Двигатель внутреннего сгорания: будущее есть. А не спеши ты ДВС хоронить: настоящее и будущее двигателя внутреннего сгорания Какие новые автомобильные двигатели разрабатываются сейчас

История развития бесшатунных поршневых двигателей предложенных С.Баландиным, берет начало в тридцатых-сороковых годах прошлого века, когда в конструкторском бюро, где работал автор, были разработаны и построены несколько типов авиационных двигателей с необычным, отличным от кривошипно-шатунного, силовым механизмом.

Рис. 1

Рис. 2

Базой для начала проектирования двигателя послужила известная кинематическая схема обращенного эллипсографа (рис.1), траектория движения точек которого описывается уравнением эллипса:

Где r - радиус начальной окружности, а d - координата произвольной точки m .

Все точки, лежащие на прямой А В, описывают эллипсы, точка С - окружность (как частный случай эллипса), точки же А и В, как лежащие на поверхности Д, совершают возвратно-поступательное движение в пределах 4r. Дуга окружности Д без скольжения обкатывается по дуге Е вдвое большего диаметра. Привязав к точкам, лежащим произвольно на поверхности Д (например к точкам А и В), крейцкопфы со штоками и поршнями, а к точке С - выходной вал, получаем бесшатунный механизм, имеющий одну избыточную кинематическую связь. Т.е. для обеспечения прямолинейности траекторий точек А и В, соединенных между собой и с точкой С кривошипа ОС жестким звеном АСВ, достаточно иметь направляющие только у одной точки А или В (рис.2). Но такая схема неприемлема по условиям распределения действующих в механизме сил. Если установить направляющую только в точке А, то по мере приближения угла φ к 90° и 270° составляющие, приложенные к точке А силы P - боковая сила N= P·tg φ и направленная вдоль оси АС сила S=P/cos φ - неограниченно возрастают, стремясь к бесконечности. Поэтому введение в кинематическую схему второй направляющей отвечает условиям работоспособности механизма.
Высказанное выше обоснование принадлежит самому С. Баландину, оно в конечном итоге и определило всю эволюцию развития бесшатунных двигателей первого поколения. Все построенные образцы (в том числе и автором) основывались на схеме с одной избыточной кинематической связью.

Предложенный С.Баландиным силовой механизм бесшатунного двигателя казалось, быстро потеснит двигатели классической компоновки, и машиностроительные предприятия, используя наработки авиационной промышленности, смогут запустить его в серийное производство без особых проблем. К тому времени авиация прочно освоила газовые турбины, и поршневые двигатели ее перестали интересовать.

Вот тут и выяснилось, что для общего машиностроения слишком дорогой ценой обеспечиваются те технологии, которые доступны авиационной промышленности. Встал вопрос об изменении конструкции двигателя под существующие возможности действующих предприятий. При кажущейся простоте механизм содержал неотработанные кинематические связи, а в применении к тепловым машинам они были слабо изучены и поэтому их возможности плохо прогнозировались. Всего одна избыточная кинематическая связь в таком сложном механизме как ДВС ставила под сомнение всю его дальнейшую работоспособность. Тем более не было понимания того, как от этой связи избавиться, синхронизирующий механизм о котором идет речь, являлся неотъемлемой частью самого двигателя. Сегодня, спустя шестьдесят лет с момента появления первого бесшатунного двигателя можно уверенно сказать (лучше поздно,чем никогда), что эта проблема полностью решена.

Рис. 3

1,2,3,4 -поршни; 5,6 - штоковые подшипники; 7,8-консольный вал; 9,10,11,12 - шестерни синхронизирующего механизма; 13-коленчатый вал; А,В,С,Д- подвижные опоры.

На рис.3 изображена типовая кинематическая схема бесшатунного двигателя С.Баландина. Хорошо видно, что всего один планетарно вращающийся вал заменяет в силовом механизме все шатуны. Вал установлен между двумя консольными вращающимися опорами, которые в свою очередь соединены между собой шестеренчатым механизмом. Это и есть универсальный механизм связи поршней, предложенный С.Баландиным и обеспечивший в построенных образцах: малые габариты и вес, высокую оборотность, рациональный двухсторонний рабочий процесс в цилиндрах, эффективную систему охлаждения поршней и наконец, высокий механический КПД, величина которого на некоторых режимах работы двигателя достигала 94 % (в обычных ДВС около 85%).

С выходом в свет книги С.Баландина "Бесшатунные ДВС" 1968 и 1972 г. изданий многочисленными коллективами инженеров и рядом заводов (таких как "Дагдизель", СКБ "Серп и Молот" и т.д.) начали предприниматься попытки построить двигатель, скопировав его в первоначальном, или даже в усовершенствованном вариантах. Процесс проектирования и изготовления проводился, как правило, на основе расчетов и методик, предложенных автором. Вопреки ожиданиям, у большинства построенных образцов при первых оборотах вала происходило заклинивание силового механизма в корпусе двигателя в результате задира поршней о зеркало цилиндров. Те, кто сумел спроектировать и построить работоспособный двигатель, обнаруживали в нем интенсивный износ и выкрашивание крейцкопфных направляющих (питтинг). Все попытки бороться с этим явлением не приносили успеха. Живучесть силового механизма определялась несколькими часами работы.

Постоянные неудачи сформировали в научной и конструкторской среде негативное отношение к самой идее создания бесшатунного двигателя этого типа. Выяснилось, что никто кроме самого С.Баландина так и не смог построить работоспособную конструкцию. По признанию же самого автора, каждый четвертый двигатель, вышедший в свое время из стен его КБ, выходил из строя из-за указанных выше неполадок.

Оглядываясь на классический кривошипно-шатунный механизм обычного (тронкового) двигателя, замечаем, что при всех своих недостатках он обладает высокой надежностью. Его длительная работоспособность определяется тем, что каждая, отдельно взятая деталь этого двигателя испытывает симметричное нагружение. Этому способствует и жесткое крепление коленчатого вала в подшипниковых опорах, стоящих по обе стороны от шатунов. Чего не скажешь о двигателе С.Баландина (рис.3), в котором каждый поршень (1-4) через штоковую (шатунную) шейку (5,6) опирается одной стороной на скользящий крейцкопф (А,В или С,Д), а другой стороной на подверженный изгибу консольный вал (7,8). Соответственно 50% нагрузки от газовых сил приходится на крейцкопфную опору (под ней находится остов двигателя), а остальные 50%, воспринимаются "упругим элементом" - какая уж тут надежность.

В сверхмощных двигателях С.Баландина эта проблема была частично решена путем размещения концевых шеек планетарного вала внутри подшипников большого диаметра, при этом окружные скорости сопрягаемых наружных поверхностей подшипников увеличивались втрое.

Следующей нерешенной проблемой оставалась система подачи масла к трущимся поверхностям подшипников бесшатунного двигателя. Так, если концевые подшипники консольных опор А и Д работают в условиях гидродинамической жидкостной смазки, то создать аналогичные условий работы крейцкопфам В и С которые за один оборот вала дважды останавливаются невозможно, такие подшипники могут работать только как гидростатические опоры т.е. на них распространяется совсем другая теория смазки, она не создает гидродинамического масляного клина между сопрягаемыми плоскостями и ей необходимо отслеживать непрерывно изменяются условия поддержания крейцкопфа над опорными поверхностями. Сказанное лишь разъясняет, что для смазки одной детали- вала, используются принципиально разные системы смазки. Что не есть хорошо. И если это препятствие и не удастся обойти, то необходимо подшипники, принадлежащие общему валу и выполняющие одни и те же функции сделать хотя бы однотипными.

Основная же причина того, что применение рассматриваемой кинематической схемы не получило практической реализации, состоит в том, что она сложнее обычного кривошипно-шатунного механизма. В силовом механизме, помимо основных элементов, используются дополнительные синхронизирующие валы, связанные с основным валом шестернями. Большое количество сопрягаемых элементов требует высокого технологического уровня их изготовления. Соединенные последовательно, шестерни синхронизирующего механизма (9-12) образуют длинную размерную цепь. Значение ее суммарного допуска должно быть меньше величины диаметрального зазора одного из крайних подшипников планетарного вала, иначе невозможно обеспечить его правой и левой половине синхронного вращения. Уложиться же в этот допуск технологически сложно (об этом и шла речь в начале статьи).

Следующий раздел посвящен силовым механизмам нового поколения, где на смену «синхронизирующему механизму» приходят «синхронизирующие шейки», позволяющие в бесшатунном двигателе отказаться от избыточной кинематической связи, поставившей фактически крест на этом направлении.

Рис. 4

Р - сила давления газов; N - боковая сила; S - сила направленная вдоль оси АСВ; 1,2,3,4 - поршень; 5,6 - рабочий крейцкопф; 7,8 - синхронизирующий крейцкопф; I, II - синхронизирующая шейка; α - расстояние между центрами соседних шеек коленчатого вала; А,В,А",В"- опоры.

Как видно из рис. 4 в схеме уже отсутствует ставший привычным механизм синхронизации, вместо него у планетарно вращающегося коленчатого вала появились собственные планетарные опоры способные выполнять те же функции, что и обычные подшипники для вращающихся валов. Расположенные по краям вала они способны обеспечить всем его точкам синхронное орбитальное вращение по заданной траектории. Для этого к рассмотренному планетарному валу конструкции С.Баландина надо добавить две дополнительные шейки (I и II, см. рис.4) с одновременным отказом от избыточной кинематической связи в точке С (точки, ранее жестко связанной с выходным валом) и исключением, а не выбрасыванием, ее из силовой схемы бесшатунного механизма. Под дополнительные шейки вала устанавливаются две новые, зеркально расположенные к А и В крейцкопфные направляющие А" и В". Теперь каждый рабочий поршень получает по две идентичные подвижные опоры, расположенные от него на равном расстоянии справа и слева. Одна из опор (А, В) может нести на себе смежный рабочий поршень, другая (А", В") предотвращает перекосы планетарного вала и обеспечивает его синхронизацию. Такая компоновка позволяет отказаться от механизма синхронизации, состоящего из соединительного вала и набора шестерен т. к. полная синхронизация вала обеспечивается его собственной конструкцией.

Во вновь скомпонованном бесшатунном двигателе планетарно вращающийся вал, объединяющий поршни, как и прежде, содержит рабочие шейки, связанные со штоками поршней, которые всегда движутся прямолинейно. На теле такого вала остаются оси, перемещающиеся по круговой орбите (в первом приближении это окружности) поэтому их легче всего связать с валом отбора мощности, например поводковым механизмом. Если к такому валу, содержащему рабочие шейки и шейки отбора мощности добавить дополнительно две шейки (I, II) назовем их "синхронизирующими", то каждая рабочая шейка в паре с синхронизирующей образует одну планетарную опору, а две пары опор - полноопорный вал (9) с двумя степенями свободы, вращением вокруг собственной оси и, одновременно, планетарным вращением. Тогда характер нагружения вала становится всегда симметричным, а сам коленчатый вал получает возможность самоустанавливаться в опорах. При этом каждая планетарная опора выполнена с возможностью придания смежным опорным шейкам возвратно-поступательного движения в пересекающихся направлениях. Это и обеспечивает устойчивость планетарного вала в любой точке его орбитального обращения.
В качестве примера на рис.4 также изображена схема силового воздействия газов (Р) на поршни двигателя и характер нагружения подшипниковых опор. Поршни со штоками 1 и 3 в качестве опоры используют крейцкопф 6 от поршней 2 и 4, и синхронизирующий крейцкопф 7. Поршни 2 и 4 для опоры используют крейцкопфы 5 и 8, из них крейцкопф 8 является синхронизирующим. В результате, в момент воспламенения горючей смеси в любом из четырех цилиндров двигателя равноотстоящие от рабочего поршня крейцкопфы 6 и 7 или 5 и 8 нагружаются равными долями. При такой компоновке концевые шейки планетарного вала полностью выводятся из зоны действия газовых сил и передают валу отбора мощности, не входящему в силовую схему механизма, только крутящий момент.

Приведем еще несколько примеров, поясняющих принципы симметрии, в приложении к рассматриваемым бесшатунным силовым механизмам.

Рис. 5
Схема оппозитного бесшатунного двигателя:
1,2,3,4- поршни; 5- коленчатый вал; 6,7- противовесы; 8,9- вал(ы) отбора мощности; 10,11- рабочие крейцкопфы; 12,13,14- синхронизирующие крейцкопфы; I, II, III - синхронизирующие шейки.

Лучший образец - кинематическая схема оппозитного бесшатунного двигателя (рис.5). В отличие от крестообразно скомпонованных четырехцилиндровых двигателей (рис.4) чередование между рабочими тактами здесь происходит равномерно, через 180° по углу поворота коленчатого вала. Конструкция силового механизма включает:четыре рабочих поршня со штоками (1-4), два рабочих крейцкопфа (10,11), три синхронизирующих крейцкопфа (12.13,14). Названные элементы объединены общим коленчатым валом (5) и располагаются на его пяти шейках. Шестая и седьмая шейки вала (5) предназначены для установки противовесов (6,7) и передачи крутящего момента валу отбора мощности (8 или 9). Из рис.5 видно, что у каждого рабочего поршня, по обе стороны и на равных расстояниях, располагаются синхронизирующие крейцкопфы (12,13,14). В оппозитном двигателе они выполняют следующие функции:

  • Совместно с рабочими крейцкопфами обеспечивают синхронизацию коленчатого вала.
  • Воспринимают на себя основную нагрузку от газовых сил, отделяя крейцкопфы рабочих цилиндров от "ударного" нагружения в момент воспламенения горючих газов в соседних цилиндрах.
  • Выполняют функции противовесов для уравновешивания всех масс.

Рассмотренный механизм обладает широкими кинематическими возможностями, он прекрасно уравновешивается. И это единственный тип бесшатунного двигателя, в котором ползуны синхронизирующих крейцкопфов могут быть заменены альтернативными им шатунными группами (рис.6).

Рис. 6

1,2,3,4-поршни; 5,6- рабочие крейцкопфы; 7,8,9- шатун; 10- коленчатый вал; I, II, III -синхронизирующие шейки.

В этом случае достаточным условием для обеспечения синхронизации вала (10) будет полное совмещение дублирующих друг друга кинематических пар при их проецировании на плоскость ХОУ. Здесь, как и в предыдущем примере, рабочие крейцкопфы (5,6), принадлежащие поршням (1-4), движутся прямолинейно. Шатуны же (7,8,9) синхронизирующих шеек (I, II, III) имеют общую ось качания. Доводочные работы по реализации разобранной кинематической схемы могут быть существенно сокращены, в основном за счет максимальной ее унификации с элементной базой тронковых ДВС. В общем же случае, все кинематические схемы подчиняются одному правилу: к любому, наперед заданному количеству рабочих шеек надо добавлять по концам вала, как минимум, две синхронизирующие. В этом правиле есть одно исключение - кинематическая схема, в которой все рабочие шейки одновременно являются и синхронизирующими (рис.7).

Рис. 7

1,2,3,4- поршни; 5- коленчатый вал; 6,7- противовесы; 8,9- вал(ы) отбора мощности; 10,11,12- рабочие синхронизирующие крейцкопфы, 13,14- спарники.

Коленчатый вал (10) составляется всего из пяти шеек. Две крайние шейки вала предназначены для передачи крутящего момента и установки на них противовесов (6,7). Остальные шейки заполнены крейцкопфами (10,11,12). Крейцкопфы 11 и 12 замкнуты между собой спарниками (13,14), на них устанавливаются поршни 1 и 2. Центральная шейка вала с крейцкопфом 10 связана штоками с другой парой поршней (3,4). Траектории комплектов поршней 1,2 и 3,4 пересекаются. На период рабочего хода поршень 3 (или 4) в связке с крейцкопфом 10 опирается на крейцкопфы 11 и 12 которые на этот момент выполняют функции синхронизирующих. При совершении рабочего хода 1 (или 2) поршнем совместно с теперь уже рабочими крейцкопфами 11 и 12 опорный крейцкопф 10 становится синхронизирующим. И так по кругу до бесконечности. Плоскость действия газовых сил в таком механизме будет всегда замыкаться тремя центральными шейками вала.

Такое конструктивное решение позволяет располагать четыре рабочих цилиндра в одной плоскости при минимальной длине и максимальной жесткости коленчатого вала. Общее количество пар трения в двигателе по сравнению с тронковым ДВС снижается в два - три раза!!! Здесь, как и в предыдущих переработанных схемах, коленчатый вал отвечает всем необходимым условиям симметричного нагружения (подробнее см. в отраслевом журнале "Двигателестроение" №3 за 1998г. и №1 за 2000г.).

Изложенное описание претендует лишь на звание краткого путеводителя тому, кто интересуется бесшатунными двигателями, и хотел бы попробовать свои силы в этом направлении. И хотя в нем отсутствуют "различные подробности", без которых построить работающую машину практически невозможно, приведенный выше анализ поможет избежать явных ошибок, потерянного времени и средств.

И в заключении перечислим основные преимущества, которыми располагают бесшатунные ДВС:

  • Компоновка бесшатунного двигателя позволяет значительно сократить объем моторного отсека за счет рационального расположения узлов и деталей двигателя.
  • Взаимное сочетание газовых сил и сил инерции приводит к значительному уменьшению результирующих сил, нагружающих кинематические звенья, что позволяет увеличить механический КПД двигателя.
  • Двигатель частично или полностью освобождается от вращающегося маховика, т.к. движущиеся массы поршней с крейцкопфами представляют собой единый поступательно движущийся маховик.
  • В бесшатунном двигателе, чем больше масса поршней со штоками и крейцкопфами, тем и чем выше обороты двигателя (в известных пределах), тем меньше нагрузка на подшипники, в тронковом двигателе - наоборот.
  • Количество функций, возложенных на рабочие поршни уменьшается, (поршни перестают быть парами трения), соответственно надежность их работы увеличивается.
  • Допускается возможность организации рабочего процесса в двигателе по обе стороны рабочего поршня или использования подпоршневого пространства для компрессорного наддува.
  • Появляется возможность улучшения системы охлаждения поршней - прокачиванием масла через поршневые штоки и поршни для их эффективного охлаждения.
  • Становится возможным для прямолинейно движущихся поршней применить лабиринтный вид уплотнений с полным или частичным отказом от поршневых колец.

К сказанному следует добавить что, как и любая поршневая машина, бесшатунный двигатель обладает целым рядом ограничений, препятствующих росту в нем числа оборотов. Это и газораспределение, с возникающими в нем значительными силами инерции от возвратно - поступательного движения клапанов; и большое сопротивление газовоздушного тракта, ограничивающего наполнение рабочих объемов двигателя горючей смесью; и теплонапряженность, постоянно грозящая двигателю перегревом, а в дизельной комплектации существуют еще и ограничения связанные с топливоподводящей аппаратурой.

Какие критерии считают ключевыми для выбора «самого-самого»? Есть ли принципиальные отличия в подходе к конструированию на разных континентах? Попробуем найти ответы на эти вопросы.

ЕВРОПА: В РЕЖИМЕ ЭКОНОМИИ

На недавней пресс-конференции в Лондоне глава концерна «Пежо-Ситроен» Жан-Мартин Фольц весьма неожиданно для многих отозвался о гибридных автомобилях: «Посмотрите вокруг: таких машин в Европе менее 1%, тогда как доля дизелей достигает половины». По мнению господина Фольца, современный дизель гораздо дешевле в производстве, будучи не менее экономичен и экологичен.

Времена, когда дизели оставляли за собой черный шлейф, тарахтели на всю улицу и заметно уступали по литровой мощности бензиновым моторам, прошли. Сегодня удельная доля дизелей в Европе составляет 52% и продолжает расти. Толчок дают, например, экологические бонусы в виде сниженных налогов, но прежде всего - дороговизна бензина.

Прорыв на дизельном фронте произошел к концу 90-х, когда в серию пошли первые моторы с «коммон рейл» - общей топливной рампой. С тех пор давление в ней неуклонно растет. В новейших двигателях оно достигает 1800 атмосфер, а ведь еще недавно 1300 атмосфер считались выдающимся показателем.

На очереди - системы с двукратным повышением давления впрыска. Сначала насос нагнетает топливо в аккумулирующий резервуар до 1350 атм. Затем давление поднимают до 2200 атм, под которыми оно и поступает в форсунки. Под таким давлением топливо впрыскивают через отверстия меньшего диаметра. Это улучшает качество распыла, повышает точность дозировки. Отсюда выигрыш в экономичности и мощности.

Уже не первый год применяют пилотный впрыск: первая «партия» горючего поступает в цилиндры чуть раньше основной дозы, чем достигается более мягкая работа мотора и чистый выхлоп.

Помимо «коммон рейла», есть иное техническое решение, чтобы поднять давление впрыска на небывалую высоту. Насос-форсунки перебрались с грузовых моторов и на легковые дизели. Им привержен, в частности, «Фольксваген », составляя здоровую конкуренцию «общей рампе».

Одним из камней преткновения на пути дизеля всегда был экологический. Если бензиновые моторы журили за угарный газ, окиси азота и углеводороды в выхлопе, то дизели - за соединения азота и частицы сажи. Введение в прошлом году норм Евро IV далось непросто. С окислами азота справились посредством нейтрализатора, а вот сажу ловит особый фильтр. Он служит до 150 тыс. км, после чего его либо меняют, либо «прокаливают». По команде управляющей электроники в цилиндр подаются отработавшие газы из системы рециркуляции и большая доза топлива. Температура выхлопа повышается, и сажа выгорает.

Примечательно, что большинство новых дизелей могут работать на биодизельном горючем: в его основе лежат растительные масла, а не нефтепродукты. Это горючее менее агрессивно к окружающей среде, поэтому его массовая доля на рынке Европы должна достигнуть к 2010 году 30%.

Пока же специалисты отмечают совместную разработку «Дженерал моторс» и ФИАТ - один из «Двигателей года 2005». Малолитражный дизель благодаря электронике способен оперативно менять параметры впрыска и тем самым обеспечивать больший момент и быстрый пуск двигателя. Широкое использование алюминия, существенно снизившее массу и размеры, в сочетании с достаточной мощностью 70 л.с. и немалым крутящим моментом 170 Н.м позволили 1,3-литровому мотору набрать большое число голосов.

Учитывая все достижения на дизельном фронте, можно смело утверждать - ближайшее будущее Европы именно за этими двигателями. Они становятся мощнее, тише и удобнее для повседневной езды. С учетом теперешних цен на нефть потеснить их в Старом Свете не способен ни один из существующих типов двигателей.

АЗИЯ: БОЛЬШЕ СИЛ НА ЛИТР

Главное достижение японских двигателистов за последний десяток лет - высокая литровая мощность. Загнанные законодательством в узкие рамки, инженеры ухитряются добиться отменных результатов самыми разными способами. Яркий пример - изменяемые фазы газораспределения. В конце 80-х японская «Хонда » с ее системой VTEC совершила настоящий переворот.

Необходимость варьировать фазы диктуется различными режимами движения: в городе важнее всего экономичность и крутящий момент на низких оборотах, на трассе - на высоких. Отличаются и пожелания покупателей в разных странах. Раньше настройки мотора были постоянными, теперь же стало возможным менять их в буквальном смысле на ходу.

Современные моторы «Хонда » оснащают несколькими типами VTEC, в том числе и трехступенчатым устройством. Здесь корректируются параметры не только на низких и высоких оборотах, но и на средних. Так удается совместить несовместимое: высокую удельную мощность (до 100 л.с./л), расход топлива в режиме 60–70 км/ч на уровне 4 л на сотню и высокий крутящий момент в диапазоне от 2000 до 6000 об/мин.

В результате японцы успешно снимают высокую мощность с весьма скромных объемов. Рекордсменом по этому показателю который год подряд остается родстер «Honda S2000 » с безнаддувным 2-литровым двигателем мощностью 250 л.с. Несмотря на то, что мотор появился еще в 1999 году, он по-прежнему в числе лучших - второе место среди претендентов 2005 года объемом 1,8–2,0 л. Вторым бесспорным достижением японцев являются гибридные установки. «Гибрид Синержи Драйв» производства «Тойоты» отметился среди призеров не один раз, набрав наибольшее число баллов в номинации «экономичный двигатель». Заявленный показатель - 4,2 л/100 км для такой немаленькой машины, как «Тойота Приус », безусловно хорош. Мощность «Синержи Драйв» достигает 110 л.с., а суммарный момент бензиноэлектрической установки- выдающийся - 478 Н.м!

Кроме топливной экономичности, подчеркивается экологический аспект: выброс углеводородов и окислов азота у мотора на 80 и 87,5% ниже, чем того требуют нормы Евро IV для бензиновых моторов, и на 96% ниже требований к дизелям. Таким образом, «Синержи Драйв» с запасом укладывается в самые жесткие в мире рамки - ZLEV, планируемые к введению в Калифорнии.

В последние годы наметилась любопытная тенденция: применительно к гибридам речь все реже идет об абсолютных рекордах экономичности. Возьмем «Lexus RX 400h». Этот автомобиль расходует вполне обычные 10 л в городском цикле. С одной оговоркой - это очень мало, учитывая мощность основного мотора 272 л.с. и момент 288 Н.м!

Если японским компаниям, в первую очередь «Тойоте» и «Хонде», удастся снизить себестоимость агрегатов, продажи гибридов могут подскочить на порядок уже в ближайшие 5–10 лет.

АМЕРИКА: ДЕШЕВО И СЕРДИТО

На форумах американских автомобилей после проведения конкурса «Двигатель года» обязательно возникают дебаты: как это так, в числе победителей нет ни одного двигателя нашей разработки! Все просто: американцы, несмотря на продолжающийся топливный кризис, не слишком преуспели в экономии бензина, а про дизельное топливо и слышать не хотят! Но это не значит, что им нечем похвастать.

К примеру, «крайслеровские» моторы серии «Хеми», блиставшие на мощных моделях (их традиционно именуют в США «масл карз») еще в 50-х. Их название ведет родословную от английского hemispherical - полусферический. Конечно, за полвека многое изменилось, но, как и раньше, у современных «хеми» полусферические камеры сгорания.

Традиционно во главе линейки моторов стоят агрегаты неприличного по европейским меркам литража - вплоть до 6,1 л. Стоит открыть проспект, в глаза бросается разница в подходах к конструированию. «Лучшая в классе мощность», «самый быстрый разгон», «низкий уровень шума»… о расходе топлива говорится вскользь. Хотя он, конечно, небезразличен инженерам. Просто приоритеты несколько иные - динамические характеристики и… невысокая себестоимость агрегата.

В моторах «Хеми» нет изменяемых фаз. Они не столь форсированы и не могут даже близко подойти к лучшим японским агрегатам по литровой мощности. Зато в них применена хитроумная система MDS (Multi Displacement System - система нескольких объемов). Как намекает название, ее смысл кроется в отключении четырех из восьми цилиндров двигателя, когда не требуется использовать все 335 «лошадей» и 500 Н.м момента, например у двигателя объемом 5,7л. На отключение уходит всего 40 миллисекунд. Подобные системы прежде использовал «Джи-Эм», а у «Крайслера» это первый опыт. По заверению фирмы, MDS позволяет сэкономить до 20% топлива, в зависимости от манеры вождения. Боб Ли, вице-президент отделения двигателей «Крайслер », очень горд новым мотором: «Отключение цилиндров происходит элегантно и просто… преимущества - надежность и низкая цена».

Естественно, отключаемыми цилиндрами американские инженеры не ограничиваются. Они готовят и совсем другие разработки, например силовые установки на топливных элементах. Судя по появлению все новых концепт-каров именно с такими моторами, их будущее рисуется в розовых тонах.

Конечно, мы отметили лишь наиболее яркие особенности «национального двигателестроения». Современный мир слишком тесен, чтобы в нем бок о бок существовали принципиально разные культуры, не оказывая влияния друг на друга. Быть может, однажды выведут рецепт идеального «глобального» мотора? Пока каждый предпочитает бежать своей дорожкой: Европа готовится перевести чуть не половину парка на рапсовое масло; Америка хоть и старается не замечать происходящих в мире перемен, постепенно отвыкает от прожорливых мастодонтов и раздумывает над переводом инфраструктуры всей страны на водородное топливо; ну а Япония… как всегда, берет высокими технологиями и ошеломляющей скоростью их внедрения в жизнь.

ДИЗЕЛЬ «ПСА-ФОРД»

В ближайшее время начнется производство двух новых моторов, разработанных совместно концерном «Пежо-Ситроен» и «Фордом» (журналистам их представляет инженер «Форда» Фил Лэйк). Дизели объемом 2,2 л адресованы коммерческим и легковым автомобилям. Система «коммон рейл» отныне работает под давлением 1800 атм. Топливо впрыскивается в камеру сгорания через семь 135-микронных отверстий в пьезоэлектрических форсунках (ранее их было пять). Теперь стало возможным впрыскивать топливо до шести раз за один оборот коленчатого вала. Результат - более чистый выхлоп, экономия топлива, снижение вибраций.

Применили два компактных малоинерционных турбокомпрессора. Первый ответствен исключительно за «низы», второй подключается после 2700 об/мин, обеспечивая плавную кривую крутящего момента, достигающего 400 Н.м при 1750 об/мин и мощности 125 л.с. при 4000 об/мин. Масса двигателя по сравнению с предыдущим поколением снижена на 12 кг благодаря новой архитектуре блока цилиндров.

В основу концепции двигателя, придуманного Кармело Скудери, американским автомехаником-самоучкой, положен принцип разделения цилиндров на рабочие и вспомогательные. В отличие от схемы Отто, в двигателе с разделенным циклом SCC (Split-Cycle Combustion) на каждый оборот вала приходится один рабочий такт. Вспомогательные цилиндры, в которых поршень сжимает воздух, соединяются с основными через перепускные каналы. В каждом из каналов находится по два клапана — компрессионный и расширительный. В пространстве между ними воздух достигает максимального уровня сжатия. Впрыск топлива в камеру сгорания рабочего цилиндра происходит одновременно с открытием расширительного клапана, а зажигание — после прохождения поршнем верхней мертвой точки. Волна газов как бы догоняет его, исключая детонацию смеси. В ходе виртуальных испытаний рядного прототипа двигателя Скудери было выявлено, что он очень стабилен. Коэффициент отклонения параметров рабочих тактов от средней величины в наиболее «проблемной» зоне оборотов — от холостых до полутора тысяч — у SCC почти вдвое ниже, чем у ДВС Отто: 1,4% против 2,5. На первый взгляд это немного, но для профессионалов разница огромна. Данный показатель говорит об очень высоком качестве смеси и точнейшей ее дозировке. Безнаддувный четырехцилиндровый рядный двигатель Скудери на 25% экономичнее обычных аналогов по мощности, а его оригинальная гибридизированная версия Scuderi Air-Hybrid — на 30−36%. В Air-Hybrid предварительное сжатие воздуха в пневматическом аккумуляторе-ресивере происходит во время торможения автомобиля. Затем воздух подается в перепускной канал, снижая нагрузку на поршень вспомогательного цилиндра.

Двигатель Скундери. Производство двигателей системы Кармело Скудери можно легко организовать на любом моторостроительном предприятии с использованием традиционных узлов. Но нужно ли это производителям?..

В 2011 году компанией будет представлен двигатель второго поколения с V-образной архитектурой, в котором перепускные каналы будут сделаны в виде отдельных модулей. В первой версии — с цельнолитой головкой — они находились в стенке между парами цилиндров. V-образная схема позволяет улучшить доступ к ним со стороны ресивера и обеспечить более эффективное охлаждение узла. По прогнозам ученых научно-исследовательского института Саутвест, которые вплотную занимаются доводкой виртуальной модели рядного двигателя, разница в КПД между такой «четверкой» и равносильным мотором Отто достигнет 50%. Небольшой вес, отличная удельная мощность (135 л.с. на литр объема) и технологическая простота SCC делают его весьма перспективным для внедрения в жизнь. Известно, что пристальный интерес к нему проявляют сразу несколько игроков высшей лиги мирового автопрома, а также производители комплектующих. В частности, знаменитая компания Robert Bosch. Президент Scuderi Group Сэл Скудери уверен, что уже через три года детище его отца пойдет в серию.


Вряд ли Lotus Omnivore когда-либо станет основным силовым агрегатом для автомобиля. Но в качестве вспомогательного — например, генератора — он вполне подходит.

Lotus Omnivore

Кто сказал, что два такта остались в прошлом? Инженеры Lotus Engineering считают, что потенциал двухтактных движков серьезно недооценен автопроизводителями, а   прожорливость — всего лишь миф. Они прогнозируют их триумфальное возвращение в 2013 году под капоты серийных автомобилей. В 2009 году в Женеве компания представила концептуальный 500-кубовый двигатель Omnivore, работающий на любом виде жидкого топлива. Моторчик блещет сразу несколькими инновационными технологиями, главная из которых  - изменяемая степень сжатия при помощи подвижной верхней стенки камеры сгорания. В зависимости от вида топлива и нагрузки сжатие в Omnivore может изменяться в диапазоне от 10 до 40 к одному. Приготовление сбалансированной топливовоздушной смеси обеспечивает система прямого впрыска Orbital FlexDI с двумя инжекторами, а   параметрами отвода отработанных газов управляет патентованный улавливающий клапан CTV (Charge Trapping Valve). Похоже, британцам удалось то, к чему стремятся все разработчики инновационных ДВС: в цикле стендовых испытаний Omnivore уверенно поддерживал режим сгорания HCCI даже на оборотах холостого хода и в «красной зоне». Конструкция Omnivore замечательна еще и тем, что его блок и головка отлиты в одной цельной детали.


Ecomotors OPOC. Одним из основных преимуществ конструкции профессора Хоффбауэра является возможность «надевать» на коленвал всё новые и новые пары цилиндров, получая нечто вроде модульного двигателя.

Согласно спецификации, концепт на 10% экономичнее атмосферных бензиновых двигателей равной мощности, а по чистоте выхлопа легко дотягивает до нормативов Евро-6. Если Lotus сможет заинтересовать автопроизводителей, то потомки концептуального Omnivore станут первыми кандидатами на роль бортовых генераторов для электрогибридов. Для этого у них есть всё: неприхотливость, предельная компактность и высокая энергоемкость.

Ecomotors OPOC

Среди компаний, пытающихся отправить классический ДВС на свалку, американская Ecomotors стоит особняком не только из-за экстравагантности своих идей. Работу над сверхмощным оппозитным двигателем OPOC благословили титан венчурного бизнеса Винод Хосла и миллиардер Билл Гейтс. В совет директоров крохотной компании входит несколько персон, имена которых служат пропуском в закрытый клуб автопроизводителей, а стенды Ecomotors стали привычными на самых элитных мировых автосалонах.


Оппозитный двухтактный двухцилиндровый модульный ДВС под названием OPOC был придуман еще в конце 1990-х годов профессором Петером Хоффбауэром, долгое время работавшим главным мотористом в компании Volkswagen. Суперкомпактный дизель Хоффбауэра демонстрирует беспрецедентно высокую удельную мощность порядка 3 л.с. на килограмм массы. Например, стокилограммовая «труба» выдает 325 л.с. и 900 Нм крутящего момента. При этом КПД OPOC вплотную приближается к 60%, вдвое выигрывая у современных дизельных моторов со сложным наддувом. Одна из главных «фишек» этого оппозитника — возможность составлять из отдельных модулей, каждый из которых является полноценным двигателем, силовые установки рядной 4-, 6- и 8-цилиндровой конфигурации. Парадоксально, но при всей своей заряженности OPOC работает на довольно скромных степенях сжатия в пределах 15−16 к одному и не требует специальной подготовки топлива.

В принципе OPOC — это труба с двумя парами поршней, совершающими одновременные разнонаправленные движения. Пространство между парой — камера сгорания. Шатуны с необычно длинной ножкой соединяют поршни с центральным коленчатым валом. В центре камеры установлена форсунка системы впрыска, а впускные и выпускные порты расположены в области нижней мертвой точки центральных поршней. Порты заменяют сложный клапанный механизм и распредвал. Важный элемент конструкции — электрический турбонагнетатель с предварительным подогревом воздуха, заменяющий, в частности, привычные калильные свечи. В момент запуска турбина подает в камеру сгорания заряд сжатого воздуха, нагретого до 100 °C.


IRIS. Основной «фишкой» конструкции двигателя Iris является высокая полезная площадь «поршней"-лепестков. Неподвижные стенки занимают всего 30% от общей площади камеры сгорания, что позволяет заметно повысить КПД двигателя.

По словам президента компании Дональда Ранкла, бывшего вице-президента General Motors, в настоящее время в собственном техцентре Ecomotors проводятся стендовые испытания шестого поколения двигателя, которые завершатся в начале 2012 года. И это будет уже не очередной рабочий прототип, а агрегат, предназначенный для конвейера. Впрочем, интерес к разработке имеется не только у автомобилистов, но и у военных, производителей авиатехники, строителей и горняков. Запланировано производство сразу четырех типов модулей OPOC с диаметрами поршня 30, 65, 75 и 100 мм.

IRIS

Для многих людей наблюдение за причудливо движущимися, вращающимися и пульсирующими механизмами успешно заменяет таблетки от стресса.

Завораживающее глаз детище ученого, изобретателя и предпринимателя из Денвера Тимбера Дика, трагически погибшего в автокатастрофе в 2008 году, можно отнести к гомеопатическим средствам этой категории. Но двигатель внутреннего сгорания IRIS (Internally Radiating Impulse Structure), несмотря на всю свою оригинальность, вовсе не пустышка. Защищенный со всех сторон патентами, он был отмечен премиями за инновации от NASA, нефтяной корпорации ConocoPhillips и химического гиганта Dow Chemical. Двухтактный ДВС с изменяемой геометрией и площадью поршня, согласно расчетам, имеет КПД 45%, компактные размеры и малый вес. Кроме того, в случае принятия его на вооружение автопроизводителями покупателю не придется переплачивать — цена агрегата будет не выше, чем у обычных бензиновых моторов.


РЛДВС. Отличием роторно-лопастного двигателя от всех остальных, упомянутых в материале, является то, что он находится в считанных миллиметрах от серийного производства. На 2011 год намечены испытания российского «ё-мобиля» с подобным двигателем, а с 2012 года — и серия.

Как считал Дик, в стандартной паре «камера сгорания — рабочая поверхность поршня» самым слабым местом является постоянная площадь контакта. На головку приходится всего 25%  общей площади камеры. В концепции IRIS шесть поршней, представляющих собой стальные, изогнутые волной лепестки, имеют полезную площадь почти в три раза больше - неподвижные стенки камеры занимают лишь 30% площади.

Воздух поступает в камеру сгорания через впускные клапаны, когда лепестки находятся на максимальном удалении от центра. Одновременно через открытые выпускные клапаны удаляется отработанный газ. Затем лепестки, колеблющиеся на валах, смыкаются к середине камеры, сжимая воздух. В момент максимального сближения при полностью закрытых клапанах происходит впрыск топлива и зажигание. Расширяясь, раскаленные газы раздвигают лепестки-поршни, что, в свою очередь, приводит к повороту валов. В верхней мертвой точке открываются выпускные клапаны. Затем все повторяется снова и снова. Довольно простой редуктор превращает колебание шести валов во вращение главного вала.


Российский роторно-лопастной

Роторно-лопастной двигатель (РЛДВС) — это вовсе не разработка XXI века. Его конструкцию придумали еще в 1930-х, и с тех пор не проходило и десятилетия без появления очередного патента на новый РЛД. Самым известным был, пожалуй, двигатель Вигриянова, созданный в 1973  году. Но попадать в серию РЛД никак не хотели. Основной проблемой была сложность синхронизации валов роторов и тем более снятия с них момента — во времена слабого развития электроники синхронизатор занимал чуть ли не целую комнату; РЛД мог использоваться разве что в качестве стационарной силовой установки. Это сводило на нет одно из его главнейших преимуществ — компактность и небольшой вес.

РЛД — это цилиндр, внутри которого на одной оси установлены два ротора, с парой лопастей каждый. Лопасти делят пространство цилиндра на рабочие камеры; в каждой совершается четыре рабочих такта за один оборот вала. Сложность синхронизации обусловлена в первую очередь неравномерным движением роторов друг относительно друга, их «пульсацией».

Но как только на свет появился компактный и удобный механизм синхронизации, РЛД сразу обрел серьезную серийную перспективу. Самое интересное и приятное, что разработали такой механизм в России, в рамках нашумевшего проекта «ё-мобиль». Энергоустановка «ё-мобиля» весит всего 55 кг (35 — двигатель с синхронизатором, 20 — электрогенератор), а мощность может выдавать порядка 100 кВт, хотя для серийных моделей ее ограничат 45 кВт (60 л.с.). Помимо компактности, РЛД характеризуется возможностью масштабирования. Его можно спокойно увеличивать в размерах вплоть до малого судового двигателя мощностью 1000 кВт. Энерговооруженность силовой установки «ё-мобиля» аналогична двухлитровому 150-сильному ДВС традиционной компоновки.

Л етом 2017 года научно-техническое сообщество облетела новость – молодой учёный из Екатеринбурга победил в общероссийском конкурсе инновационных проектов в области энергетики. Конкурс называется «Энергия прорыва», к участию допускаются учёные не старше 45 лет, и Леонид Плотников, доцент «Уральского федерального университета имени первого президента России Б.Н. Ельцина» (УрФУ), удостоился в нём приза в 1 000 000 рублей.

Сообщалось, что Леонид разработал четыре оригинальных технических решения и получил семь патентов для систем впуска и выпуска ДВС, как турбированных, так и атмосферных. В частности, доработка впускной системы турбомотора «по методу Плотникова» способна исключить перегрев, снизить шумность и количество вредных выбросов. А модернизация выпускной системы турбированного ДВС на 2% повышает КПД и на 1,5% снижает удельный расход топлива. В итоге мотор становится более экологичным, стабильным, мощным и надёжным.

Действительно ли всё это так? В чём суть предложений учёного? Нам удалось побеседовать с победителем конкурса и всё разузнать. Из всех оригинальных технических решений, разработанных Плотниковым, мы остановились как раз на обозначенных выше двух: доработанных системах впуска и выпуска турбированных моторов. Возможно, стиль изложения поначалу покажется вам сложным для восприятия, но читайте вдумчиво, и в конце мы доберёмся до сути.

Проблемы и задачи

Авторство описанных ниже разработок принадлежит группе учёных УрФУ, в которую входят доктор технических наук, профессор Бродов Ю.М., доктор физико-математических наук, профессор Жилкин Б.П. и кандидат технических наук, доцент Плотников Л.В. Работа именно этой группы удостоилась гранта в миллион рублей. В инженерной проработке предлагаемых технических решений им помогали специалисты ООО «Уральский дизель-моторный завод», а именно, начальник отдела, кандидат технических наук Шестаков Д.С. и заместитель главного конструктора, кандидат технических наук Григорьев Н.И.

Одним из ключевых параметров их исследования стала теплоотдача, идущая от потока газа в стенки впускного или выпускного трубопровода. Чем теплоотдача ниже, тем меньше термические напряжения, выше надёжность и производительность системы в целом. Для оценки интенсивности теплоотдачи используют параметр, который называется локальным коэффициентом теплоотдачи (он обозначается как αх), и задача исследователей состояла в том, чтобы найти пути уменьшения этого коэффициента.



Рис. 1. Изменение локального (lх = 150 мм) коэффициента теплоотдачи αх (1) и скорости потока воздуха wх (2) во времени τ за свободным компрессором турбокомпрессора (далее – ТК) при гладком круглом трубопроводе и разных частотах вращения ротора ТК: а) nтк = 35 000 мин-1; б) nтк = 46 000 мин-1

Вопрос для современного двигателестроения серьёзный, поскольку газовоздушные тракты входят в перечень наиболее термонагруженных элементов современных ДВС, и особенно остро задача снижения теплоотдачи в впускном и выпускном трактах стоит для турбированных двигателей. Ведь в турбомоторах, по сравнению с атмосферниками, повышены давление и температура на впуске, увеличена средняя температура цикла, выше пульсация газа, которая вызывает термомеханические напряжения. Термонагруженность ведёт к усталости деталей, снижает надёжность и срок службы элементов двигателя, а также приводит к неоптимальным условиям сгорания топлива в цилиндрах и падению мощности.

Учёные считают, что термическую напряженность турбодвижка можно снизить, и тут, как говорится, есть нюанс. Обычно для турбокомпрессора считаются важными две его характеристики – давление наддува и расход воздуха, а сам узел в расчётах принимается статичным элементом. Но на самом деле, отмечают исследователи, после установки турбокомпрессора существенно изменяются тепломеханические характеристики потока газа. Поэтому прежде чем изучать то, как меняется αх на впуске и выпуске, надо исследовать сам поток газа закомпрессором. Сначала – без учёта поршневой части двигателя (что называется, за свободным компрессором, см. рис. 1), а потом – вместе с ней.

Была разработана и создана автоматизированная система сбора и обработки экспериментальных данных – с пары датчиков снимались и обрабатывались значения скорости потока газа wх и локального коэффициента теплоотдачи αх. Кроме того, была собрана одноцилиндровая модель двигателя на базе мотора ВАЗ-11113 с турбокомпрессором ТКР-6.



Рис. 2. Зависимость локального (lх = 150 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ во впускном трубопроводе поршневого ДВС с наддувом при разных частотах вращения коленчатого вала и разных частотах вращения ротора ТК: а) n = 1 500 мин-1; б) n = 3 000 мин-1, 1 - n = 35 000 мин-1; 2 - nтк = 42 000 мин-1; 3 - nтк = 46 000 мин-1

Проведённые исследования показали, что турбокомпрессор – мощнейший источник турбулентности, которая влияет на тепломеханические характеристики потока воздуха (см. рис. 2). Кроме того, исследователи установили, что сама по себе установка турбокомпрессора повышает αх на впуске двигателя примерно на 30% - отчасти из-за того, что воздух после компрессора просто значительно горячее, чем на впуске атмосферного мотора. Была замерена и теплоотдача на выпуске мотора с установленным турбокомпрессором, и оказалось, что чем выше избыточное давление, тем менее интенсивно происходит теплоотдача.


Рис. 3. Схема впускной системы двигателя с наддувом с возможностью сброса части нагнетаемого воздуха: 1 - впускной коллектор; 2 - соединительный патрубок; 3 - соединительные элементы; 4 - компрессор ТК; 5 - электронный блок управления двигателем; 6 - электропневмоклапан].

В сумме получается, что для снижения термонагруженности необхожимо следующее: во впускном тракте нужно уменьшать турбулентность и пульсацию воздуха, а на выпуске – создавать дополнительное давление или разрежение, разгоняя поток – это снизит теплоотдачу, а кроме того, положительно скажется на очистке цилиндров от отработанных газов.

Все эти вроде бы очевидные вещи нуждались в детальных замерах и в анализе, которого никто ранее не делал. Именно полученные цифры позволили выработать меры, которые в будущем способны если не произвести революцию, то уж точно вдохнуть, в прямом смысле слова, новую жизнь во всю отрасль двигателестроения.


Рис. 4. Зависимость локального (lх = 150 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ во впускном трубопроводе поршневого ДВС с наддувом (nтк = 35 000 мин-1) при частоте вращения коленчатого вала n = 3 000 мин-1. Доля сброса воздуха: 1 - G1 = 0,04; 2 - G2 = 0,07; 3 - G3 = 0,12].

Сброс избытка воздуха на впуске

Во-первых, исследователи предложили конструкцию, позволяющую стабилизировать поток воздуха на впуске (см. рис. 3). Электропневмоклапан, врезанный во впускной тракт после турбины и в определённые моменты сбрасывающий часть сжатого турбокомпрессором воздуха, стабилизирует поток– уменьшает пульсацию скорости и давления. В итоге это должно привести к снижению аэродинамического шума и термических напряжений во впускном тракте.

А сколько же нужно сбросить, чтобы система эффективно работала, не ослабляя значительно эффекта турбонаддува? На рисунках 4 и 5 мы видим результаты проведённых замеров: как показывают исследования, оптимальная доля сбрасываемого воздуха G лежит в диапазоне от 7 до 12% – такие значения снижают теплоотдачу (а значит – и термонагруженность) во впускном тракте двигателя до 30%, то есть, приводят её к значениям, характерным для атмосферных моторов. Дальше увеличивать долю сброса смысла нет – эффекта это уже не даёт.


Рис. 5. Сравнение зависимостей локального (lх = 150 мм, d = 30 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ во впускном трубопроводе поршневого ДВС с наддувом без сброса (1) и со сбросом части воздуха (2) при nтк = 35 000 мин-1 и n = 3 000 мин-1, доля сброса избыточного воздуха равна 12% от общего расхода].

Эжекция на выпуске

Ну а что же выпускная система? Как мы говорили выше, она в турбированном моторе тоже работает в условиях повышенных температур, а кроме того, выпуск всегда хочется сделать как можно более способствующим максимальной очистке цилиндров от отработавших газов. Традиционные методы решения этих задач уже исчерпаны, есть ли тут ещё какие-то резервы для улучшения? Оказывается, есть.

Бродов, Жилкин и Плотников утверждают, что улучшить газоочистку и надёжность выпускной системы можно путём создания в ней дополнительного разрежения, или эжекции. Эжекционный поток, по мнению разработчиков, так же, как и клапан на впуске, снижает пульсацию потока и увеличивает объёмный расход воздуха, что способствует лучшей очистке цилиндров и повышению мощности двигателя.


Рис. 6. Схема выпускной системы с эжектором: 1 – головка цилиндра с каналом; 2 – выпускной трубопровод; 3 – труба выхлопная; 4 – эжекционная трубка; 5 – электропневмоклапан; 6 – электронный блок управления].

Эжекция положительно влияет на теплоотдачу от выпускных газов к деталям выпускного тракта (см. рис. 7): с такой системой максимальные значения локального коэффициента теплоотдачи αхполучаются на 20% ниже, чем при традиционном выпуске – за исключением периода закрытия впускного клапана, тут интенсивность теплоотдачи, напротив, несколько выше. Но в целом теплоотдача всё равно меньше, и исследователи сделали предположение, что эжектор на выпуске турбомотора повысит его надёжность, так как снизит теплоотдачу от газов стенкам трубопровода, а сами газы будут охлаждаться эжекционным воздухом.


Рис. 7.Зависимости локального (lх = 140 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ в выпускной системе при избыточном давлении выпуска рb = 0,2 МПа и частоте вращения коленчатого вала n = 1 500 мин-1. Конфигурация выпускной системы: 1 - без эжекции; 2 - с эжекцией.]

А если объединить?..

Получив такие выводы на экспериментальной установке, учёные пошли дальше и применили полученные знания на реальном двигателе – в качестве одного из «подопытных» был выбран дизель 8ДМ-21ЛМ производства ООО «Уральский дизель-моторный завод».Такие моторы применяются в качестве стационарных энергоустановок. Кроме того, в работах использовался и «младший брат» 8-цилиндрового дизеля, 6ДМ-21ЛМ, также V-образный, но имеющий шесть цилиндров.


Рис. 8. Установка электромагнитного клапана для сброса части воздуха на дизеле 8ДМ-21ЛМ: 1 - клапан электромагнитный; 2 - впускной патрубок; 3 - кожух выпускного коллектора; 4 - турбокомпрессор.

На «младшем» моторе была реализована система эжекции на выпуске, логично и весьма остроумно объединённая с системой сброса давления на впуске, которую мы рассмотрели чуть ранее – ведь как было показано на рисунке 3, сбрасываемый воздух может использоваться для нужд двигателя. Как видим (рис. 9), над выпускным коллектором проложены трубки, в которые подаётся воздух, забранный со впуска – это то самое избыточное давление, создающее турбулентность после компрессора. Воздух из трубок «раздаётся» через систему электроклапанов, которые стоят сразу за выпускным окном каждого из шести цилиндров.


Рис. 9. Общий вид модернизированной выпускной системы двигателя 6ДМ-21ЛМ: 1 – выпускной трубопровод; 2 – турбокомпрессор; 3 – газоотводящий патрубок; 4 – система эжекции.

Такое эжекционное устройство создаёт дополнительное разрежение в выпускном коллекторе, что ведёт к выравниванию течения газов и ослаблению переходных процессов в так называемом переходном слое. Авторы исследования замерили скорость потока воздуха wх в зависимости от угла поворота коленчатого вала φ с применением эжекции на выпуске и без неё.

Из рисунка 10 видно, что при эжекции максимальная скорость потока выше, а после закрытия выпускного клапана она падает медленнее, чем в коллекторе без такой системы – получается своеобразный «эффект продувки». Авторы говорят, что результаты свидетельствуют о стабилизации потока и лучшей очистке цилиндров двигателя от отработавших газов.


Рис. 10. Зависимости местной (lx = 140 мм, d = 30 мм) скорости потока газа wх в выпускном трубопроводе с эжекцией (1) и традиционном трубопроводе (2) от угла поворота коленчатого вала φ при частоте вращения коленчатого вала n = 3000 мин-1 и начальном избыточном давлении pb = 2,0 бар.

Что в итоге

Итак, давайте по порядку. Во-первых, если из впускного коллектора турбомотора сбрасывать небольшую часть сжатого компрессором воздуха, можно снизить теплоотдачу от воздуха к стенкам коллектора до 30% и при этом сохранить массовый расход воздуха, поступающего в мотор, на нормальном уровне. Во-вторых, если применить эжекцию на выпуске, то теплоотдачу в выпускном коллекторе тоже можно существенно снизить – проведённые замеры дают величину около 15%, – а также улучшить газоочистку цилиндров.

Объединяя показанные научные находки для впускного и выпускного трактов в единую систему, мы получим комплексный эффект: забирая часть воздуха со впуска, передавая её на выпуск и точно синхронизировав эти импульсы по времени, система будет выравнивать и «успокаивать» процессы течения воздуха и отработавших газов. В результате мы должны получить менее термонагруженный, более надёжный и производительный по сравнению с обычным турбомотором двигатель.

Итак, результаты получены в лабораторных условиях, подтверждены математическим моделированием и аналитическими расчетами, после чего создан опытный образец, на котором проведены испытания и подтверждены положительные эффекты. Пока всё это реализовано в стенах УрФУ на большом стационарном турбодизеле (моторы такого типа используют также на тепловозах и судах), однако заложенные в конструкцию принципы могли бы прижиться и на моторах поменьше – представьте, например, что ГАЗ Газель, УАЗ Патриот или LADA Vesta получают новый турбомотор, да ещё с характеристиками лучше, чем у зарубежных аналогов… Возможно ли, чтобы новая тенденция в двигателестроении началась в России?

Есть у учёных из УрФУ и решения для снижения термонагруженности атмосферных моторов, и одно из них – профилирование каналов: поперечное (путём введения вставки квадратного или треугольного сечения) и продольное. В принципе, по всем этим решениям сейчас можно строить рабочие образцы, проводить испытания и при их положительном исходе запускать серийное производство – заданные проектно-конструкторские направления, по мнению учёных, не требуют значительных финансовых и временных затрат. Теперь должны найтись заинтересованные производители.

Леонид Плотников говорит, что считает себя в первую очередь учёным и не ставит цели коммерциализировать новые разработки.

Среди целей я, скорее, назвал бы проведение дальнейших исследований, получение новых научных результатов, разработку оригинальных конструкций газовоздушных систем поршневых ДВС. Если мои результаты будут полезны промышленности, то я буду рад. По опыту знаю, что внедрение результатов – очень сложный и трудоемкий процесс, и если в него погружаться, то на науку и преподавание не останется времени. А я больше склонен именно к области образования и науки, а не к промышленности и бизнесу

доцент «Уральского федерального университета имени первого президента России Б.Н. Ельцина» (УрФУ)


Однако добавляет, что уже начался процесс внедрения результатов исследования на энергомашины ПАО «Уралмашзавод». Темпы внедрения пока невысоки, вся работа находится на начальном этапе, и конкретики очень мало, однако заинтересованность у предприятия есть. Остаётся надеяться на то, что результаты этого внедрения мы всё же увидим. А также на то, что работа учёных найдёт применение в отечественном автопроме.

А как вы оцениваете результаты исследования?

Двигатель внутреннего сгорания без преувеличения раскрутил мотор научно-технического прогресса. Автомобильный транспорт является важнейшим средством перевозки пассажиров и грузов. В США сегодня на 1000 человек приходится почти 800 автомобилей, а к 2020 году в России этот показатель составит около 350 машин на тысячу населения.

Подавляющее большинство из более миллиарда автомобилей на планете все еще используют двигатель внутреннего сгорания (ДВС), изобретенный в XIX веке. Несмотря на все технологические ухищрения и «умную» электронику, коэффициент полезного действия современных бензиновых двигателей все еще "топчется" вокруг отметки в 30%. Самые экономичные дизельные ДВС имеют КПД в 50%, то есть даже они половину топлива выбрасывают в виде вредных веществ в атмосферу.

Естественно, говорить об экономичности ДВС не приходится, особенно если учесть, что современные автомобили сжигают по 10-20 литров горючего на 100 км пути. Не удивительно, что ученые по всему миру пытаются создать доступные электрические и водородные авто. Однако и концепция двигателя внутреннего сгорания не исчерпала потенциал модернизации. Благодаря последним достижениям в области электроники и материалов, появилась возможность создать по-настоящему эффективный ДВС.

Экомотор

Инженеры компании EcoMotors International творчески переработали конструкцию традиционного ДВС. Он сохранил поршни, шатуны, коленвал и маховик, однако новый двигатель на 15-20% эффективнее, кроме того намного легче и дешевле в производстве. При этом двигатель может работать на нескольких видах топлива, включая бензин, дизель и этанол.

В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе

Добиться этого удалось с помощью использования оппозитной конструкции двигателя, в которой камеру сгорания образуют два поршня, двигающихся навстречу друг другу. При этом двигатель двухтактный и состоит из двух модулей по 4 поршня в каждом, соединенных специальной муфтой с электронным управлением. Двигателем полностью управляет электроника, благодаря чему удалось добиться высокого КПД и минимального расхода топлива. Например, в пробке и других случаях, когда полная мощность двигателя не нужна, работает только один модуль из двух, что уменьшает расход топлива и шум.

Хафиятуллин Ринат:

Также мотор оснащен управляемым электроникой турбокомпрессором, который утилизирует энергию выхлопных газов и вырабатывает электроэнергию. В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе. У него нет блока головки цилиндров, он сделан из обычных материалов и издает меньше шума и вибраций. При этом двигатель получился очень легким: на 1 кг веса он выдает мощность больше 1 л.с (на практике он приблизительно в 2 раза легче традиционного двигателя такой же мощности). Более того, изделие EcoMotors легко масштабируется: достаточно добавить несколько модулей и двигатель малолитражки превращается в мотор мощного грузовика.

Опытный двигатель EcoMotors EM100 при размерах 57,9х 104,9х47 см весит 134 кг и выдает мощность 325 л.с. при 3,500 оборотах в минуту (на дизтопливе), диаметр цилиндров - 100 мм. Расход топлива у пятиместного автомобиля с мотором EcoMotors планируется чрезвычайно низкий – на уровне 3-4 л на 100 км.

Экономия во всем

Компания Achates Power поставила себе цель разработать ДВС с расходом топлива 3-4,5 л на 100 км для автомобиля размером с Ford Fiesta. Пока их экспериментальный дизельный двигатель демонстрирует гораздо больший аппетит, но разработчики надеются уменьшить расход. Однако главное в данном моторе – исключительно простая конструкция и низкая себестоимость. Согласимся, что экономия на топливе мало чего стоит, если она обошлась ценой многократного удорожания мотора.


Двигатель Achates Power имеет предельно простую конструкцию

Двигатель Achates Power имеет предельно простую конструкцию. Это двухтактный оппозитный дизельный мотор, в котором два поршня движутся навстречу друг другу, образуя камеру сгорания. Таким образом отпадает необходимость в головке блока цилиндров и сложном газораспределительном механизме. Большинство деталей мотора изготавливаются с помощью несложных производственных процессов и не требуют дорогих материалов. В целом, двигатель содержит намного меньше деталей и металла, чем обычный.

В настоящее время на испытаниях мотор Achates Power демонстрирует экономичность на 21% большую, чем лучшие "традиционные" дизельные двигатели. Более того, он имеет модульную конструкцию, большую удельную мощность (соотношение вес/л.с.). Также благодаря особой форме верхней части поршня создается вихревой поток особой формы, обеспечивающий отличное перемешивание топливовоздушной смеси, эффективный теплоотвод и уменьшающий время сгорания. В результате двигатель не только соответствует военным спецификациям армии США, но и превосходит по характеристикам двигатели, которые сегодня устанавливаются на боевую технику.

Простой способ

Американская компания Transonic Combustion решила не создавать новый двигатель, а добиться внушительной (25-30%) экономии топлива с помощью новой системы впрыска.

Высокотехнологичная система впрыска TSCiTM не требует радикальных переделок двигатели и, по сути, представляет собой набор инжекторов и специальный топливный насос.


Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания

Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Сверхкритическая жидкость – это состояние вещества при определенной температуре и давлении, когда оно не является ни твердым телом, ни жидкостью, ни газом. В таком состоянии вещество приобретает интересные свойства, например, не имеет поверхностного натяжения, и образует мелкодисперсные частицы в процессе фазового перехода. Кроме того сверхкритическая жидкость обладает способностью быстрого переноса массы. Все эти свойства крайне полезны в двигателе внутреннего сгорания, в частности, сверхкритическое топливо быстро смешивается, не имеет крупных капель, быстро сгорает с оптимальным тепловыделением и высокой эффективностью цикла.

Электронный клапан

Компания Grail Engine Technologies разработала уникальный двухтактный двигатель с очень заманчивыми характеристиками. Так, при потреблении 3-4 литров на "сотню", двигатель выдает 200 л.с. Мотор с мощностью 100 л.с. весит менее 20 кг, а мощностью 5 л.с. – всего 11 кг! При этом Grail Engine, в отличие от обычных двухтактных моторов, не загрязняет топливо маслом из картера, а значит, соответствует самым жестким экологическим стандартам.

Сам двигатель состоит из простых деталей, в основном изготавливаемых способом отливки. Секрет выдающихся характеристик кроется в схеме работы Grail Engine. Во время движения поршня вверх, внизу создается отрицательное давления воздуха и через специальный углепластиковый клапан воздух проникает в камеру сгорания. В определенной точке движения поршня начинает подаваться топливо, затем в верхней мертвой точке с помощью трех обычных электросвечей происходит зажигание топливно-воздушной смеси, клапан в поршне закрывается. Поршень идет вниз, цилиндр заполняется выхлопными газами. По достижении нижней мертвой точки поршень опять начинает движение вверх, поток воздуха вентилирует камеру сгорания, выталкивая выхлопные газы, цикл работы повторяется.


Секрет выдающихся характеристик кроется в схеме работы Grail Engine

Компактный и мощный Grail Engine идеально подходит для гибридных автомобилей, где бензиновый мотор вырабатывает электроэнергию, а электромоторы крутят колеса. В такой машине Grail Engine будет работать в оптимальном режиме без резких скачков мощности, что существенно повысит его долговечность, снизит шум и расход топлива. При этом модульная конструкция позволяет присоединять к общему коленвалу два и более одноцилиндровых Grail Engine, что дает возможность создания рядных двигателей различной мощности.

Новые модели авто появляются каждый год – но по каким-то причинам на них не стоят вышеописанные экономичные и простые двигатели. Действительно, двигателями новой конструкции интересуются все: от вездесущего инвестора Билла Гейтса до Пентагона. Однако автопроизводители не спешат устанавливать новинки на свои машины. Видимо, все дело в том, что крупные автоконцерны сами производят двигатели и, естественно, не желают делиться прибылью со сторонними разработчиками. Но в любом случае жесткие экологические стандарты и электромобили заставят автопроизводителей внедрять новые технологии, гораздо более важные для здоровья людей и всей планеты, чем мультимедийные системы и дизайнерские изыски.

Михаил Левкевич