Из чего состоит двигатель. Устройство двигателя внутреннего сгорания. Отношение диаметра цилиндра к ходу поршня

Двигатель внутреннего сгорания – это основной вид автомобильных силовых агрегатов на сегодняшний день. Принцип работы двигателя внутреннего сгорания основывается на эффекте теплового расширения газов, возникающего во время сгорания в цилиндре топливно-воздушной смеси .

Самые распространенные виды двигателей

Существует три разновидности ДВС: поршневой, роторно-поршневой силовой агрегат системы Ванкеля и газотурбинный. За редким исключением на современные авто устанавливаются четырехтактные поршневые моторы. Причина кроется в низкой цене, компактности, малом весе, многотопливности и возможности установки практически на любые транспортные средства.

Сам по себе двигатель автомобиля – это механизм, преобразующий тепловую энергию горящего топлива в механическую, работу которого обеспечивает множество систем, узлов и агрегатов. Поршневые ДВС бывают двух- и четырехтактными. Понять принцип работы двигателя автомобиля проще всего на примере четырехтактного одноцилиндрового силового агрегата.

Четырехтактным мотор называется потому, что один рабочий цикл состоит из четырех движений поршня (тактов) или двух оборотов коленчатого вала:

  • впуск;
  • сжатие;
  • рабочий ход;
  • выпуск.

Общее устройство ДВС

Чтобы понять принцип работы мотора, необходимо в общих чертах представить его устройство. Основными частями являются:

  1. блок цилиндров (в нашем случае цилиндр один);
  2. кривошипно-шатунный механизм, состоящий из коленчатого вала, шатунов и поршней;
  3. головка блока с газораспределительным механизмом (ГРМ).


Кривошипно-шатунный механизм обеспечивает преобразование поступательно-возвратного движения поршней во вращение коленчатого вала. Поршни приходят в движение благодаря энергии сгорающего в цилиндрах топлива.


Работа данного механизма невозможна без работы механизма газораспределения, который обеспечивает своевременное открытие впускных и выпускных клапанов для впуска рабочей смеси и выпуска отработавших газов. Состоит ГРМ из одного или нескольких распределительных валов , имеющих кулачки, толкающие клапаны (не менее двух на каждый цилиндр), клапанов и возвратных пружин.

Двигатель внутреннего сгорания способен работать только при слаженной работе вспомогательных систем, к которым относятся:

  • система зажигания, отвечающая за воспламенение горючей смеси в цилиндрах;
  • впускная система, обеспечивающая подачу воздуха для образования рабочей смеси;
  • топливная система, обеспечивающая непрерывную подачу топлива и получение смеси горючего с воздухом;
  • система смазки, предназначенная для смазывания трущихся деталей и удаления продуктов износа;
  • выхлопная система , которая обеспечивает удаление отработавших газов из цилиндров ДВС и снижение их токсичности;
  • система охлаждения, необходимая для поддержания оптимальной температуры для работы силового агрегата.

Рабочий цикл мотора

Как было сказано выше, цикл состоит из четырех тактов. Во время первого такта кулачок распредвала толкает впускной клапан, открывая его, поршень начинает двигаться из крайнего верхнего положения вниз. При этом в цилиндре создается разрежение, благодаря которому в цилиндр поступает готовая рабочая смесь, либо воздух, если двигатель внутреннего сгорания оснащен системой непосредственного впрыска топлива (в таком случае горючее смешивается с воздухом непосредственно в камере сгорания).

Поршень через шатун сообщает движение коленчатому валу, поворачивая его на 180 градусов к моменту достижения крайнего нижнего положения.

Во время второго такта – сжатия – впускной клапан (или клапаны) закрывается, поршень меняет направление движения на противоположное, сжимая и нагревая рабочую смесь или воздух. По окончанию такта, системой зажигания на свечу подается электрический разряд, и образуется искра, поджигающая сжатую топливно-воздушную смесь.

Принцип воспламенения горючего у дизельного ДВС иной: в завершении такта сжатия, через форсунку, в камеру сгорания впрыскивается мелкораспыленное дизтопливо, где оно смешивается с нагретым воздухом, и происходит самовоспламенение получившейся смеси. Необходимо отметить, что по этой причине степень сжатия дизеля намного выше.

Коленвал тем временем повернулся еще на 180 градусов, сделав один полный оборот.

Третий такт именуется рабочим ходом. Образующиеся во время сгорания топлива газы, расширяясь, толкают поршень в крайнее нижнее положение. Поршень передает энергию коленвалу через шатун и поворачивает его еще на пол-оборота.

По достижении нижней мертвой точки начинается заключительный такт – выпуск. В начале данного такта кулачок распределительного вала толкает и открывает выпускной клапан, поршень движется вверх и выгоняет отработавшие газы из цилиндра.

ДВС, устанавливаемые на современные автомобили, имеют не один цилиндр, а несколько. Для равномерной работы мотора в один и тот же момент времени в разных цилиндрах выполняются разные такты, и каждые пол-оборота коленвала как минимум в одном цилиндре происходит рабочий ход (исключение составляют 2- и 3-цилиндровые моторы). Благодаря этому удается избавиться от лишних вибраций, уравновешивая силы, действующие на коленвал и обеспечить ровную работу ДВС. Шатунные шейки расположены на валу под равными углами относительно друг друга.

Из соображений компактности многоцилиндровые моторы делают не рядными, а V-образными или оппозитными (визитная карточка фирмы Subaru). Это позволяет сэкономить немало пространства под капотом.

Двухтактные моторы

Помимо четырехтактных поршневых ДВС существуют двухтактные. Принцип их работы несколько отличается от описанного выше. Устройство такого мотора проще. В цилиндре имеется для окна – впускное и выпускное, расположенное выше. Поршень, находясь в НМТ, перекрывает впускное окно, затем, двигаясь вверх, перекрывает выпускное и сжимает рабочую смесь. По достижении им ВМТ на свече образуется искра и поджигает смесь. В это время впускное окно оказывается открытым, и через него в кривошипную камеру попадает очередная доза топливно-воздушной смеси.

Во время второго такта, двигаясь вниз под воздействием газов, поршень открывает выпускное окно, через которое отработавшие газы выдуваются из цилиндра новой порцией рабочей смеси, которая попадает в цилиндр через продувочный канал. Частично рабочая смесь при этом также уходит в выпускное окно, что объясняет прожорливость двухтактного ДВС.

Подобный принцип работы позволяет достичь большей мощности двигателя при меньшем рабочем объеме, однако за это приходится расплачиваться большим расходом топлива. К преимуществам таких моторов можно отнести более равномерную работу, простую конструкцию, малый вес и высокую удельную мощность. Из недостатков следует упомянуть более грязный выхлоп, отсутствие систем смазки и охлаждения, что грозит перегревом и выходом агрегата из строя.

(function(w, d, n, s, t) { w[n] = w[n] || ; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: "R-A-136785-1", renderTo: "yandex_rtb_R-A-136785-1", async: true }); }); t = d.getElementsByTagName("script"); s = d.createElement("script"); s.type = "text/javascript"; s.src = "//an.yandex.ru/system/context.js"; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, "yandexContextAsyncCallbacks");

Как устроен двигатель внутреннего сгорания?

Двигатель внутреннего сгорания — это одно из тех изобретений, которые в корне перевернули нашу жизнь — с лошадиных повозок люди смогли пересесть на быстрые и мощные автомобили.

Первые ДВС обладали малой мощностью, а коэффициент полезного действия не доходил даже до десяти процентов, но неутомимые изобретатели — Ленуар, Отто, Даймлер, Майбах, Дизель, Бенц и множество других — привносили что-то новое, благодаря чему имена многих увековечены в названиях известных автомобильных компаний.

ДВС прошли длительный путь развития от коптящих и часто ломающихся примитивных моторов, до сверхсовременных битурбированных двигателей, но принцип их работы остался все тот же — теплота сгорания топлива преобразуется в механическую энергию.

Название «двигатель внутреннего сгорания» используется потому, что топливо сгорает в середине двигателя, а не снаружи, как в двигателях внешнего сгорания — паровых турбинах и паровых машинах.

Благодаря этому ДВС получили множество положительных характеристик:

  • они стали намного легче и экономичнее;
  • стало возможным избавиться от дополнительных агрегатов для передачи энергии сгорания топлива или пара к рабочим частям двигателя;
  • топливо для ДВС обладает заданными параметрами и позволяет получать значительно больше энергии, которую можно преобразовать в полезную работу.

Устройство ДВС

Вне зависимости от того, на каком топливе работает двигатель — бензин, дизель, пропан-бутан или экотопливо на основе растительных масел — главным действующим элементом является поршень, который находится внутри цилиндра. Поршень похож на металлический перевернутый стакан (скорее подойдет сравнение с бокалом для виски — с плоским толстым дном и прямыми стенками), а цилиндр — на небольшой кусок трубы, внутри которой и ходит поршень.

В верхней плоской части поршня имеется камера сгорания — углубление круглой формы, именно в нее попадает топливно воздушная смесь и здесь же детонирует, приводя поршень в движение. Это движение передается на коленчатый вал с помощью шатунов. Шатуны верхней своей частью прикреплены к поршню с помощью поршневого пальца, который просовывается в два отверстия по бокам поршня, а нижней — к шатунной шейке коленчатого вала.

Первые ДВС имели всего один поршень, но и этого было достаточно, чтобы развить мощность в несколько десятков лошадиных сил.

В наше время тоже применяются двигатели с одним поршнем, например пусковые двигатели для тракторов, которые выполняют роль стартера. Однако больше всего распространены 2-х, 3-х, 4-х, 6-и и 8-цилиндровые двигатели, хотя выпускаются двигатели на 16 цилиндров и более.

(function(w, d, n, s, t) { w[n] = w[n] || ; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: "R-A-136785-3", renderTo: "yandex_rtb_R-A-136785-3", async: true }); }); t = d.getElementsByTagName("script"); s = d.createElement("script"); s.type = "text/javascript"; s.src = "//an.yandex.ru/system/context.js"; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, "yandexContextAsyncCallbacks");

Поршни и цилиндры находятся в блоке цилиндров. От того, как расположены цилиндры по отношению к друг другу и к другим элементам двигателя, выделяют несколько видов ДВС:

  • рядные — цилиндры расположены в один ряд;
  • V-образные — цилиндры расположены друг против друга под углом, в разрезе напоминают букву «V»;
  • U-образные — два объединенных между собой рядных двигателя;
  • X-образные — ДВС со сдвоенными V-образными блоками;
  • оппозитные — угол между блоками цилиндров составляет 180 градусов;
  • W-образные 12-цилиндровые — три или четыре ряда цилиндров установленные в форме буквы «W»;
  • звездообразные двигатели — применяются в авиации, поршни расположены радиальными лучами вокруг коленчатого вала.

Важным элементом двигателя является коленчатый вал, на который передается возвратно-поступательное движение поршня, коленвал преобразует его во вращение.


Когда на тахометре отображаются обороты двигателя, то это как раз и есть количество вращений коленвала в минуту, то есть он даже на самых низких оборотах вращается со скоростью 2000 оборотов в минуту. С одной стороны коленвал соединен с маховиком, от которого вращение через сцепление подается на коробку передач, с другой стороны — шкив коленвала, связанный с генератором и газораспределительным механизмом через ременную передачу. В более современных авто шкив коленвала связан также со шкивами кондиционера и гидроусилителя руля.

Топливо подается в двигатель через карбюратор или инжектор. Карбюраторные ДВС уже отживают свое из-за несовершенства конструкции. В таких ДВС идет сплошной поток бензина через карбюратор, затем топливо смешивается во впускном коллекторе и подается в камеры сгорания поршней, где детонирует под действием искры зажигания.

В инжекторных двигателях непосредственного впрыска топливо смешивается с воздухом в блоке цилиндров, куда подается искра от свечи зажигания.

Газораспределительный механизм отвечает за согласованную работу системы клапанов. Впускные клапаны обеспечивают своевременное поступление топливновоздушной смеси, а выпускные отвечают за выведение продуктов сгорания. Как мы уже писали раньше, такая система используется в четырехтактных двигателях, тогда как в двухтактных необходимость в клапанах отпадает.

На данном видео показано как устроен двигатель внутреннего сгорания, какие функции выполняет и как он это делает.

Устройство четырехтактного ДВС

(function(w, d, n, s, t) { w[n] = w[n] || ; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: "R-A-136785-2", renderTo: "yandex_rtb_R-A-136785-2", async: true }); }); t = d.getElementsByTagName("script"); s = d.createElement("script"); s.type = "text/javascript"; s.src = "//an.yandex.ru/system/context.js"; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, "yandexContextAsyncCallbacks");

Двигатель или мотор (от лат. motor приводящий в движение) - устройство, преобразующее какой-либо вид энергии в механическую. Этот термин используется с конца XIX века наряду со словом «мотор», которым с середины XX века чаще называют электродвигатели и двигатели внутреннего сгорания (ДВС).

Двигатель внутреннего сгорания (ДВС) - это тип двигателя, тепловой машины, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую работу.

В случае автомобиля, топливо - это содержимое топливного бака, а механическая работа, соответственно - движение. Так как же бензин или дизельное топливо двигает автомобиль?

Из чего состоит ДВС

Начать нужно с того, из чего состоит двигатель внутреннего сгорания :

-головка блока цилиндров - это своеобразный сосуд для камеры сгорания рабочей смеси, клапанов газораспределения с приводом, свечей зажигания и форсунок;

-цилиндры - это полые детали с цилиндрической внутренней поверхностью, в цилиндрах движутся поршни;

-поршни - это подвижные детали, плотно перекрывающие цилиндры в поперечном сечении и перемещающиеся вдоль их оси;

-поршневые кольца - это незамкнутые кольца, которые плотно посажены в канавках на внешних поверхностях поршней, они герметизируют камеру сгорания, улучшают теплопередачу через стенки цилиндров и регулируют расход смазки;

-поршневые пальцы служат для шарнирного соединения поршня с шатуном, каждый из них является осью, относительно которой шатун совершает колебательное движение.;

-шатуны - это звено плоского механизма,связанное с другими подвижными звеньями посредством вращательных кинематических пар и совершающее сложное плоское движение;

-коленчатый вал - это это вал, состоящий из нескольких кривошипов;

-маховик - массивное вращающееся колесо, использующееся в качестве накопителя (инерционный аккумулятор) кинетической энергии;

-распределительный вал с кулачками - основная деталь газораспределительного механизма (ГРМ), служащего для синхронизации впуска или выпуска и тактов работы двигателя;

-клапаны - это механизмы, при помощи которых можно, по желанию, открывать или закрывать отверстия различного назначения;

-свечи зажигания служат для воспламенения горючей смеси, они представляют из себя набор электродов, между которыми и возникает искра.

Но для полноценной работы ДВС необходимо еще несколько систем:

-система питания ДВС состоит из топливного бака, фильтров очистки топлива, топливопроводов, топливного насоса, воздушного фильтра, выпускной системы и карбюратора (если двигатель не инжекторный);

-система выпуска отработавших газов ДВС состоит из выпускного клапана, выпускного канала, приемной трубы глушителя, дополнительного глушителя (резонатора), основного глушителя, соединительных хомутов;

-система зажигания ДВС состоит из источника питания для системы зажигания (аккумулятор и генратор), выключателя зажигания, устройства управления накоплением энергии, накопителя энергии (например, катушка зажигания), системы распределения зажигания, высоковольтных проводов и свечей зажигания;

-система охлаждения ДВС состоит из специальным образом устроенных двойных стенок блока цилиндров и головок (пространство между ними заполнено охлаждающей жидкостью), радиатора, расширительного бачка, насоса, термостата и трубопроводов;

Система смазки состоит из поддона картера, масляного насоса, масляного фильтра, трубок, каналов и отверстий для подачи масла.

Рабочая смесь ДВС

Само название ДВС - двигатель ВНУТРЕННЕГО СГОРАНИЯ - намекает на то, что чего-то там горит. И горит, конечно, не само топливо, а лишь его пары, смешанные с воздухом. Такую смесь обычно называют рабочей. Горение этой смеси имеет особенность - она сгорает, значительно увеличиваясь в объеме, создавая, так сказать, ударную волну для поршней цилиндров.

За создание рабочей смеси отвечает карбюратор или инжектор соответственно, в зависимости от типа двигателя.

Движение автомобиля

Итак, сгорание рабочей смеси создает движение поршня. Но как с помощью поршня сдвинуть с места автомобиль? Для этого нужно преобразовать движение поршня во вращение. Поэтому палец и шатун соединяют поршень с кривошипом коленчатого вала, который, что вполне естественно, начинает от этого вращаться. Обороты с коленчатого вала "забирает" трансмиссия .

Такты работы ДВС

Вышеописанная схема - крайне упрощена. Теперь рассмотрим все происходящее в ДВС подробнее. Классической схемой работы ДВС является разделение его на такты. Для того чтобы рассмотреть каждый такт работы двигателя нужно усвоить несколько определений:

Верхняя мертвая точка (ВМТ) - самое верхнее положение поршня в цилиндре.

Нижняя мертвая точка (НМТ) - самое нижнее положение поршня в цилиндре.

Ход поршня - расстояние между ВМТ и НМТ.

Камера сгорания - объем в цилиндре над поршнем, когда он находится в ВМТ.

Рабочий объем цилиндра - объем над поршнем цилиндра, когда он находится в НМТ.

Рабочий объем двигателя - это суммарный рабочий объем всех цилиндров.

Степень сжатия ДВС - это отношение полного объема цилиндра к объему камеры сгорания.

Впуск - 1 такт работы ДВС

Во время первого такта работы ДВС впускной клапан открывается для заполнения цилиндра рабочей смесью. Степень заполнения цилиндра определяется положением поршня: рабочая смесь перестает поступать, когда поршень оказывается в положении НМТ. Перемещение поршня начинает вращать кривошип, и коленчатый вал поворачивается, правда повернуться он успевает только на полоборота.

Сжатие - 2 такт работы ДВС

Впускной клапан во время второго такта работы ДВС закрывается. Выпускной клапан системы также закрыт. Рабочая смесь находится внутри герметичного цилиндра. Начинается движение поршня, а, соответственно, и сжатие рабочей смеси. К концу сжатия (а значит и второго такта) давление в цилиндре уже очень велико, а температура достигает 500 градусов по Цельсию.

Рабочий ход - 3 такт работы ДВС

Третий такт работы ДВС - самый главный. Именно во время третьего такта происходит превращение тепловой энергии в механическую.

Там, где проходит тонкая грань между вторым и третьим тактом, срабатывает свеча зажигания: смесь воспламеняется и поршень устремляется к НМТ. Результат - вращение коленчатого вала.

Выпуск - 4 такт работы ДВС

Во время четвертого такта работы ДВС открывается выпускной клапан при закрытом впускном. Поршень, возвращаясь к ВМТ, выталкивает из цилиндра отработавшие газы в выпускной канал, который ведет прямиком через глушитель в атмосферу.

Все четыре такта работы ДВС циклично повторяются. Но самым важным из них безусловно является третий - обеспечивающий рабочий ход. Остальные такты являются вспомогательными, лишь для "организации" третьего такта, который двигает автомобиль.

Для настоящего автолюбителя машина — это непросто средство передвижения, а ещё и инструмент свободы. При помощи автомобиля можно достаться в любую точку города, страны или континента. Но наличия прав для настоящего путешественника недостаточно. Ведь до сих пор есть множество мест, где не ловит мобильный, и куда не могут добраться эвакуаторы. В таких случаях при поломке вся ответственность ложится на плечи автомобилиста.

Поэтому каждый водитель должен хоть немного разбираться в устройстве своего автомобиля , и начать нужно именно с двигателя. Безусловно, современные автомобильные компании выпускают множество автомобилей с разными типами моторов, но чаще всего производителями в конструкциях используются двигатели внутреннего сгорания. Они обладают высоким КПД и при этом обеспечивают высокую надёжность работы всей системы.

Внимание! В большинстве научных статей двигатели внутреннего сгорания сокращённо называются ДВС.

Какими бывают ДВС

Перед тем как приступить к подробному изучению устройства ДВС и их принципа работы, рассмотрим, какими бывают двигатели внутреннего сгорания. Сразу нужно сделать одно важное замечание. За более чем 100 лет эволюции учёными было придумано множество разновидностей конструкций, у каждой из которых есть свои преимущества. Поэтому для начала выделим основные критерии, по которым можно различить данные механизмы:

  1. В зависимости от способа создания горючей смеси все ДВС делятся на карбюраторные, газовые и инжекторные устройства. Причём это класс с внешним смесеобразованием. Если же говорить о внутреннем, то — это дизели.
  2. В зависимости от типа топлива ДВС можно разделить на бензиновые, газовые и дизельные.
  3. Охлаждение устройства двигателей может быть двух типов: жидкостным и воздушным.
  4. Цилиндры могут располагаться как друг напротив друга, так и в форме буквы V.
  5. Смесь внутри цилиндров может воспламеняться посредством искры. Так происходит в карбюраторных и инжекторных ДВС или за счёт самовоспламенения.

В большинстве автомобильных журналов и среди профессиональных автоэкспортов принято классифицировать ДВС, на такие типы:

  1. Бензиновый двигатель. Это устройство работает за счёт бензина. Зажигание происходит принудительно при помощи искры, которую генерирует свеча. За дозировку топливно-воздушной смеси отвечают карбюраторные и инжекторные системы. Воспламенение происходит при сжатии.
  2. Дизельные . Двигатели с устройством такого типа работают за счёт сгорания дизельного топлива. Главная разница в сравнении с бензиновыми агрегатами заключается в том, что горючее взрывается благодаря повышению температуры воздуха. Последнее становится возможным из-за роста давления внутри цилиндра.
  3. Газовые системы функционируют при помощи пропан-бутана. Зажигание происходит принудительным образом. Газ с воздухом подаётся в цилиндр. В остальном устройство подобного ДВС аналогично бензиновому мотору.

Именно такая классификация используется чаще всего, указывая на конкретные особенности системы.

Устройство и принцип работы

Устройство двигателя внутреннего сгорания

Лучше всего рассмотреть устройство ДВС на примере одноцилиндрового двигателя. Главной деталью в механизме является цилиндр. В нём находится поршень, который двигается вверх-вниз. При этом есть две контрольные точки его передвижения: верхняя и нижняя. В профессиональной литературе они именуются как ВМТ и НМТ. Расшифровка следующая: верхняя и нижняя мёртвые точки.

Внимание! Поршень также соединяется с валом. Соединительным звеном служит шатун.

Главная задачу шатуна — это преобразование энергии, которая образовывается в результате движения поршня вверх-вниз во вращательное. Результатом подобного преобразования является движение автомобиля в нужное вам направление. Именно за это отвечает устройство ДВС. Также не стоит забывать про бортовую сеть, работа которой становится возможной благодаря энергии, выработанной двигателем.

Маховик крепится к концу вала ДВС. Он обеспечивает стабильность вращения коленчатого вала. Впускной и выпускной клапаны находятся вверху цилиндра, который, в свою очередь, накрывается специальной головкой.

Внимание! Клапаны открывают и закрывают соответствующие каналы в нужное время.

Чтобы клапаны ДВС открылись, на них воздействуют кулачки распредвала. Происходит это посредством передаточных деталей. Сам вал двигается при помощи шестерней коленчатого вала.

Внимание! Поршень свободно движется внутри цилиндра, застывая на миг то в верхней мёртвой точке, то в нижней.

Чтобы устройство ДВС функционировало в нормальном режиме, горючая смесь должна подаваться в чётко выверенной пропорции. В противном случае возгорание может не произойти. Огромную роль также играет момент, в который происходит подача.

Масло необходимо для того, чтобы предотвратить преждевременный износ деталей в устройстве ДВС. В общем, всё устройство двигателя внутреннего сгорания состоит из таких основных элементов:

  • свечей зажигания,
  • клапанов,
  • поршней,
  • поршневых колец,
  • шатунов,
  • коленвала,
  • картера.

Взаимодействие этих системных элементов позволяет устройству ДВС вырабатывать нужную для передвижения автомобиля энергию.

Принцип работы

Рассмотрим, как работает четырёхтактный ДВС. Чтобы понять принцип его работы, вы должны знать значение понятия такт. Это определённый промежуток времени, за который внутри цилиндра осуществляется нужное для работы устройства действие. Это может быть сжатие или воспламенение.

Такты ДВС образуют рабочий цикл, который, в свою очередь, обеспечивает работу всей системы. В процессе этого цикла тепловая энергия преобразуется в механическую. За счёт этого происходит движение коленчатого вала.

Внимание! Рабочий цикл считается завершённым после того, как коленчатый вал сделает один оборот. Но такое утверждение работает только для двухтактного двигателя.

Здесь нужно сделать одно важное объяснение. Сейчас в автомобилях преимущественно используется устройство четырёхтактного двигателя. Такие системы отличаются большей надёжностью и улучшенной производительностью.

Для совершения четырёхтактного цикла нужно два оборота коленчатого вала. Это четыре движения поршня вверх-вниз. Каждый такт выполняет действия в точной последовательности:

  • впуск,
  • сжатие,
  • расширение,
  • выпуск.

Предпоследний такт также называется рабочим ходом. Про верхнюю и нижнюю мертвые точки вы уже знаете. Но расстояние между ними обозначает ещё один важный параметр. А именно, объём ДВС. Он может колебаться в среднем от 1,5 до 2,5 литра. Измеряется показатель посредством плюсования данных каждого цилиндра.

Во время первого полуоборота поршень с ВМТ перемещается в НМТ. При этом впускной клапан остаётся открытым, в свою очередь, выпускной плотно закрыт. В результате данного процесса в цилиндре образуется разряжение.

Горючая смесь из бензина и воздуха попадает в газопровод ДВС. Там она смешивается с отработанными газами. В результате образуется идеальное для воспламенения вещество, которое поддаётся сжатию на втором акте.

Сжатие происходит тогда, когда цилиндр полностью заполнен рабочей смесью. Коленчатый вал продолжает свой оборот, и поршень перемещается из нижней мёртвой точки в верхнюю.

Внимание! С уменьшением объёма температура смеси внутри цилиндра ДВС растёт.

На третьем такте происходит расширение. Когда сжатия подходит к своему логическому завершению свеча генерирует искру и происходит воспламенение. В дизельном двигателе всё происходит немного по-другому.

Во-первых, вместо свечи установлена специальная форсунка, которая на третьем такте впрыскивает топливо в систему. Во-вторых, внутрь цилиндра закачивается воздух, а не смесь газов.

Принцип работы дизельного ДВС интересен тем, что в нём топливо воспламеняется самостоятельно. Происходит это за счёт повышения температуры воздуха внутри цилиндра. Подобного результата удаётся добиться за счёт сжатия, в результате которого растёт давление и повышается температура.

Когда топливо через форсунку попадает внутрь цилиндра ДВС, температура внутри настолько высока, что возгорание происходит само собой. При использовании бензина подобного результата добиться нельзя. Всё потому что он воспламеняется при гораздо более высокой температуре.

Внимание! В процессе движения поршня от произошедшего внутри микровзрыва деталь ДВС совершает обратный рывок, и коленчатый вал прокручивается.

Последний такт в четырёхтактном ДВС носит название впуск. Он происходит на четвёртом полуобороте. Принцип его действия довольно прост. Выпускной клапан открывается, и все продукты сгорания попадают в него, откуда в выпускной газопровод.

Перед тем как попасть в атмосферу отработанные газы из обычно проходят систему фильтров. Это позволяет минимизировать вред, наносимый экологии. Тем не менее устройство дизельных двигателей всё равно намного более экологично, чем бензиновых.

Устройства, позволяющие увеличить производительность ДВС

С момента изобретения первого ДВС система постоянно совершенствуется. Если вспоминать первые двигатели серийных автомобилей, то они могли разгоняться максимум до 50 миль в час. Современные суперкары без труда преодолевают отметку в 390 километров. Таких результатов учёным удалось добиться за счёт интеграции в устройство двигателя дополнительных систем и некоторых конструкционных изменений.

Большой прирост мощности в своё время дал клапанный механизм, внедрённый в ДВС. Ещё одной ступенью эволюции стало расположение распределительного вала вверху конструкции. Это позволило уменьшить число движущихся элементов и увеличить производительность.

Также нельзя отрицать полезность современной системы зажигания ДВС. Она обеспечивает максимально возможную стабильность работы. Вначале генерируется заряд, который поступает на распределитель, а с него на одну из свечей.

Внимание! Конечно же, нельзя забыть про систему охлаждения, состоящую из радиатора и насоса. Благодаря ей удаётся предотвратить своевременный перегрев устройства ДВС.

Итоги

Как видите, устройство двигателя внутреннего сгорания не представляет особенной сложности. Для того чтобы его понять не нужно каких-либо специальных знаний — достаточно простого желания. Тем не менее знание принципов работы ДВС точно не будет лишними для каждого водителя.

Двигатель внутреннего сгорания: устройство и принципы работы

04.04.2017

Двигателем внутреннего сгорания называется разновидность тепловой машины, которая преобразует энергию, содержащуюся в топливе, в механическую работу. В большинстве случае используется газообразное или жидкое топливо, полученное путем переработки углеводородов. Извлечение энергии происходит в результате его сгорания.

Двигатели внутреннего сгорания имеют ряд недостатков. К ним относятся следующие:

  • сравнительно большие массогабаритные показатели затрудняют их перемещение и сужают сферу использования;
  • высокий уровень шума и токсичные выбросы приводят к тому, что устройства, работающие от двигателей внутреннего сгорания, могут лишь со значительными ограничениями использоваться в закрытых, плохо вентилируемых помещениях;
  • сравнительно небольшой эксплуатационный ресурс вынуждает довольно часто ремонтировать двигатели внутреннего сгорания, что связано с дополнительными затратами;
  • выделение в процессе работы значительного количества тепловой энергии обуславливает необходимость создания эффективной системы охлаждения;
  • из-за многокомпонентной конструкции двигатели внутреннего сгорания сложны в производстве и недостаточно надежны;
  • данный вид тепловой машины отличается высоким потреблением горючего.

Несмотря на все перечисленные недостатки двигатели внутреннего сгорания пользуются огромной популярностью, в первую очередь – благодаря своей автономности (она достигается за счет того, что топливо содержит в себе значительно большее количество энергии по сравнению с любой аккумуляторной батареей). Одной из основных областей их применения является личный и общественный транспорт.

Типы двигателей внутреннего сгорания

Когда речь идет о двигателях внутреннего сгорания, следует иметь в виду, что на сегодняшний день существует несколько их разновидностей, которые отличаются друг от друга конструктивными особенностями.

1. Поршневые двигатели внутреннего сгорания характеризуются тем, что сгорание топлива происходит в цилиндре. Именно он отвечает за преобразование той химической энергии, которая содержится в горючем, в полезную механическую работу. Чтобы добиться этого, поршневые двигатели внутреннего сгорания оснащаются кривошипно-ползунным механизмом, с помощью которого и происходит преобразование.

Поршневые двигатели внутреннего сгорания принято делить на несколько разновидностей (основанием для классификации служит используемое ими топливо).

В бензиновых карбюраторных двигателях образование топливовоздушной смеси происходит в карбюраторе (первый этап). Далее в дело вступают распыляющие форсунки (электрические или механические), местом расположения которых служит впускной коллектор. Готовая смесь бензина и воздуха поступает в цилиндр.

Там происходит ее сжатие и поджиг с помощью искры, которая возникает при прохождении электричества между электродами специальной свечи. В случае с карбюраторными двигателями топливовоздушной смеси присуща гомогенность (однородность).

Бензиновые инжекторные двигатели используют в своей работе иной принцип смесеобразования. Он основан на непосредственном впрыске горючего, которое напрямую поступает в цилиндр (для этого используются распыляющие форсунки, называемые также инжектором). Таким образом, образование топливовоздушной смеси, как и ее сгорание, осуществляется непосредственно в самом цилиндре.

Дизельные двигатели отличаются тем, что используют для своей работы особую разновидность топлива, называемую «дизельное» или просто «дизель». Для его подачи в цилиндр используется высокое давление. По мере того, как в камеру сгорания подаются все новые порции горючего, прямо в ней происходит процесс образования топливовоздушной смеси и ее моментальной сгорание. Поджиг топливовоздушной смеси происходит не с помощью искры, а под действием нагретого воздуха, который подвергается в цилиндре сильному сжатию.

Топливом для газовых двигателей служат различные углеводороды, которые при нормальных условиях пребывают в газообразном состоянии. Из этого следует, что для их хранения и использования требуется соблюдать особые условия:

  • Сжиженные газы поставляются в баллонах различного объема, внутри которых с помощью насыщенных паров создается достаточное давление, но не превышающее 16 атмосфер. Благодаря этому горючее находится в жидком состоянии. Для его перехода в пригодную для сжигания жидкую фазу используется специальное устройство, называемое испарителем. Понижение давления до уровня, который примерно соответствует нормальному атмосферному давлению, осуществляется в соответствии со ступенчатым принципом. В его основе лежит использование так называемого газового редуктора. После этого топливовоздушная смесь поступает во впускной коллектор (перед этим она должна пройти через специальный смеситель). В конце этого достаточно сложного цикла горючее подается в цилиндр для последующего поджига, осуществляемого с помощью искры, которая возникает при прохождении электричества между электродами специальной свечи.
  • Хранение сжатого природного газа осуществляется при гораздо более высоком давлении, которое находится в диапазоне от 150 до 200 атмосфер. Единственное конструктивное отличие данной системы от той, что описана выше, заключается в отсутствии испарителя. В целом принцип остается тем же.

Генераторный газ получают путем переработки твердого топлива (угля, горючих сланцев, торфа и т.п.). По своим основным техническим характеристикам он практически ничем не отличается от других видов газообразного топлива.

Газодизельные двигатели

Данная разновидность двигателей внутреннего сгорания отличается тем, что приготовление основной порции топливовоздушной смеси осуществляется аналогично газовым двигателям. Однако для ее поджига используется не искра, получаемая при помощи электрической свечи, а запальная порция топлива (ее впрыск в цилиндр осуществляется тем же способом, как и в случае с дизельными двигателями).

Роторно-поршневые двигатели внутреннего сгорания

К данному классу относится комбинированная разновидность данных устройств. Ее гибридный характер находит свое отражение в том, что конструкция двигателя включает в себя сразу два важных конструктивных элемента: роторно-поршневую машину и одновременно - лопаточную машину (она может быть представлена компрессором, турбиной и т.д.). Обе упомянутых машины на равных принимают участие в рабочем процессе. В качестве характерного примера таких комбинированных устройств можно привести поршневой двигатель, оснащенный системой турбонаддува.

Особую категорию составляют двигатели внутреннего сгорания, для обозначения которых используется английская аббревиатура RCV. От других разновидностей они отличаются тем, что газораспределение в данном случае основывается на вращении цилиндра. При совершении вращательного движения топливо по очереди проходит выпускной и впускной патрубок. Поршень отвечает за движение в возвратно-поступательном направлении.

Поршневые двигатели внутреннего сгорания: циклы работы

Для классификации поршневых двигателей внутреннего сгорания также используется принцип их работы. По данному показателю двигатели внутреннего сгорания делятся на две большие группы: двух- и четырехтактные.

Четырехтактные двигатели внутреннего сгорания используют в своей работе так называемый цикл Отто, который включает в себя следующие фазы: впуск, сжатие, рабочий ход и выпуск. Следует добавить, что рабочий ход состоит не из одного, как остальные фазы, а сразу из двух процессов: сгорание и расширение.

Наиболее широко применяемая схема, по которой осуществляется рабочий цикл в двигателях внутреннего сгорания, состоит из следующих этапов:

1. Пока происходит впуск топливовоздушной смеси, поршень перемещается между верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ). В результате этого внутри цилиндра освобождается значительное пространство, в которое и поступает топливовоздушная смесь, заполняя его.

Всасывание топливовоздушной смеси осуществляется за счет разности давления, существующего внутри цилиндра и во впускном коллекторе. Толчком к поступлению топливовоздушной смеси в камеру сгорания служит открытие впускного клапана. Этот момент принято обозначать термином «угол открытия впускного клапана» (φа).

При этом следует иметь в виду, что в цилиндре на этот момент уже содержаться продукты, оставшиеся после сгорания предыдущей порции горючего (для их обозначения используется понятие остаточных газов). В результате их смешения с топливовоздушной смесью, называемой на профессиональном языке свежим зарядом, образуется рабочая смесь. Чем успешнее протекает процесс ее приготовления, тем более полно сгорает топливо, выделяя при этом максимум энергии.

В результате растет кпд двигателя. В связи с этим еще на этапе конструирования двигателя особое внимание уделяется правильному смесеобразованию. Ведущую роль играют различные параметры свежего заряда, включая его абсолютную величину, а также удельную долю в общем объеме рабочей смеси.

2. При переходе к фазе сжатия оба клапана закрываются, а поршень совершает движение в обратном направлении (от НМТ к ВМТ). В результате надпоршневая полость заметно уменьшается в объеме. Это приводит к тому, что содержащаяся в ней рабочая смесь (рабочее тело) сжимается. За счет этого удается добиться того, что процесс сгорания топливовоздушной смеси протекает более интенсивно. От сжатия также зависит такой важнейший показатель, как полнота использования тепловой энергии, которая выделяется при сжигании горючего, а следовательно – и эффективность работы самого двигателя внутреннего сгорания.

Для увеличения этого важнейшего показателя конструкторы стараются проектировать устройства, обладающие максимально возможной степенью сжатия рабочей смеси. Если мы имеем дело с ее принудительным зажиганием, то степень сжатия не превышает 12. Если же двигатель внутреннего сгорания работает на принципе самовоспламенения, то упомянутый выше параметр обычно находится в диапазоне от 14 до 22.

3. Воспламенение рабочей смеси дает старт реакции окисления, которая происходит благодаря кислороду воздуха, входящему в ее состав. Этот процесс сопровождается резким ростом давления по всему объему надпоршневой полости. Поджиг рабочей смеси осуществляется при помощи электрической искры, которая имеет высокое напряжение (до 15 кВ).

Ее источник располагается в непосредственной близости от ВМТ. В этой роли выступает электрическая свеча зажигания, которую вворачивают в головку цилиндра. Однако в том случае, если поджиг топливовоздушной смеси осуществляется посредством горячего воздуха, предварительно подвергнутого сжатию, наличие данного конструктивного элемента является излишним.

Вместо него двигатель внутреннего сгорания оснащается особой форсункой. Она отвечает за поступление топливовоздушной смеси, которая в определенный момент подается под высоким давлением (оно может превышать 30 Мн/м²).

4. При сгорании топлива образуются газы, которые имеют очень высокую температуру, а потому неуклонно стремятся к расширению. В результате поршень вновь перемещается от ВМТ к НМТ. Это движение называется рабочим ходом поршня. Именно на этом этапе происходит передача давления на коленчатый вал (если быть точнее, то на его шатунную шейку), который в результате проворачивается. Этот процесс происходит при участии шатуна.

5. Суть завершающей фазы, которая называется впуском, сводится к тому, что поршень совершает обратное движение (от НМТ к ВМТ). К этому моменту открывается второй клапан, благодаря чему отработавшие газы покидают внутреннее пространство цилиндра. Как уже говорилось выше, части продуктов сгорания это не касается. Они остаются в той части цилиндра, откуда поршень их не может вытеснить. За счет того, что описанный цикл последовательно повторяется, достигается непрерывный характер работы двигателя.

Если мы имеем дело с одноцилиндровым двигателем, то все фазы (от подготовки рабочей смеси до вытеснения из цилиндра продуктов сгорания) осуществляется за счет поршня. При этом используется энергия маховика, накапливаемая им в течение рабочего хода. Во всех остальных случаях (имеются в виду двигатели внутреннего сгорания с двумя и более цилиндрами) соседние цилиндры дополняют друг друга, помогая выполнять вспомогательные ходы. В связи с этим из их конструкции без малейшего ущерба может быть исключен маховик.

Чтобы было удобнее изучать различные двигатели внутреннего сгорания, в их рабочем цикле вычленяют различные процессы. Однако существует и противоположный подход, когда сходные процессы объединяют в группы. Основой для подобной классификации служит положение поршня, которое он занимает в отношении обеих мертвых точек. Таким образом, перемещения поршня образуют тот отправной пункт, отталкиваясь от которого, удобно рассматривать работу двигателя в целом.

Важнейшим понятием является «такт». Им обозначают ту часть рабочего цикла, которая укладывается во временной промежуток, когда поршень перемещается от одной смежной мертвой точки к другой. Такт (а вслед за ним и весь соответствующий ему ход поршня) называется процессом. Он играет роль основного при перемещении поршня, которое происходит между двумя его положениями.

Если переходить к тем конкретным процессам, о которых мы говорили выше (впуск, сжатие, рабочий ход и выпуск), то каждый из них четко приурочен к определенному такту. В связи с этим в двигателях внутреннего сгорания принято различать одноименные такты, а вместе с ними – и ходы поршня.

Выше мы уже говорили о том, что наряду с четырехтактными существуют и двухтактные двигатели. Однако независимо от количества тактов рабочий цикл любого поршневого двигателя состоит из пяти упомянутых выше процессов, а в его основе лежит одна и та же схема. Конструктивные особенности в данном случае не играют принципиальной роли.

Дополнительные агрегаты для двигателей внутреннего сгорания

Важный недостаток двигателя внутреннего сгорания заключается в достаточно узком диапазоне оборотов, в котором он способен развивать значительную мощность. Чтобы компенсировать этот недостаток, двигатель внутреннего сгорания нуждается в дополнительных агрегатах. Самые важные из них – стартер и трансмиссия.

Наличие последнего устройства не является обязательным условием лишь в редких случаях (когда, к примеру, речь идет о самолетах). В последнее время все привлекательнее становится перспектива создать гибридный автомобиль, чей двигатель мог бы постоянно сохранять оптимальный режим работы.

К дополнительным агрегатам, обслуживающим двигатель внутреннего сгорания, относится топливная система, которая осуществляет подачу горючего, а также выхлопная система, необходимая для того, чтобы отводить отработавшие газы.