Как найти силу сопротивление формула. Силы сопротивления движению

При движении любого предмета по поверхности или в воздухе возникают силы, препятствующие этому. Их называют силами сопротивления или трения. В этой статье мы расскажем, как найти силу сопротивления, и рассмотрим факторы, влияющие на нее.

Для определения силы сопротивления необходимо воспользоваться третьим законом Ньютона. Эта величина численно равна силе, которую нужно приложить, чтобы заставить равномерно двигаться предмет по ровной горизонтальной поверхности. Это можно сделать при помощи динамометра. Сила сопротивления вычисляется по формуле F=μ*m*g. Согласно этой формуле, искомая величина прямо пропорциональна массе тела. Стоит учесть, что для правильного подсчета необходимо выбрать μ – коэффициент, зависящий от материала, из которого изготовлена опора. Принимают во внимание и материал предмета. Этот коэффициент выбирается по таблице. Для расчета используется постоянная g, которая равна 9,8 м/с2. Как рассчитать сопротивление, если тело движется не прямолинейно, а по наклонной плоскости? Для этого в первоначальную формулу нужно ввести cos угла. Именно от угла наклона зависит трение и сопротивление поверхности тел к движению. Формула для определения трения по наклонной плоскости будет иметь такой вид: F=μ*m*g*cos(α). Если тело движется на высоте, то на него действует сила трения воздуха, которая зависит от скорости движения предмета. Искомую величину можно рассчитать по формуле F=v*α. Где v – скорость движения предмета, а α – коэффициент сопротивления среды. Эта формула подходит исключительно для тел, которые передвигаются с небольшой скоростью. Для определения силы сопротивления реактивных самолетов и других высокоскоростных агрегатов применяют другую – F=v2*β. Для расчета силы трения высокоскоростных тел используют квадрат скорости и коэффициент β, который рассчитывается для каждого предмета отдельно. При движении предмета в газе или жидкости при расчете силы трения необходимо учитывать плотность среды, а также массу и объем тела. Сопротивление движению существенно снижает скорость поездов и автомобилей. Причем на движущие предметы действует два вида сил – постоянные и временные. Общая сила трения представлена суммой двух величин. Для снижения сопротивления и повышения скорости машины конструкторы и инженеры изобретают разнообразные материалы со скользящей поверхностью, от которой воздух отталкивается. Именно поэтому передняя часть скоростных поездов имеет обтекаемую форму. Рыбы очень быстро движутся в воде благодаря обтекаемому телу, покрытому слизью, которая снижает трение. Не всегда сила сопротивления отрицательно сказывается на движении машин. Чтобы вытащить автомобиль из грязи, необходимо под колеса насыпать песок или щебень. Благодаря увеличению трения авто отлично справляется с болотистой почвой и грязью.

Сопротивление движения в воздухе используется во время прыжков с парашютом. В результате возникающего трения между куполом и воздухом скорость движения парашютиста снижается, что позволяет без ущерба для жизни заниматься парашютным спортом.

Инструкция

Найдите силу сопротивления движению, которая действует на равномерно прямолинейно движущееся тело. Для этого при помощи динамометра или другим способом измерьте силу, которую необходимо приложить к телу, чтобы оно двигалось равномерно и прямолинейно. По третьему закону Ньютона она будет численно равна силе сопротивления движения тела.

Определите силу сопротивления движению тела, которое перемещается по горизонтальной поверхности. В этом случае сила трения прямо пропорциональна силе реакции опоры, которая, в свою очередь равна силе тяжести, действующей на тело. Поэтому сила сопротивления движению в этом случае или сила трения Fтр равна произведению массы тела m, которая измеряется весами в килограммах, на ускорение свободного падения g≈9,8 м/с² и коэффициент пропорциональности μ, Fтр=μ∙m∙g. Число μ называется коэффициентом трения и зависит от поверхностей, входящих в контакт при движении. Например, для трения стали по дереву этот коэффициент равен 0,5.

Рассчитайте силу сопротивления движению тела, движущегося по . Кроме коэффициента трения μ, массы тела m и ускорения свободного падения g, она зависит от угла наклона плоскости к горизонту α. Чтобы найти силу сопротивления движению в этом случае, нужно найти произведения коэффициента трения, массы тела, ускорения свободного падения и косинуса угла, под которым плоскость к горизонту Fтр=μ∙m∙g∙сos(α).

При движении тела в воздухе на невысоких скоростях сила сопротивления движению Fс прямо пропорциональна скорости движения тела v, Fc=α∙v. Коэффициент α зависит от свойств тела и вязкости среды и рассчитывается отдельно. При движении на высоких скоростях, например, при падении тела со значительной высоты или движении автомобиля, сила сопротивления прямо пропорциональна квадрату скорости Fc=β∙v². Коэффициент β дополнительно рассчитывается для высоких скоростей.

Источники:

  • 1 Общая формула для силы сопротивления воздуха На рисунке

Для определения силы сопротивления воздуха создайте условия, при которых тело начнет под действием силы тяжести двигаться равномерно и прямолинейно. Рассчитайте значение силы тяжести, оно будет равно силе сопротивления воздуха. Если тело движется в воздухе, набирая скорость, сила его сопротивления находится при помощи законов Ньютона, также силу сопротивления воздуха можно найти из закона сохранения механической энергии и специальных аэродинамических формул.

Вам понадобится

  • дальномер, весы, спидометр или радар, линейка, секундомер.

Инструкция

Перед измерением сопротивления б/у резистора обязательно выпаяйте его из старой платы или блока. Иначе он может быть шунтирован другими деталями схемы, и вы получите неправильные показания его сопротивления .

Видео по теме

Чтобы найти электрическое сопротивление проводника, воспользуйтесь соответствующими формулами. Сопротивление участка цепи находится по закону Ома. Если же известен материал и геометрические размеры проводника, его сопротивление можно рассчитать при помощи специальной формулы.

Вам понадобится

  • - тестер;
  • - штангенциркуль;
  • - линейка.

Инструкция

Вспомните, что подразумевает собой понятие резистора. В данном случае под резистором надо понимать любой проводник или элемент электрической цепи, имеющий активное резистивное сопротивление. Теперь важно задаться вопросом о том, как действует изменение значения сопротивления на значение силы тока и от чего оно зависит. Суть явления сопротивления заключается в том, что резистора формируют своего рода барьер для прохождения электрических зарядов. Чем выше сопротивление вещества, тем более плотно расположены атомы в решетке резистивного вещества. Данную закономерность и объясняет закон Ома для участка цепи. Как известно, закон Ома для участка цепи звучит следующим образом: сила тока на участке цепи прямо пропорциональна напряжению на участке и обратно пропорциональна сопротивлению самого участка цепи.

Изобразите на листе бумаги график зависимости силы тока от напряжения на резисторе, а также от его сопротивления, исходя из закона Ома. Вы получите график гиперболы в первом случае и график прямой во втором случае. Таким образом, сила тока будет тем больше, чем больше напряжение на резисторе и чем меньше сопротивление. Причем зависимость от сопротивления здесь более яркая, ибо она имеет вид гиперболы.

Обратите внимание, что сопротивление резистора также изменяется при изменении его температуры. Если нагревать резистивный элемент и наблюдать при этом за изменением силы тока, то можно заметить, как при увеличении температуры уменьшается сила тока. Данная закономерность объясняется тем, что при увеличении температуры увеличиваются колебания атомов в узлах кристаллической решетки резистора, уменьшая таким образом свободное пространство для прохождения заряженных частиц. Другой причиной, уменьшающей силу тока в данном случае, является тот факт, что при увеличении температуры вещества увеличивается хаотичное движение частиц, в том числе заряженных. Таким образом, движение свободных частиц в резисторе становится в большей степени хаотичным, чем направленным, что и сказывается на уменьшении силы тока.

Видео по теме

ВВЕДЕНИЕ

В транспортном потоке автомобиль движется в трех основных режимах: разгон, движение с постоянной скоростью и выбег. Способность автомобиля быстро увеличивать скорость характеризуются его динамическими свойствами.

Расчет скорости и пути автомобиля необходим в следующих случаях: проектирование системы управления движением на магистрали, расследование ДТП с обгоном транспортных средств, определение размеров площадки для контроля тормозных свойств автомобиля и др.

Движение автомобиля описывается дифференциальными уравнениями. Чтобы рассчитать скорость и путь автомобиля выполняют интегрирование этих уравнений. Расчет вручную, на калькуляторе, движения автомобиля занимает много времени, а погрешность расчета составляет 5…15%.

При движении автомобиль перемещается в продольной и поперечной плоскости дороги, кузов и неподрессоренные массы совершают колебания на подвеске. В разработанной программе учитывается движение только в продольной плоскости дороги. Колебания масс не учитываются. Последнее упрощение связано с тем, что в литературе отсутствуют числовые данные по моментам инерции, жесткостям и демпфированию подвесок для автомобилей различных марок. В тоже время учет колебаний позволяет повысить точность расчета лишь на 0,5…1%.

В программе рассчитываются три основных варианта движения: трогание с места, разгон движущегося автомобиля и выбег. Частным случаем второго варианта является движение автомобиля с постоянной скоростью.

Интегрирование дифференциальных уравнений выполняется по методу Эйлера по времени, с постоянным шагом 0,001 c. При расчете малых величин применяются числа двойной точности. Все расчеты выполняются в системе единиц измерения СИ.

Работа с программой организована в режиме диалога с персональным компьютером. Пользователь вводит параметры автомобиля, задает начальные условия, вариант движения и конец участка. Результаты расчета выводятся на экран дисплея и в файл. Пользователь может контролировать изменение всех параметров автомобиля по времени с помощью графиков. Файлы с результатами расчета можно использовать для построения графиков по программе Excel.

Силы сопротивления движению

На автомобиль действуют силы сопротивления движению и тяговая сила. Силы сопротивления движению зависят от условий движения и параметров автомобиля. Тяговая сила зависит от мощности двигателя, режима его работы и параметров трансмиссии.

Сила сопротивления качению

Сила Pf сопротивления качению автомобиля складывается из сил сопротивления качению его колес:

где f - коэффициент сопротивления качению (безразмерный); G - вес автомобиля в Н.

Коэффициент сопротивления качению зависит от скорости V движения автомобиля:

f = f0 (1 + k V2), (2)

где f0 - коэффициент сопротивления качению при низкой скорости. Значение f0 указывается в задании на курсовой проект. Обычно принимают коэффициент f0 = 0,015. На чистой, ровной, сухой дороге и при применении шин с низким сопротивлением качению f0 снижается до 0,01. На дороге в неудовлетворительном состоянии f0 увеличивается до 0,03. Коэффициент k отражает влияние скорости V автомобиля на сопротивление качению. Значение k обычно принимают 0,000144 с2/м2. При скорости автомобиля менее 22…25 м/с (80…90 км/ч) влиянием скорости можно пренебречь.

Сила сопротивления подъему

Сила сопротивления подъему зависит от угла подъема дороги i, рад. Обычно угол i имеет небольшую величину, и значение i называют коэффициентом сопротивления подъему. Силу Pi - сопротивления подъему вычисляют по формуле:

Сила сопротивления воздуха

Сила сопротивления воздуха зависит от обтекаемости автомобиля, лобовой его площади и скорости:

PW = k F V2, (4)

где k - коэффициент обтекаемости в Нс2/м4; F - лобовая площадь автомобиля (площадь Миделя) в м2; V - скорость автомобиля в м/с.

Произведение k F называют фактором обтекаемости W. Значения коэффициентов обтекаемости и площади автомобилей различного типа приведены в табл. 1.

Таблица 1 Значения коэффициента обтекаемости k, площади F и фактора обтекаемости для автомобилей различного типа

Тип автомобиля

Легковой, с закрытым кузовом

Легковой, с открытым кузовом

Грузовой

Гоночный

При совершенно любом движении будет фиксироваться появление между поверхностями тел или в среде, где оно осуществляется, сил сопротивления. Второе свойственное им название – силы трения.

Замечание 1

Силы сопротивления могут быть зависимыми от разновидностей трущихся поверхностей, реакций опоры тела, а также его скорости, при условии движения тела в вязкой среде (к примеру, в воздухе или воде).

Расчет сил сопротивления

С целью определения сил сопротивления потребуется применение третьего закона Ньютона. Такая величина, как сила сопротивления, будет численно равной силе, которую потребуется приложить с целью равномерного движения предмета по горизонтальной ровной поверхности. Это становится возможным с помощью динамометра.

Таким образом, искомая величина оказывается прямо пропорциональной массе тела. Стоит при этом учитывать во внимание, что для более точного подсчета потребуется выбрать $u$ коэффициент, зависимый от материала изготовления опоры. Также принимается во внимание материал изготовления самого предмета исследования. При расчете применяется постоянная $g$, чье значение 9,8 $м/с^2$.

В условиях движения тела на высоте, на него влияет сила трения воздуха, зависимая от скорости перемещения предмета. Искомую величину определяют на основании такой формулы (подходящей исключительно для тел с передвижением с небольшой скоростью):

$F = va$, где:

  • $v$ – скорость движения предмета,
  • $a$ – коэффициент сопротивления среды.

Разновидности сил сопротивления

Существуют такие разновидности сил сопротивления:

  1. Сила сопротивления качению $P_f$, зависимая от таких факторов, как: разновидности и состояния опорной поверхности, скорости движения, давления воздуха и пр. Коэффициент сопротивления качению $f$ зависеть при этом состояния и типа опорной поверхности. С повышением температуры и давления, указанный коэффициент уменьшается.
  2. Сила сопротивления воздуха (лобовое сопротивление) $Р_в$ возникает за счет разницы давлений. Данный показатель окажется тем выше, чем большим будет вихреобразование как в передней, так и в задней части объекта движения. Величина вихреобразования будет зависеть от формы движущихся тел.

Наиболее значимым будет воздействие на сопротивление движению передней части. Так, при создании закругления в передней и задней части плоскостенной фигуры, сопротивление возможно уменьшить на 72 %. Сила лобового сопротивления $Р_{вл}$ определяется по такой формуле:

$P_{вл} = {c_xpF_в}\frac{v^2}{2}$, где:

  • $с_х$– коэффициент лобового сопротивления (обтекаемости);
  • $p$- плотность воздуха;
  • $F_в$ –площадь лобового сопротивления (миделевого сечения) определяется по формуле

Сила сопротивления воздуха ориентирована в направлении, противоположном вектору скорости объекта движения (например, автомобиля). Обычно она рассматривается как сконцентрированная сила, приложенная в отношении точки (центра парусности объекта), не совпадающей при этом с центром массы исследуемого объекта.

Сила сопротивления разгону поступательно движущейся массы объекта, согласно второму закону Ньютона, определяется таким образом:

$Рj = m\frac{dV}{dt}$, где:

  • $m$– масса автомобиля;
  • $\frac{dv}{dt}$ - ускорение центра масс.

Силы сопротивления при больших скоростях

В случае, когда мы имеем дело с малыми скоростями, сопротивление будет зависеть от:

  • вязкости жидкости;
  • скорости движения;
  • линейных размеров тела.

Рассмотрим действие законов трения при больших скоростях. Так, к воздуху и в особенности, к воде законы вязкого трения будут мало применимыми. Даже при наличии таких скоростей, как 1 см/с, они будут пригодными исключительно в отношении тел крошечных размеров (в миллиметрах).

Замечание 2

Сопротивление, которое испытывает ныряющий в воду пловец, ни в коей мере не будет подчиняться действию закона вязкого трения.

При медленном движении жидкость станет плавно обтекать предмет движения. При этом сила сопротивления, которую он будет преодолевать, и окажется силой вязкого трения.

В условиях большой скорости, позади движущегося объекта возникнет уже более сложное движение жидкости. В жидкости начнут то появляться, то исчезать разные струйки, формируя при этом необычные по форме фигуры, вихри, кольца. Таким образом, картина струек будет подвержена постоянным изменениям. Возникновение подобного движения получило название турбулентного.

Турбулентное сопротивление будет зависимым от скорости и размеров предмета не так, как при вязком. Так, оно окажется пропорциональным квадратам скорости и линейных размеров. Вязкость жидкости при подобном движении перестает иметь решающее значение, а определяющим свойством выступает ее плотность. Таким образом, для силы $F$ турбулентного сопротивления справедлива формула:

$F=pv^2L^2$, где:

  • $v$– скорость движения,
  • $L$– линейные размеры предмета,
  • $p$ – плотность среды.

Во всех реальных жидкостях при перемещении одних слоев относительно других возникают более или менее значительные силы трения.

Со стороны слоя, движущегося быстрее, на слой, движущийся медленнее, действует ускоряющая сила. Со стороны же слоя, движущегося медленнее, на слой, движущийся быстрее, действует тормозящая сила. Это внутреннее трение называется вязкостью жидкости или газа. Эти силы направлены по касательной к поверхности слоев. Пусть между двумя плоскостями находится слой жидкости (рис. 1); верхняя плоскость движется относительно нижней со скоростью . Мысленно разобьем жидкость на очень тонкие слои параллельными плоскостями, отстоящими на расстоянии друг от друга. Слои жидкости, касающиеся твердых тел, прилипают к ним. Промежуточные слои имеют распределение скоростей, изображенных на рис. 1. Пусть разность скоростей между соседними слоями . Величина , которая показывает, как быстро меняется скорость при переходе от слоя к слою, называется градиентом скорости.


Расчеты показывают, что сила внутреннего трения между соседними слоями жидкости тем больше, чем больше площадь поверхности соприкосновения слоев, и зависит от быстроты изменения скорости при переходе от слоя к слою в направлении оси Ox, перпендикулярной скорости движения слоев:

где S - площадь соприкосновения слоев, - коэффициент внутреннего трения, или вязкость жидкости, - градиент скорости.

Вязкость зависит от температуры. С ростом температуры вязкость жидкости уменьшается.

При движении твердого тела в жидкости или газе также возникает сила сопротивления движению, которую называют силой вязкого трения . Но в отличие от сухого трения в жидкостях и газах отсутствует сила трения покоя. Наличие силы сопротивления движению тела в среде объясняется существованием внутреннего трения, обусловленного относительным движением слоев жидкости или газа.

Установлено, что сила вязкого трения зависит от скорости движения тела. Зависимость проекции силы вязкого трения от скорости показана на рисунке 2.


Если скорость движения тела невелика, то сила сопротивления прямо пропорциональна модулю скорости: , где k - коэффициент пропорциональности, который зависит от рода вязкой среды, формы и размеров тела. Если скорость движения тела возрастает, то возрастает и сила сопротивления:

При увеличении скорости движения тела в жидкости или газе появляются вихри, тормозящие движение: вследствие вязкости в области, прилегающей к поверхности тела, образуется пограничный слой частиц, движущихся с меньшими скоростями. В результате тормозящего действия этого слоя возникает вращение частиц, и движение жидкости в пограничном слое становится вихревым. Если тело не имеет обтекаемой формы, то пограничный слой жидкости отрывается от поверхности тела. За телом возникает течение жидкости (газа), направленное противоположно набегающему потоку. Оторвавшийся пограничный слой, следуя за этим течением, образует вихри, вращающиеся в противоположные стороны, (рис. 3, б). Жидкость, вращающаяся в вихре, движется быстрее жидкости в стационарном потоке (рис. 3, а). Поэтому с задней стороны обтекаемого тела, где образовались вихри, давление становится меньше, чем с передней. Разность давлений впереди и позади движущегося тела и создает сопротивление движению тела. В итоге с увеличением скорости сила сопротивления растет нелинейно (см. рис. 2).


Сила сопротивления зависит от формы тела. Придание телу специально рассчитанной обтекаемой формы существенно уменьшает силу сопротивления, так как в этом случае жидкость всюду прилегает к его поверхности и позади него не завихрена (рис. 3, в).