Форсунка двигателя внутреннего сгорания: виды форсунок и принцип работы. Устройство форсунки инжектора - что подает топливо в мотор? Принцип работы форсунок бензинового двигателя

В случае с системой впрыска топлива Ваш двигатель все ещё ​сосёт, но вместо того, чтобы полагаться только на всасываемое количество топлива, система впрыска топлива стреляет точно правильное количество топлива в камеру сгорания. Системы впрыска топлива прошли уже несколько ступеней эволюции, в них была добавлена электроника - это, пожалуй, было самым большим шагом в развитии этой системы. Но идея таких систем осталась та же: электрически активируемый клапан (инжектор) распыляет отмеренное количество топлива в двигатель. На самом деле основное различие между карбюратором и инжектором именно в электронном управлении ЭБУ - именно бортовой компьютер подаёт точно нужное количество топлива в камеру сгорания двигателя.

Давайте посмотрим, как работает система впрыска топлива и инжектор в частности.

Так выглядит система впрыска топлива

Если сердце автомобиля - это его двигатель, то его мозг - это блок управления двигателем (ЭБУ). Он оптимизирует работу двигателя с помощью датчиков, чтобы решить, как управлять некоторыми приводами в двигателе. Прежде всего, компьютер отвечает за 4 основные задачи:

  1. управляет топливной смесью,
  2. контролирует обороты холостого хода ,
  3. несёт ответственность за угол опережения зажигания,
  4. управляет фазами газораспределения.

Прежде чем мы поговорим о том, как ЭБУ осуществляет свои задачи, давайте о самом главном - проследим путь бензина от бензобака до двигателя - это и есть работа системы впрыска топлива. Первоначально после того, как капля бензина покидает стенки бензобака, она всасывается с помощью электрического топливного насоса в двигатель. Электрический топливный насос, как правило, состоит из непосредственно насоса, а также фильтра и передающего устройства.

Регулятор давления топлива в конце топливной направляющей с вакуумным питанием гарантирует, что давление топлива будет постоянным по отношению к давлению всасывания. Для бензинового двигателя давление топлива, как правило, составляет порядка 2-3,5 атмосферы (200-350 кПа, 35-50 PSI (фунтов на квадратный дюйм)). Топливные форсунки инжектора подключены к двигателю, но их клапаны остаются закрытыми до тех пор, пока ЭБУ не разрешит отправить топливо в цилиндры.

Но что же происходит, когда двигателю требуется топливо? Здесь в работу вступает инжектор . Обычно инжекторы имеют два контакта: один вывод подключен к аккумулятору через реле зажигания, а другой контакт проходит в ЭБУ. ЭБУ посылает пульсирующие сигналы в инжектор. За счёт магнита, на который и подаются такие пульсирующие сигналы, открывается клапан инжектора, и в его сопло подаётся некоторое количество топлива. Поскольку в инжекторе очень высокое давление (значение приведено выше), открывшийся клапан направляет топливо с высокой скоростью в сопло распылителя инжектора. Продолжительность, с которой открыт клапан инжектора, влияет на то, какое количество топлива подаётся в цилиндр, а продолжительность эта, соответственно зависит от ширины импульса (т.е. от того, сколько времени ЭБУ посылает сигнал к инжектору).

Когда клапан открывается, топливная форсунка передаёт топливо через распылительный наконечник, который, распыляя, превращает жидкое топливо в туман, непосредственно в цилиндр. Такая система называется системой с непосредственным впрыском . Но распылённое топливо может подаваться не сразу в цилиндры, а сначала в впускные коллекторы.


Как работает инжектор

Но как ЭБУ определяет, сколько на данный момент топлива нужно подать в двигатель? Когда водитель нажимает педаль акселератора, то на самом деле он открывает дроссельную заслонку на величину нажима педали, через которую в двигатель подаётся воздух. Таким образом, мы с уверенностью можем назвать педаль газа "регулятором подачи воздуха" в двигатель. Так вот, компьютер автомобиля руководствуется в том числе величиной открытия дроссельной заслонки, но не ограничивается этим показателем - он считывает информацию с множества датчиков, и давайте узнаем о них всех!

Датчик массового расхода воздуха

Перво-наперво датчик массового расхода воздуха (MAF) определяет, сколько воздуха входит в корпус дроссельной заслонки и посылает эту информацию в ЭБУ. ЭБУ использует эту информацию, чтобы решить, сколько топлива впрыснуть в цилиндры, чтобы держать смесь в идеальных пропорциях.

Датчик положения дроссельной заслонки

Компьютер постоянно использует этот датчик, чтобы проверить положение дроссельной заслонки и узнать таким образом, сколько воздуха проходит через воздухозаборник для того, чтобы регулировать импульс, отправленный к форсункам, гарантируя, что соответствующее воздуху количество топлива входит в систему.

Кислородный датчик

Кроме того, ЭБУ использует датчик O2, чтобы выяснить, сколько кислорода содержится в выхлопных газах автомобиля. Содержание кислорода в выхлопных газах обеспечивает индикацию того, насколько хорошо топливо сгорает. Используя связанные данные от двух датчиков: кислородного и массового расхода воздуха, ЭБУ также контролирует насыщенность топливо-воздушной смеси, подаваемой в камеру сгорания цилиндров двигателя.

Датчик положения коленвала

Это, пожалуй, главный датчик системы впрыска топлива - именно от него ЭБУ узнаёт о количестве оборотов двигателя в данный момент времени и корректирует количество подаваемого топлива в зависимости от числа оборотов и, конечно же, положения педали газа.

Это три основных датчика, которые прямо и динамически влияют на количество подаваемого в инжектор и в последующем в двигатель топлива. Но есть ещё ряд датчиков:

  • Датчик напряжения в электрической сети машины - нужен для того, чтобы ЭБУ понимал, насколько разряжен аккумулятор и требуется ли повысить обороты, чтобы зарядить его.
  • Датчик температуры охлаждающей жидкости - ЭБУ повышает количество оборотов, если двигатель холодный и наоборот, если двигатель прогрелся.

Форсунки — основной элемент дизельных двигателей и бензиновых двигателей с системой впрыска топлива (инжекторов). На сегодняшний день существует несколько принципиально разных типов форсунок, которые находят применение в двигателях различных конструкций. Обо всем этом - читайте в представленной статье.

Назначение и виды форсунок

В дизельных и инжекторных бензиновых двигателях применяются системы впрыска топлива, в которых главную роль играют форсунки - специальные устройства, распыляющие топливо в камере сгорания. В основе работы бензиновых и дизельных форсунок лежит одинаковый принцип: топливо распыляется, проходя под высоким давлением через сопло особой формы (они создают топливный факел, в котором жидкое топливо разбивается на микроскопические капли и смешивается с воздухом).

Однако форсунки инжекторных бензиновых моторах работают под относительно небольшим давлением в единицы атмосфер, в то время как форсунки дизельных двигателей работают под давлением в сотни, а иногда и в тысячи атмосфер.

На сегодняшний день применение находят четыре типа форсунок:

Механические;
- Электромагнитные (электромеханические);
- Электрогидравлические;
- Пьезоэлектрические.

Каждый тип форсунок имеет свои особенности и сферы применения.

Механические форсунки

Механическая форсунка - это «классическое» решение, которое применяется многие десятилетия и сейчас не теряет своей актуальности. Механическая форсунка - это, в сущности, клапан, открываемый при достижении определенного давления. Основу такой форсунки составляет корпус, внутри которого находится игла, которая под действием пружины закрывает сопло. Топливо от ТНВД под давлением поступает в кольцевую камеру между корпусом и иглой и приподнимает иглу - в этот момент открывается сопло, и топливо распыляется в камеру сгорания. При снижении давления игла снова закрывает сопло.

Механическая форсунка очень проста и надежна, однако она не может обеспечить характеристик, которые предъявляются к современным дизельным двигателям. Поэтому ее постепенно вытесняют другие типы форсунок.


Электромагнитная форсунка отличается от механической тем, что игла в ней поднимается под действием встроенного электромагнита по сигналу от контроллера. Электромагнит обычно располагается в верхней части форсунки, игла соединена с якорем электромагнита, поэтому при подаче напряжения она поднимается вверх и открывает сопло.

Сегодня обычные электромагнитные форсунки используются на инжекторных бензиновых двигателях, так как они плохо работают под теми высокими давлениями, которые необходимы для дизелей.



Электрогидравлическая форсунка объединяет в себе преимущества электромагнитной и механической форсунок. В форсунке этого типа топливо давит на иглу с двух сторон - сверху и снизу, где находятся топливные камеры. Обе камеры связаны между собой, поэтому давление топлива в них равно и игла закрывает сопло. Однако верхняя камера (она называется камерой управления) через электромагнитный клапан связана со сливной магистралью, а топливо из впускной магистрали поступает в эту камеру через канал с сужением - дросселем.

Принцип действия электрогидравлический форсунки сводится к следующему. Когда клапан закрыт, игла прижата к седлу и закрывает сопло. При подаче на клапан импульса он открывается, топливо из камеры управления поступает в сливную магистраль и давление в камере резко падает - в этот момент игла, на которую топливо теперь давит только снизу, открывается, происходит впрыск. Камера управления в момент открытия форсунки остается связанной с впускной магистралью, однако впускной дроссель не дает топливу быстро заполнить эту камеру.

Электрогидравлическая форсунка получила широкое распространение в дизельных двигателях, в том числе и в системах впрыска топлива Common Rail. Эти простые и надежные устройства обеспечивают длительную и качественную работу двигателя.



Пьезоэлектрические форсунки - наиболее современное и надежное решение, которое сегодня находит все более широкое применение на дизельных двигателях с системой впрыска Common Rail. В целом принцип действия этой форсунки повторяет принцип, заложенный в форсунках электрогидравлического типа, однако в ней клапан, открывающий путь топливу из верхней камеры в сливную магистраль, срабатывает под действием пьезоэлектрического кристалла.

Как известно, в ряде кристаллов наблюдается пьезоэлектрический эффект - под воздействием внешней силы они деформируются с образованием электрического заряда. Такие кристаллы подвержены и обратному эффекту - под действием электричества они деформируются, изменяя свои размеры. В пьезоэлектрических форсунках используются кристаллы, которые при подаче напряжения увеличивают свою длину и толкают собой поршень клапана, выпускающего топливо из верхней камеры в сливную магистраль.

Большое преимущество пьезоэлектрических форсунок - их быстродействие. Изменение длины кристалла и открытие клапана в них происходит в среднем в 4 раза быстрее, чем открытие клапана электромагнитного типа. Это открыло путь к реализации многократного впрыска за один такт, что улучшает характеристики двигателя. В современных дизельных моторах впрыск может производиться до девяти раз за один такт.

Сейчас практически на любом бензиновом моторе легкового автомобиля, используется инжекторная система питания, которая пришла на смену . Инжектор благодаря ряду рабочих характеристик превосходит карбюраторную систему, поэтому он является более востребованным.

Немного истории

Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы впрыска топлива появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.

Первые инжекторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора. В этом плане карбюратор выигрывал.

Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологии, конструкторы вернулись к инжекторной системе впрыска топлива, но кардинально пересмотрели ее работу и конструкцию.

Что такое инжектор и чем он хорош

Инжектор дословно переводится как «впрыскивание», поэтому второе название его – система впрыска с помощью специальной форсунки. Если в карбюраторе топливо подмешивалось к воздуху за счет разрежения, создаваемого в цилиндрах мотора, то в инжекторном моторе бензин подается принудительно. Это самое кардинальное различие между карбюратором и инжектором.

Достоинствами инжекторного двигателя, относительно карбюраторных, такие:

  1. Экономичность расхода;
  2. Лучший выход мощности;
  3. Меньшее количество вредных веществ в выхлопных газах;
  4. Легкость пуска мотора при любых условиях.

И достигнуть этого всего удалось благодаря тому, что бензин подается порционно, в соответствии с режимом работы мотора. Из-за такой особенности в цилиндры мотора поступает топливовоздушная смесь в оптимальных пропорциях. В результате, практически на всех режимах работы силовой установки в цилиндрах происходит максимально возможное сгорание топлива с меньшим содержанием вредных веществ и повышенным выходом мощности.

Видео: Принцип работы системы питания инжекторного двигателя

Виды инжекторов

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электронные элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же .

Всего существует три типа инжекторных систем впрыска, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

1. Центральная

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

2. Распределенная

Распределенный впрыск топлива

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У такого типа инжекторных двигателей топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

3. Непосредственная

Система непосредственного впрыска топлива

Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она сложная по конструкции и очень требовательна к качеству бензина.

Конструкция и принцип работы инжектора

Поскольку система распределенного впрыска – самая распространенная, то на именно на ее примере рассмотрим конструкцию и принцип работы инжектора.

Условно эту систему можно разделить на две части – механическую и электронную. Первую дополнительно можно назвать исполнительной, поскольку благодаря ей обеспечивается подача компонентов топливовоздушной смеси в цилиндры. Электронная же часть обеспечивает контроль и управление системой.

Механическая составляющая инжектора

Система питания автомобилей ВАЗ 2108, 2109, 21099

К механической части инжектора относится:

  • топливный бак;
  • электрический ;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Видео: Инжектор

Принцип работы инжектора

Что касается назначения каждого из них, то все просто. Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенной со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Раньше форсунки были полностью механическими, и срабатывали они от давления топлива. При достижении определенного значения давления топливо, преодолевая усилие пружины форсунки, открывало клапан подачи и впрыскивалось через распылитель.

Современная форсунка – электромагнитная. В ее основе лежит обычный соленоид, то есть проволочная обмотка и якорь. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Электронная составляющая

Основным элементом электронной части инжекторной системы подачи топлива является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  1. . Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
  2. Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
  3. (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
  4. Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
  5. (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
  6. . Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
  7. Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
  8. Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока;

Теперь коротко от том, как все работает. Элекробензонасос заполняет всю систему топливом. Контролер получает показания от все датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

Что касается подачи топлива, то на основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Автомобильная форсунка – это устройство, которое отвечает за непосредственное распыление топлива внутри камеры сгорания. И от того, как устроена ее конструкция, слаженности работы каждого механизма зависит не только мощность автомобиля, но и расход топлива.

По сути это такой миниатюрный насос, с помощью которого топливо (топливная смесь) попадает к своему конечному пункту назначения, где преобразуется в энергию. На начальном этапе вы теперь понимаете, что такое форсунка в автомобиле и какие функции она выполняет. Давайте продвигаться дальше.

Сегодня эти устройства выполняются в различных модификациях, каждая из которых имеет свои собственные преимущества. Конкретно это механические, электромагнитные форсунки, дальше следуют пьезоэлектрические, а также электрогидравлические.

Основные сведения о форсунке

Конструктивные особенности форсунок определены их главной задачей – точным постоянным дозированием нужного количества топлива, подаваемого в камеру сгорания. Давление, создаваемое в форсунке, напрямую зависит от типа топлива, которое через нее проходит. Оно может находиться на уровне 200 МПа, при этом сохраняется на небольшом промежутке времени (а это около 1-2 миллисекунд).

Не все форсунки имеют стандартизированный вид. Они отличаются между собой формой, способом распыления, размерами распылительных элементов, порядком управления процессом. Здесь же важно отметить разность систем впрыска, используемых для различного рода и вида техники. Наиболее распространенные распылители — штифтовые, применяемые совместно с форкамерной зажигательной системой, а также дырчатые, характерные для двигателей, работающих на дизельном топливе.

Важно отметить, что внутренний механизм также напрямую зависит и от способа управления форсунками. Они могут быть одно пружинными, либо же двух пружинными с применением специальных датчиков контроля.

Кроме распыления топлива форсунка должна обеспечивать герметичность для камеры сгорания, чтобы двигатель не терял мощность в процессе работы. Для этого современными разработчиками внедряются различные хитрости и рациональные предложения, с помощью которых внедряется две и более степени перекачки топлива. А вот общий контроль топлива производится с помощью специального блока управления, управляющего электромагнитными клапанами подачи топлива.

Теперь же немного более конкретных данных о реальной пользе форсунок и их роли в процессе обеспечения работы автомобиля. Прежде всего, это устройство является основным связывающим элементом между двигателем и топливным насосом. Их предназначение можно описать так:

— обеспечивать правильную дозировку подаваемого в двигатель топлива;

— обеспечивать правильную струю (угол, давление, количество) смеси, а также ее подготовку;

— посреднические действия между общей системой формирования и впрыска и камерой сгорания;

— выдержка правильной кривой скорости сброса.

Конструктивные особенности форсунок напрямую зависят от конкретной модификации и способа управления (подачи смеси). Но наиболее эффективными, рациональными и практичными сегодня считаются пьезоэлектрические форсунки. Их преимущество в возможности многократного впрыска за один цикл, а также скорости срабатывания.

Наиболее распространенными проблемами, из-за которых возникает загрязнение устройства подачи топлива и в дальнейшем автомобиль начинает «барахлить», является возникновение отложение на стенках форсунок, образующиеся из-за использования некачественного, либо с различными примесями топлива. Все это может стать причиной перебоя работы, повышения расхода топлива, беспричинной потери мощности.

Чтобы этого избежать – необходимо периодически осуществлять промывку топливных форсунок.

Определить начало проблем достаточно просто. Их видно по таким основным признакам:

— в процессе запуска двигателя начинаются незапланированные сбои;

— количество потребляемого топлива стало существенно выше номинального (нормального) расхода;

— выхлопы стали иметь нехарактерный черный цвет;

— работа двигателя отмечается троением (двоением);

— когда двигатель на холостых оборотах часты сбои его функционирования в ритмичном и бесперебойном режиме.

Как правило, особого труда в этом случае решить проблему не представляет. Для этого потребуется просто промыть, прочистить и установить в прежнее положение форсунку. Здесь важно удалить все загрязнения, которые и стали причиной сбоев.

Сделать это можно:

— используя специальную жидкость самостоятельно вручную;

— ультразвуковой очисткой;

— путем добавления в топливо специальных очистительных присадок (без разбора двигателя);

— на специальном стенде, используя специальную жидкость для очистки.

Выбор способа очистки напрямую зависит от степени загрязнения устройства и проблем, которые возникают при запуске двигателя. Немаловажно здесь время, когда вы «спохватились» и решили устранить неполадку. Чем оно раньше, тем мене затратный по времени и средствам способ очистки можно подобрать.

На практике наиболее часто используют очистку присадками или в домашних условиях вручную. Это наиболее дешевые и простые способы очистки. Если же автомобиль попадает на специальный сервис – тогда могут использовать очистку на стенде, либо же ультразвуком. Последний способ очистки считается самым жестким и целесообразен в случаях, если форсунка имеет очень сильные загрязнения, отмыть обычной жидкостью которые не представляется возможным.

Топливная форсунка (ТФ), или инжектор, относится к деталям топливной системы впрыска. Она управляет дозированием и подачей ГСМ с его последующим разбрызгиванием в камере сгорания и соединением с воздухом в единую смесь.

ТФ выступают в роли главных исполнительных деталей, относящихся к системе впрыска. Благодаря им происходит разделение топлива на мельчайшие частицы путем разбрызгивания и его поступление в двигатель. Форсунки для любого типа моторов выполняют одинаковое назначение, однако различаются конструкционно и по принципу действия.

Данный вид изделий отличается индивидуальным изготовлением под конкретный тип силового агрегата. Иначе говоря, универсальной модели этого устройства не существует, поэтому переставлять их с бензинового мотора на дизельный нельзя. В качестве исключения можно привести пример гидромеханических моделей от BOSCH, устанавливаемых на механические системы, работающие на непрерывном впрыске. Они находят широкое применение для различных силовых агрегатов в качестве составного элемента системы «K-Jetronic», хотя и имеют несколько модификаций, не связанных между собой.

Расположение и принцип работы

Схематично форсунка – это электромагнитный клапан, управляемый программно. Она обеспечивает подачу топлива в цилиндры в установленных дозах, причем установленная система впрыска определяет вид используемых изделий.

Топливо в форсунку подается под давлением. При этом блок управления мотором посылает электроимпульсы на электромагнит инжектора, которые активируют работу игольчатого клапана, отвечающего за состояние канала (открыто/закрыто). Количество поступающего топлива определяется длительностью поступающего импульса, влияющего на промежуток нахождения игольчатого клапана в открытом состоянии.

Расположение форсунок зависит от конкретного типа системы впрыска:

Центральный – размещаются перед дроссельной заслонкой во впускном трубопроводе.

Распределенный –всем цилиндрам соответствует отдельная форсунка, размещаемая у основания впускного трубопровода и осуществляющая впрыск ГСМ.

Непосредственный –форсунки находятся вверху стенок цилиндра, что обеспечивает впрыск напрямую в камеру сгорания.

Форсунки для бензиновых моторов

Бензиновые моторы комплектуются следующими типами инжекторов:

Одноточечные – подают топливо, расположены до дроссельной заслонки.

Многоточечные – за подачу ГСМ на цилиндры отвечают несколько форсунок, располагаемых перед трубопроводами.

ТФ обеспечивают подачу бензина в камеру сгорания силовой установки, при этом конструкция таких деталей неразборная и не предусматривает ремонт. По стоимости они дешевле тех, что устанавливаются на дизельных моторах.

Как деталь, обеспечивающая нормальную работу топливной системы автомобиля, форсунки часто выходят из строя по причине загрязнения расположенных на них фильтрующих элементов продуктами сгорания. Подобные отложения перекрывают распылительные каналы, что нарушает работу ключевого элемента – игольчатого клапана и прерывает поступление топлива в камеру сгорания.

Форсунки для дизельных моторов

Правильную работу топливной системы дизельных двигателей обеспечивают два типа устанавливаемых на них форсунок:

Электромагнитные, за работу которых отвечает специальный клапан, регулирующий поднятие и опускание иглы.

Пьезоэлектрические, работающие за счет гидравлики.

Правильная настройка форсунок, а также степень их износа влияет на работу дизельного мотора, выдаваемую им мощность и объем расходуемого горючего.

Поломку или неисправность работы дизельной форсунки автовладелец может заметить по ряду признаков:

Увеличился расход топлива при нормальной тяге.

Машина не хочет двигаться с места и дымит.

Способы чистки форсунок

Для решения вышеназванных проблем требуется периодическая промывка топливных форсунок. Для устранения загрязнений применяют ультразвуковую очистку, используют особую жидкость, выполняя процедуру вручную, либо добавляют специальные присадки, позволяющие очистить форсунки без разбора мотора.

Заливка промывки в бензобак

Наиболее простой и щадящий способ очистки загрязненных форсунок. Принцип действия добавляемого состава заключается в постоянном растворении с его помощью имеющихся отложений в системе впрыска, а также частичное предотвращение их появления в будущем.

Такая методика хороша для новых машин либо автомобилей с небольшим пробегом. В этом случае добавление промывки в бак с топливом выступает профилактикой, позволяющей поддерживать силовую установку и топливную систему машины в чистоте. Для машин с серьезными загрязнениями топливной системы данный способ не подходит, а в ряде случаев может нанести вред, усугубив имеющиеся проблемы. При большом количестве загрязнений смытые отложения попадают в форсунки и забивают их еще больше.

Чистка без снятия с двигателя

Промывка ТФ без разбора двигателя выполняется путем подключения промывочной установки непосредственно к мотору. Такой подход позволяет отмыть скопившуюся грязь на форсунках и топливной рампе. Двигатель на полчаса запускается на холостом ходу, подача смеси происходит под давлением.

Данный способ не используется на сильно изношенных двигателях, а также не подходит для автомобилей с установленной системой КЕ-Jetronik.

Чистка со снятием форсунок

При сильных загрязнениях двигатель разбирают на специальном стенде, снимают форсунки и выполняют их индивидуальную очистку. Подобные манипуляции дополнительно позволяют определить наличие неисправностей в работе форсунок с их последующей заменой.

Чистка ультразвуком

Очистка форсунок выполняется в ультразвуковой ванне для предварительно снятых деталей. Вариант подходит при сильных загрязнениях, не убирающихся очистителем.
Операции по очистке форсунок без снятия с двигателя в среднем обходятся владельцу автомобиля в 15-20 у.е. Стоимость диагностики с последующей чистой для одной форсунки в ультразвуке либо на стенде составляет около 4-6 у.е. Комплексные работы по промывке и замене отдельных деталей позволяют обеспечить бесперебойную работу топливной системе еще на полгода, добавив 10-15 тыс. км. пробега.