулятора автомобиль, который заряжается от электростанции, не использующей ископаемое топливо. Но достижение такого потенциала практическим и доступным способом может оказаться трудным.

Зачем нужно использовать топливные элементы?

Основной причиной является все, что связано с нефтью. Америка должна импортировать почти 60 процентов своей нефти. К 2025 г. импорт, как ожидается, вырастет до 68%. Две трети нефти американцы используют ежедневно для перевозок. Даже если каждый автомобиль на улице был бы гибридным автомобилем, к 2025 году в США все равно пришлось бы использовать то же количество нефти, которое потреблялось американцами в 2000 году. В самом деле, Америка потребляет четверть всей нефти, добываемой в мире, хотя только 4,6% мирового населения живет здесь.

Эксперты ожидают, что цены на нефть продолжат расти в течение следующих нескольких десятилетий, так как более дешевые источники истощаются. Нефтяные компании должны разрабатывать нефтяные месторождения во все более сложных условиях, отчего будут повышать цены на нефть.

Опасения простираются далеко за пределы экономической безопасности. Много средств, поступающих от продажи нефти, расходуются на поддержание международного терроризма, радикальных политических партий, нестабильной обстановки в нефтедобывающих регионах.

Использование нефти и других видов ископаемого топлива для получения энергии производит загрязнение. Оно наилучшим образом подходит для всех найти альтернативу-сжигание ископаемого топлива для получения энергии.

Топливные элементы являются привлекательной альтернативой нефтяной зависимости. Топливные элементы вместо загрязнения производят чистую воду в качестве побочного продукта. Хотя инженеры временно сосредоточились на производстве водорода из различных ископаемых источников, таких как бензин или природный газ, изучаются возобновляемые, экологически чистые способы получения водорода в будущем. Самым перспективным, естественно, станет процесс получения водорода из воды

Зависимость от нефти и глобальное потепление — международная проблема. Несколько стран совместно участвуют в развитии исследований и разработок для технологии топливных элементов.

Очевидно, что ученые и производители должны немало потрудиться, прежде чем топливные элементы станут альтернативой современным методам производства энергии. И все же, при поддержке всего мира и глобальном сотрудничестве, жизнеспособная энергетическая система на базе топливных элементов может стать реальностью уже через пару десятилетий.