Идеальный тепловой двигатель работающий по циклу карно. Идеальный цикл теплового двигателя карно. Иные тепловые двигатели

Задача 15.1.1. На рисунках 1, 2 и 3 приведены графики трех циклических процессов, происходящих с идеальным газом. В каком из этих процессов газ совершил за цикл положительную работу?

Задача 15.1.3. Идеальный газ, совершив некоторый циклический процесс, вернулся в начальное состояние. Суммарное количество теплоты, полученное газом в течение всего процесса (разность полученного от нагревателя и отданного холодильнику количеств теплоты), равно . Какую работу совершил газ в течение цикла?

Задача 15.1.5. На рисунке приведен график циклического процесса, который происходит с газом. Параметры процесса приведены на графике. Какую работу газ совершает в течение этого циклического процесса?





Задача 15.1.6. Идеальный газ совершает циклический процесс, график в координатах приведен на рисунке. Известно, что процесс 2–3 - изохорический, в процессах 1–2 и 3–1 газ совершил работы и соответственно. Какую работу совершил газ в течение цикла?

Задача 15.1.7. Коэффициент полезного действия теплового двигателя показывает

Задача 15.1.8. В течение цикла тепловой двигатель получает от нагревателя количество теплоты и отдает холодильнику количество теплоты . Какой формулой определяется коэффициент полезного действия двигателя?

Задача 15.1.10. КПД идеальной тепловой машины, работающей по циклу Карно, равен 50 %. Температуру нагревателя увеличивают в два раза, температура холодильника не меняется. Каким будет КПД получившейся идеальной тепловой машины?





Работа, совершаемая двигателем, равна:

Впервые этот процесс был рассмотрен французским инженером и ученым Н. Л. С. Карно в 1824 г. в книге «Размышления о движущей силе огня и о машинах, способных развивать эту силу».

Целью исследований Карно было выяснение причин несовершенства тепловых машин того времени (они имели КПД ≤ 5 %) и поиски путей их усовершенствования.

Цикл Карно — самый эффективный из всех возможных. Его КПД максимален.

На рисунке изображены термодинамические процес-сы цикла. В процессе изотермического расширения (1-2) при температуре T 1 , работа совершается за счет измене-ния внутренней энергии нагревателя, т. е. за счет подве-дения к газу количества теплоты Q :

A 12 = Q 1 ,

Охлаждение газа перед сжатием (3-4) происходит при адиабатном расширении (2-3). Изменение внутренней энергии ΔU 23 при адиабатном процессе (Q = 0 ) полностью преобразуется в механическую работу:

A 23 = -ΔU 23 ,

Температура газа в результате адиабатического рас-ширения (2-3) понижается до температуры холодильни-ка T 2 < T 1 . В процессе (3-4) газ изотермически сжимает-ся, передавая холодильнику количество теплоты Q 2 :

A 34 = Q 2 ,

Цикл завершается процессом адиабатического сжатия (4-1), при котором газ нагревается до температуры Т 1 .

Максимальное значение КПД тепловых двигателей, работающих на идеальном газе, по циклу Карно:

.

Суть формулы выражена в доказанной С . Карно теореме о том, что КПД любого теплового двигателя не может превышать КПД цикла Карно, осуществляемого при той же температуре нагревателя и холодильника.

6.3. Второй закон термодинамики

6.3.1. Коэффициент полезного действия тепловых двигателей. Цикл Карно

Второе начало термодинамики возникло из анализа работы тепловых двигателей (машин). В формулировке Кельвина оно выглядит следующим образом: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу.

Схема действия тепловой машины (теплового двигателя) представлена на рис. 6.3.

Рис. 6.3

Цикл работы теплового двигателя состоит из трех этапов:

1) нагреватель передает газу количество теплоты Q 1 ;

2) газ, расширяясь, совершает работу A ;

3) для возвращения газа в исходное состояние холодильнику передается теплота Q 2 .

Из первого закона термодинамики для циклического процесса

Q = A ,

где Q - количество теплоты, полученное газом за цикл, Q = Q 1 − Q 2 ; Q 1 - количество теплоты, переданное газу от нагревателя; Q 2 - количество теплоты, отданное газом холодильнику.

Поэтому для идеальной тепловой машины справедливо равенство

Q 1 − Q 2 = A .

Когда потери энергии (за счет трения и рассеяния ее в окружающую среду) отсутствуют, при работе тепловых машин выполняется закон сохранения энергии

Q 1 = A + Q 2 ,

где Q 1 - теплота, переданная от нагревателя рабочему телу (газу); A - работа, совершенная газом; Q 2 - теплота, переданная газом холодильнику.

Коэффициент полезного действия тепловой машины вычисляется по одной из формул:

η = A Q 1 ⋅ 100 % , η = Q 1 − Q 2 Q 1 ⋅ 100 % , η = (1 − Q 2 Q 1) ⋅ 100 % ,

где A - работа, совершенная газом; Q 1 - теплота, переданная от нагревателя рабочему телу (газу); Q 2 - теплота, переданная газом холодильнику.

Наиболее часто в тепловых машинах используется цикл Карно , так как он является самым экономичным.

Цикл Карно состоит из двух изотерм и двух адиабат, показанных на рис. 6.4.

Рис. 6.4

Участок 1–2 соответствует контакту рабочего вещества (газа) с нагревателем. При этом нагреватель передает газу теплоту Q 1 и происходит изотермическое расширение газа при температуре нагревателя T 1 . Газ совершает положительную работу (A 12 > 0), его внутренняя энергия не изменяется (∆U 12 = 0).

Участок 2–3 соответствует адиабатному расширению газа. При этом теплообмена с внешней средой не происходит, совершаемая положительная работа A 23 приводит к уменьшению внутренней энергии газа: ∆U 23 = −A 23 , газ охлаждается до температуры холодильника T 2 .

Участок 3–4 соответствует контакту рабочего вещества (газа) с холодильником. При этом холодильнику от газа поступает теплота Q 2 и происходит изотермическое сжатие газа при температуре холодильника T 2 . Газ совершает отрицательную работу (A 34 < 0), его внутренняя энергия не изменяется (∆U 34 = 0).

Участок 4–1 соответствует адиабатному сжатию газа. При этом теплообмена с внешней средой не происходит, совершаемая отрицательная работа A 41 приводит к увеличению внутренней энергии газа: ∆U 41 = −A 41 , газ нагревается до температуры нагревателя T 1 , т.е. возвращается в исходное состояние.

Коэффициент полезного действия тепловой машины, работающей по циклу Карно, вычисляется по одной из формул:

η = T 1 − T 2 T 1 ⋅ 100 % , η = (1 − T 2 T 1) ⋅ 100 % ,

где T 1 - температура нагревателя; T 2 - температура холодильника.

Пример 9. Идеальная тепловая машина совершает за цикл работу 400 Дж. Какое количество теплоты передается при этом холодильнику, если коэффициент полезного действия машины равен 40 %?

Решение . Коэффициент полезного действия тепловой машины определяется формулой

η = A Q 1 ⋅ 100 % ,

где A - работа, совершаемая газом за цикл; Q 1 - количество теплоты, которое передается от нагревателя рабочему телу (газу).

Искомой величиной является количество теплоты Q 2 , переданное от рабочего тела (газа) холодильнику, не входящее в записанную формулу.

Связь между работой A , теплотой Q 1 , переданной от нагревателя газу, и искомой величиной Q 2 устанавливается с помощью закона сохранения энергии для идеальной тепловой машины

Q 1 = A + Q 2 .

Уравнения образуют систему

η = A Q 1 ⋅ 100 % , Q 1 = A + Q 2 , }

которую необходимо решить относительно Q 2 .

Для этого исключим из системы Q 1 , выразив из каждого уравнения

Q 1 = A η ⋅ 100 % , Q 1 = A + Q 2 }

и записав равенство правых частей полученных выражений:

A η ⋅ 100 % = A + Q 2 .

Искомая величина определяется равенством

Q 2 = A η ⋅ 100 % − A = A (100 % η − 1) .

Расчет дает значение:

Q 2 = 400 ⋅ (100 % 40 % − 1) = 600 Дж.

Количество теплоты, переданной за цикл от газа холодильнику идеальной тепловой машины, составляет 600 Дж.

Пример 10. В идеальной тепловой машине от нагревателя к газу поступает 122 кДж/мин, а от газа холодильнику передается 30,5 кДж/мин. Вычислить коэффициент полезного действия данной идеальной тепловой машины.

Решение . Для расчета коэффициента полезного действия воспользуемся формулой

η = (1 − Q 2 Q 1) ⋅ 100 % ,

где Q 2 - количество теплоты, которое передается за цикл от газа холодильнику; Q 1 - количество теплоты, которое передается за цикл от нагревателя рабочему телу (газу).

Преобразуем формулу, выполнив деление числителя и знаменателя дроби на время t :

η = (1 − Q 2 / t Q 1 / t) ⋅ 100 % ,

где Q 2 /t - скорость передачи теплоты от газа холодильнику (количество теплоты, которое передается газом холодильнику в секунду); Q 1 /t - скорость передачи теплоты от нагревателя рабочему телу (количество теплоты, которое передается от нагревателя газу в секунду).

В условии задачи скорость передачи теплоты задана в джоулях в минуту; переведем ее в джоули в секунду:

  • от нагревателя газу -

Q 1 t = 122 кДж/мин = 122 ⋅ 10 3 60 Дж/с;

  • от газа холодильнику -

Q 2 t = 30,5 кДж/мин = 30,5 ⋅ 10 3 60 Дж/с.

Рассчитаем коэффициент полезного действия данной идеальной тепловой машины:

η = (1 − 30,5 ⋅ 10 3 60 ⋅ 60 122 ⋅ 10 3) ⋅ 100 % = 75 % .

Пример 11. Коэффициент полезного действия тепловой машины, работающей по циклу Карно, равен 25 %. Во сколько раз увеличится коэффициент полезного действия, если температуру нагревателя увеличить, а температуру холодильника уменьшить на 20 %?

Решение . Коэффициент полезного действия идеальной тепловой машины, работающей по циклу Карно, определяется следующими формулами:

  • до изменения температур нагревателя и холодильника -

η 1 = (1 − T 2 T 1) ⋅ 100 % ,

где T 1 - первоначальная температура нагревателя; T 2 - первоначальная температура холодильника;

  • после изменения температур нагревателя и холодильника -

η 2 = (1 − T ′ 2 T ′ 1) ⋅ 100 % ,

где T ′ 1 - новая температура нагревателя, T ′ 1 = 1,2 T 1 ; T ′ 2 - новая температура холодильника, T ′ 2 = 0,8 T 2 .

Уравнения для коэффициентов полезного действия образуют систему

η 1 = (1 − T 2 T 1) ⋅ 100 % , η 2 = (1 − 0,8 T 2 1,2 T 1) ⋅ 100 % , }

которую необходимо решить относительно η 2 .

Из первого уравнения системы с учетом значения η 1 = 25 % найдем отношение температур

T 2 T 1 = 1 − η 1 100 % = 1 − 25 % 100 % = 0,75

и подставим во второе уравнение

η 2 = (1 − 0,8 1,2 ⋅ 0,75) ⋅ 100 % = 50 % .

Искомое отношение коэффициентов полезного действия равно:

η 2 η 1 = 50 % 25 % = 2,0 .

Следовательно, указанное изменение температур нагревателя и холодильника тепловой машины приведет к увеличению коэффициента полезного действия в 2 раза.

Тепловой двигатель - двигатель, в котором происходит превращение внутренней энергии топлива, которое сгорает, в механическую работу.

Любой тепловой двигатель состоит из трех основных частей: нагревателя , рабочего тела (газ, жидкость и др.) и холодильника . В основе работы двигателя лежит циклический процесс (это процесс, в результате которого система возвращается в исходное состояние).

Цикл Карно

В тепловых двигателях стремятся достигнуть наиболее полного превращения тепловой энергии в механическую. Максимальное КПД.

На рисунке изображены циклы, используемые в бензиновом карбюраторном двигателе и в дизельном двигателе. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30%, у дизельного двигателя – порядка 40 %.

Французский физик С.Карно разработал работу идеального теплового двигателя. Рабочую часть двигателя Карно можно представить себе в виде поршня в заполненном газом цилиндре. Поскольку двигатель Карно - машина чисто теоретическая, то есть идеальная , силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю. Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. Этот цикл называют циклом Карно .

участок 1-2: газ получает от нагревателя количество теплоты Q 1 и изотермически расширяется при температуре T 1

участок 2-3: газ адиабатически расширяется, температура снижается до температуры холодильника T 2

участок 3-4: газ экзотермически сжимается, при этом он отдает холодильнику количество теплоты Q 2

участок 4-1: газ сжимается адиабатически до тех пор, пока его температура не повысится до T 1 .

Работа, которую выполняет рабочее тело - площадь полученной фигуры 1234.

Функционирует такой двигатель следующим образом:

1. Сначала цилиндр вступает в контакт с горячим резервуаром, и идеальный газ расширяется при постоянной температуре. На этой фазе газ получает от горячего резервуара некое количество тепла.

2. Затем цилиндр окружается идеальной теплоизоляцией, за счет чего количество тепла, имеющееся у газа, сохраняется, и газ продолжает расширяться, пока его температура не упадет до температуры холодного теплового резервуара.

3. На третьей фазе теплоизоляция снимается, и газ в цилиндре, будучи в контакте с холодным резервуаром, сжимается, отдавая при этом часть тепла холодному резервуару.

4. Когда сжатие достигает определенной точки, цилиндр снова окружается теплоизоляцией, и газ сжимается за счет поднятия поршня до тех пор, пока его температура не сравняется с температурой горячего резервуара. После этого теплоизоляция удаляется и цикл повторяется вновь с первой фазы.