Двигатель стирлинга изготовление. Двигатель Стирлинга — второе рождение

Размещено на сайте 12.03.2009.

5 ПРЕДИСЛОВИЕ КАФЕДРЫ ПРОГНОЗОВ

Добрый день, уважаемые читатели.

Наша серия выпусков про автомобили была бы не полной, если бы не рассмотрели автомобили на двигателе внешнего сгорания, которые были придуманы в 1816 году шотландским священником Робертом Стирлингом.

Побудительным мотивом изобретателя было огромное количество травм, которые получали рабочие на производствах эпохи промышленной революции в Англии.

История техники сообщает только об одном опыте строительства автомобилей

на основе использования этого двигателя. Это произошло в 1972 году. Изображения этого автомобиля я не нашёл, зато отыскалась очень интересная статья российского инновационного центра, которую я с удовольствием представляю сегодня.

Для квалифицированного чтения предлагаю небольшой общеобразовательный экскурс в эту область, которую я оформил в виде дайджеста из нескольких цитат.

Источник тепла нагревает газ в правой части теплообменного цилиндра. Газ разширяется и через трубку оказывает давление на рабочий поршень. Поршень опускается, толкает шатун и поворачиает маховик. При этом одновременно в право двигатется вытеснительный поршень. Он вытесняет газ из нагревающейся части теплообменного цилиндра в его холодную часть, которая имеет охлаждающееся оребрение. Теплообменный поршень заполнен теплоизолирующим материалом. Газ остывает, создавая обратное усилие на рабочий поршень, поршень поднимается вверх и цикл повторяется с начала.

Стирлинга двигатель, двигатель внешнего сгорания, двигатель с внешним подводом и регенерацией тепловой энергии, преобразуемой в полезную механическую работу. С. д. назван по имени английского изобретателя Р. Стирлинга (R. Stirling; 1790—1878), который в 1816—40 создал двигатель с незамкнутым циклом, работавший на подогреваемом воздухе. Двигатель имел несовершенный регенератор (теплообменник), был громоздким и тяжёлым, вследствие чего не нашёл применения. Современый С. д. работает по замкнутому регенеративному циклу (циклу Стирлинга), состоящему из последовательно чередующихся двух изотермических и двух изохорических процессов. Рабочее тело С. д. — гелий или водород под давлением 10—14 Мн/м2 (100—140 кгс/см2 ) находится в замкнутом пространстве и во время работы не заменяется, а лишь изменяет объём при нагревании и охлаждении. Регенератор как бы разделяет это пространство на верхнюю (горячую) и нижнюю (холодную) полости (рис. 1). К верхней полости тепло подводится от нагревателя, от нижней отводится охладителем, в котором циркулирует вода. В цилиндре С. д. находятся 2 поршня — рабочий и вытеснитель. Горячая и холодная полости соединяются между собой каналами, проходящими через нагреватель, регенератор и охладитель. Рабочий цикл С. д. осуществляется за 4 такта (рис. 2).

Отношение мощности к массе у двигателя Стирлинга сопоставимо с аналогичным показателем дизельного двигателя с турбонаддувом. Удельная мощность на выходе такая же, как и у дизельного двигателя. Крутящий момент практически не зависит от скорости. Двигатель Стирлинга реагирует на изменения нагрузки аналогично дизелю, однако требует более сложной системы регулировки, он более сложен, чем обычные тепловые двигатели. Стоимость его изготовления выше стоимости изготовления ДВС, однако, расходы на эксплуатацию гораздо меньше

Технологии, разработанные в 1816 году шотландцем Робертом Стирлингом, работают и сегодня! Цикл Стирлинга использует внешний источник тепла, которым может быть что угодно - сгорающий бензин, солнечная энергия или даже тепло, производимое компостными бактериями. Внутри цилиндров горения топлива нет!!! Основные качества двигателя Стирлинга - экономичность, невысокие уровни производимых при работе шумов и вибраций, возможность использовать различные виды топлива и малая токсичность отработавших газов. Сегодня двигатели Стирлинга используются только в некоторых очень специализированных областях, например, в подводных лодках или как вспомогательные генераторы на яхтах, где требуется тишина.

Машины Стирлинга - это машины, работающие по замкнутому термодинамическому циклу, в котором циклические процессы сжатия и расширения происходят при различных уровнях температур, а управление потоком рабочего тела осуществляется путем изменения его объема. В качестве рабочего тела используются газообразные природные вещества (гелий, азот, сухой воздух и др.). Термодинамический цикл рассматриваемых машин был предложен в 1816 году шотландцем Робертом Стирлингом. С середины 19 века словосочетание «машина Стирлинга» стало широко употребляться как в классической термодинамике, так и бытовом обиходе. Цикл Стирлинга состоит из двух изотерм и двух изохор. Наличие двух изотерм определяет равенство термодинамической эффективности идеального цикла Стирлинга и цикла Карно. Поэтому машины, работающие по циклу Стирлинга, одни из самых высокоэффективных машин в мире. К достоинствам машин, работающих по циклу Стирлинга, следует отнести высокую степень экологической чистоты как самих рабочих тел машин Стирлинга, так и отработанных сред, возникающих при их эксплуатации, а также энергетическую эффективность.

Машины СТИРЛИНГА - новое перспективное направление в развитии отечественного машиностроения.

До недавнего времени системы автономного энергоснабжения, использовавшие традиционные тепломеханические агрегаты, удовлетворяли существующему уровню развития общества и техники. Однако обострение общенациональных, глобальных проблем, требующих срочного решения (истощение природных ресурсов; надвигающийся энергетический кризис; загрязнение окружающей среды; уменьшение озонового слоя Земли; усиление "парникового эффекта" и т.д) привело к необходимости принятия в конце XX века ряда крупных международных и российских законодательных актов в области экологии, природопользования и энергосбережения. Основные требования этих законов направлены на сокращение выбросов СО2, прекращение производства озоноразрушающих веществ и фреона R-12, как холодильного агента для парокомпрессионных холодильных машин (ПКХМ), ресурсо - и энергосбережение, перевод автотранспорта на экологически чистые моторные топлива и т.д..

Огромные масштабы, удорожание производства топливно - энергетических ресурсов и растущее загрязнение окружающей среды выдвинули на первый план задачу поиска новых технологий энергопреобразования, разработки новой техники на основе высокоэффективных термодинамических циклов, использование новых видов топлива, новых рабочих тел и т.д., то есть создание таких экологически чистых энергосистем, которые бы обеспечивали удовлетворение нужд промышленности и населения при минимальных затратах материальных ресурсов. Наряду с другими подходами, в решении стоящих перед Российской Федерацией экологических и энергетических проблем, наиболее перспективным путем является разработка и широкое внедрение энергопреобразующих систем на основе машин, работающих по прямому и обратному циклам Стирлинга (машины Стирлинга).

В настоящее время разработано большое количество компоновочных схем и конструктивного исполнения отдельных узлов машин Стирлинга. Так, только одних приводов известно более 18 типов. Однако наиболее широкое распространение получили машины Стирлинга, выполненные по a , b , g - схемам. Конструктивно, машины Стирлинга представляют собой удачное сочетание в одном агрегате компрессора, детандера и теплообменных устройств: теплообменника нагрузки (нагревателя или конденсатора), регенератора и холодильника.

На последних европейских и мировых форумах по современному состоянию и перспективам развития машин, работающих по циклу Стирлинга, отмечалось, что технология изготовления машин Стирлинга за рубежом полностью освоена. Решены проблемы уплотнений двигающихся деталей, выбора материалов, пайки теплообменников и т.д. Ввиду этого, наряду с традиционным применением двигателей и криогенных машин Стирлинга для военных целей (переконденсация низкокипящих жидкостей, охлаждение детекторов инфракрасного излучения, анаэробных систем автономного энергоснабжения и т.д.), перспективными направлениями считаются применение холодильных машин Стирлинга на уровне умеренного холода для хранения пищевых продуктов и систем кондиционирования воздуха, использование двигателей Стирлинга в когенерационных установках, тепловых насосах в системах децентрализованного теплоснабжени и т.д.

Подтверждением возрастающего интереса к машинам Стирлинга служит тот факт, что начиная с 1982 года каждые два года проводится международная конференция по двигателям Стирлинга, а в г. Оснабрюк (Германия) раз в два года проходит Европейский форум по двигателям Стирлинга. Кроме того ежегодно в США проходит конференция, посвященная преобразованию различных видов энергии, на которой работает секция по двигателям Стирлинга. В Великобритании создано общество по изучению двигателей Стирлинга, членами которого являются свыше 300 ученых всего мира. Обществом ежеквартально, начиная с 1996 года, издается журнал “ UK Stirling News ”. В США ежеквартально, начиная с 1978 года, издается журнал “ Stirling Machine World ”. Ежегодно издается одна-две книги, посвященные машинам Стирлинга.

Принципиальными особенностями цикла Стирлинга являются:

Цикл характеризуется нестационарными во времени параметрами потоков рабочего тела в каждой точке системы. Практически это означает, что машина Стирлинга, рабочие полости которой входят в один объем, неизбежно должна быть машиной с периодическим изменением объемов сжатия и расширения, т.е. поршневой машиной. В виду этого преимущественные области применения таких машин - малые и средние мощности;
-цикл предназначен только для работы с газообразным рабочим телом. Чтобы размеры машин при заданной мощности были приемлемы, а внешний и внутренний теплообмен рабочего тела в этих условиях проходил достаточно эффективно, давление в машине должно быть существенно выше атмосферного. По тем же причинам рабочее тело должно иметь малую вязкость, возможно большую теплопроводность и теплоемкость, мало зависящую от давления (иначе возникнут большие собственные потери в регенераторе вследствие различных тепловых эквивалентов теплообменивающихся потоков);
-в цикле регенерация тепла позволяет работать в большом интервале температур (верхняя и нижняя температуры цикла) при относительно малых отношениях давлений сжатия и расширения;
-для реализации цикла в качестве рабочих тел могут быть использованы водород, гелий, азот, воздух и другие газообразные вещества. Использование в качестве рабочего тела газов с высоким значением газовой постоянной (R), например водорода или гелия, позволяет получать в машинах Стирлинга эксергетический* к.п.д. свыше 50%;
-универсальность цикла, на его основе возможно создание как преобра-зователей прямого цикла, так и обратного цикла.

· (примечание КП. Про «эксергетические методы анализа»,: это подход, опирающийся на использование термодинамических потенциалов при анализе процессов превращения энергии в системе см. , , .)

Цикл Стирлинга в преобразователе прямого цикла состоит из четырех процессов: - процесс изотермического сжатия, теплота от рабочего тела с температурой Т сж передается окружающей среде; - процесс при постоянном объеме, теплота от насадки регенератора передается рабочему телу; - процесс изотермического расширения, теплота от внешнего источника с температурой Т max передается рабочему телу; - процесс при постоянном объеме, теплота от рабочего тела передается насадке регенератора.

Цикл Стирлинга в преобразователе обратного цикла также состоит из четырех процессов. Различие с двигателем состоит в том, что температура внешнего источника, от которого подводится теплота в процессе расширения, ниже, чем температура рабочей жидкости, отводящей теплоту в процессе сжатия. В случае холодильной машины, теплота отводится из холодной полости в процессе расширения 3 ’-4’. Работа сжатия (площадь 1-2-5-6) как для двигателя, так и для холодильной машины одна и та же. Работа расширения (площадь 4’-3’-5-6) в холодильной машине меньше работы сжатия, и для реализации данного цикла необходима энергия, подводимая от внешнего источника, эквивалентная площади 1-2-3’-4’. При переходе из полости сжатия в полость расширения в процессе 2-3’ температура рабочего тела уменьшается, в а процессе 4’-1 соответственно увеличивается.

Машины, работающие по прямому циклу Стирлинга - двигатель Стирлинга

В мировых обзорах по энергопреобразующей технике, двигатель Стирлинга рассматривается как двигатель, обладающий наибольшими возможностями для дальнейшей разработки. Низкий уровень шума, малая токсичность отработанных газов, возможность работы на раз-личных топливах, большой ресурс, сравнимые размеры и масса, хорошие характеристики крутящегося момента - все эти параметры дают возможность машинам Стирлинга в ближайшее время значительно потеснить двигатели внутреннего сгорания (ДВС). Двигатель Стирлинга относится к классу двигателей с внешним подводом теплоты (ДВПТ). В связи с этим, по сравнению с ДВС, в двигателях Стирлинга процесс горения осуществляется вне рабочих цилиндров и протекает более равновесно, рабочий цикл реализуется в замкнутом внутреннем контуре при относительно малых скоростях повышения давления в цилиндрах двигателя, плавном характере теплогидравлических процессов рабочего тела внутреннего контура, при отсутствии газораспределительного механизма клапанов. Необходимо отметить, что рядом зарубежных фирм начато производство двигателей, технические характеристики которых уже сейчас превосходят ДВС и газотурбинные установки (ГТУ).

90° V-двухцилиндровый мотор Стирлинга Германской фирмы SOLO " СОЛО Стирлинг 161 "

Двигатель Стирлинга является уникальной тепловой машиной, поскольку его теоретическая эффективность равна максимальной эффективности тепловых машин (эффективность цикла Карно). Он работает за счет теплового расширения газа, за которым следует сжатие газа после его охлаждения. Двигатель Стирлинга содержит некоторый постоянный объем рабочего газа, который перемещается между «холодной» частью (обычно находящейся при температуре окружающей среды) и «горячей» частью, которая обычно нагревается за счет сжигания любого вида топлива или других источников теплоты. Нагрев производится снаружи, поэтому двигатель Стирлинга относят к двигателям внешнего сгорания. К началу 90-х годов прошлого столетия работы по созданию двигателей Стирлинга проводились такими известными фирмами, как ‘Philips” (Нидерланды), “General Motors Co”, “Ford Motor Co”, “NASA Lewis Research Center”, “Los Alamos National Laboratory” (США), “MAN-MBW” (Германия), “Mitsubishi Electric Corp.”, “Toshiba Corp.” (Япония). В течение последнего десятилетия к работам по созданию двигателей Стирлинга приступили также в “Daimler Benz” и “Cummins Power Generation” (СPG) и ряд других крупных фирм.

Машины, работающие по обратному циклу Стирлинга - холодильные машины Стирлинга.

Одним из наиболее перспективных направлений развития холодильной техники в XXI веке является создание и применение холодильных машин Стирлинга умеренного холода (ХМС УХ). Теоретически эффективность холодильных машин Стирлинга умеренного холода равна эффективности идеальной холодильной машины, работающей по циклу Карно. В качестве рабочих тел для машин Стирлинга обратного цикла могут применяться вещества, полностью отвечающие требованиям Венской конвенции по охране озонового слоя и Монреальского протокола по озоноразрушающим веществам. Поэтому широкое внедрение холодильных машин Стирлинга умеренного холода уже в ближайшее время позволило бы в комплексе "эффективность + экологи-ческая чистота" решить проблему создания соответствующих современным требованиям систем холодоснабжения. Современный диапазон производства данных машин колеблется от 1 до 100 кВт, что обеспечивает их использование в системах холодоснабжения во многих областях промышленности и торговле. Преимуществами ХМС УХ являются: высокое значение холодильного коэффициента, широкий диапазон использования в области умеренного холода (от 0 до -80 0С) и экологическая чистота рабочих тел (гелий, водород, азот, воздух). За рубежом уже начато серийное производство холодильных машин Стирлинга умеренного холода по своей эффективности и экологической чистоте превосходящих существующие холодильные машины, работающие по другим циклам, в том числе и парокомпрессионные холодильные машины.

Анализ современной зарубежной научно-технической информации позволяет утверждать, что в промышленно развитых странах в последние 10 лет начались интенсивные научно-исследовательские и опытно-конструкторские работы по подготовке к серийному производству холодильных машин Стирлинга. Уже сейчас на зарубежные рынки начало поступать новое холодильное оборудование с использованием машин данного цикла. Ярким примером перспективности холодильных машин Стирлинга является начало серийного производства с 2004 года таким гигантом, как южнокорейская корпорация «LG Electronic Inc» домашних холодильников на основе холодильных машин Стирлинга с линейным приводом.

Проблемы создания высокоэффективных машин Стирлинга.

Зарубежный опыт создания современных высокоэффективных машин Стирлинга показывает, что без точного математического моделирования рабочих процессов и оптимального конструирования основных узлов, доводка проектируемых машин превращается в многолетние изнурительные экспериментальные исследования. В настоящее время западные фирмы, ведущие разработки в данной области, в основном опираются на теоретические и экспериментальные исследования своих научных подразделений, технических университетов или создают технопарки по разработки отдельных типов машин Стирлинга. Далее, это сложность конструктивного исполнения отдельных узлов, проблемы в области уплотнений, регулирования мощности и т.д. Особенности конструктивного исполнения обуславливаются применяемыми рабочими телами. Так, например, гелий, обладает сверхтекучестью, что определяет повышенные требования к уплотняющим элементам рабочий поршней, штока вытеснителя и т.д. Формирование облика перспективных, предполагаемых к производству машин Стирлинга невозможно без разработки новых технических решений основных узлов. Третья проблема - это высокий уровень технологии производства. Данная проблема связана с необходимостью применения в машинах Стирлинга жаростойких сплавов и цветных металлов, их сварки и пайки. Отдельный вопрос изготовление регенератора и насадки для него, для обеспечения с одной стороны высокой теплоемкости, а другой стороны, низкого гидравлического сопротивления. Все это требует высокой квалификации рабочего персонала и современного технологического оборудования.

В заключении, говоря о проблемах создания машин Стирлинга, необходимо сделать два вывода:
- высокая наукоемкость данной области техники является основным сдерживающим фактором широкого распространения машин, работающих по циклу Стирлинга;
- успех в создании конкурентоспособных на мировом рынке машин Стирлинга может быть достигнут только как результат синтеза высокого уровня научных исследований, тщательной конструктивной проработки основных узлов машин Стирлинга и передовой технологии производства.

Анализ отечественных разработок в области машин Стирлинга.

Перспективность производства и широкого применения машин Стирлинга в различных областях отечественной экономики обусловлена наличием в России более чем 30-ти летнего технологического опыта, накопленного при производстве криогенных газовых машин Стирлинга. Фирмами-производителями холодильного оборудования с криогенными машинами Стирлинга являются ОАО «Машиностроительный завод «Арсенал», НПО «Гелиймаш» и др. Однако, необходимо отметить, что выпускаемые этими предприятиями КГМ Стирлинга, не являются отечественными разработками, а представляют собой копии криогенных машин, ранее выпускаемых голландскими фирмами "N.V. Philips Gloeilampenfabrieken" ("Филипс") и “Werkspoor”.

В России неоднократно предпринимались попытки создания отечественных двигателей и холодильных машин Стирлинга, однако они, из-за отсутствия адекватных методов расчета и трудностей финансового порядка, серьезного успеха не имели. Так, на АОЗТ «АРСМАШ» с 1991 по 1994 год проводились работы по исследованию перспективных холодильных установок для авторефрижераторной техники. Проведенный анализ показал, что в качестве наиболее перспективного холодильного агрегата может выступать только холодильная машина Стирлинга. В виду этого были созданы опытные образцы холодильных машин производительностью до 5 кВт, работающих в диапазоне от 285 К до 230 К, которые по эффективности и массогабаритным характеристикам соответствовали современным ПКХМ для авторефрижераторной техники. Была разработана проектно-сметная и конструкторская документация на ее серийное изготовление. Однако в связи с общим спадом в экономике и финансовыми трудностями заказчика работы по данному проекту были остановлены.

В 1996 году на ОАО “Машиностроительный завод “АРСЕНАЛ”, в рамках договора с ГП ГОКБ “Прожектор” были начаты работы по теме “Исследование и разработка электроагрегатов на базе многотопливных двигателей Стирлинга”. Указанная тема входила под шифром “Стирлинг” в комплексную НИР “Передвижка”, включенную постановлением Правительства РФ от 02.03.96 N 227-15 в государственный заказ. Из-за отсутствия реального финансирования из федерального бюджета данные работы не были завершены в полном объеме.

В 1997-1998 гг., на ОАО “МЗ”АРСЕНАЛ” был разработан пакет документов на заявку о включении в Федеральную программу реструктуризации и конверсии оборонных предприятий темы: “Разработка и создание производства экологически чистых двигателей с внешним подводом теплоты, рефрижераторов, тепловых насосов и анаэробных энергоустано-вок на основе цикла Стирлинга”. Проект не предусматривал дополнительных строительных работ, поскольку выпуск новой продукции планировалось осуществить за счет загрузки высвободившихся после конверсии производственных мощностей завода. При успешной реализации вышеуказанного проекта планировалось к 2004 го-ду наладить мелкосерийное производство двигателей и холодильных машин Стирлинга производительностью до 100 кВт. Однако, данные работы из-за отсутствия финансирования пока не реализованы.

В настоящее время сложилась достаточно парадоксальная ситуация, которая заключается в том, что Россия обладает многолетним опытом и технологией производства машин Стирлинга, но не имеет опыта собственных разработок, серийно выпускаемых машин Стирлинга. Данная ситуация обусловлена в основном тем обстоятельством, что в последние 15 лет в России из-за экономического кризиса сложилась крайне неблагоприятная инновационная атмосфера, во многих российских научных организациях, в которых ранее велись работы по тематике создания машин Стирлинга, например, МВТУ им. Баумана, ВНИИГТ, ОмПИ (ТУ), СПбГТУ (Политехнический университет), ЦНИДИ и др., исследования из-за финансовых трудностей были полностью прекращены. В то же время за рубежом именно за последние 15 лет были достигнуты наиболее существенные результаты в создании высокоэффективных машин Стирлинга.

«Инновационно-исследовательский центр «Стирлинг-технологии».

Учитывая перспективность машин Стирлинга, специалистами ООО «Инновационно-исследовательский центр «Стирлинг - технологии» в последние годы был проведен ряд теоретико - экспериментальных исследований, в результате которых была разработана новая методология проектирования и расчета машин данного цикла. Данная методология включает в себя несколько "ноу-хау", среди которых: уникальный метод двухуровневой многопараметрической оптимизации машин Стирлинга; структурный синтез машин Стирлинга на основе метода функцио-нально-эксергетического анализа сложных тепломеханических устройств; оптимальное конструирование на основе ТРИЗ (выделено КП) . Разработанная методология проектирования и расчета машин Стирлинга позволяет сократить сроки создания новых типов машин Стирлинга до 1,5-2 лет, с эффективностью, соответствующей лучшим мировым аналогам

На основании предложенных технических решений, специалистами ООО «Инновационно - исследовательский центр «Стирлинг - технологии» только за 1994-2003 году было подано более 150 заявок на предполагаемые изобретения. Особое внимание уделялось проработке отдельных узлов машин Стирлинга и их конструктивного исполнения, а также, созданию новых принципиальных схем установок различного функционального назначения. Практика показала, что оптимальное конструирование позволит в значительной степени сокра-тить суммарную удельную стоимость машин при их опытном изготовлении и серийном производстве. Предлагаемые технические решения, с учетом того, что машины Стирлинга менее дороги в эксплуатации, позволяют повысить их экономическую рентабельность по сравнению традиционными преобразователями энергии. Дальнейшее широкое распространение машин Стирлинга будет связано с развитием теории проектирования многоцилиндровых машин данного цикла, что позволит создавать двигатели и холодильные машины производительностью до 1000 кВт.

Когенерационные установоки с многотопливными двигателями Стирлинга.

Стирлинг-когенерация - новая технология для комбинированного производства электроэнергии и тепла, на основе двигателей Стирлинга, при которой энергия охлаждающей воды и отработанных газов используется для нужд теплоснабжения потребителей. Эффективность применения двигателя Стирлинга в когенерационных установках, по сравнению с ДВС, обусловлена особенностью его теплового баланса. Потери теплоты с отработанными газами и в охлаждающую воду для двигателя Стирлинга составляет, соответственно, 10% и 40%, что с учетом более высокого к.п.д. самого двигателя, позволяет создавать компактные и высокоэффективные когенерационные установки.

Когенерационная установка мощностью 9,5 кВт электрической энергии и 30 кВт тепловой энергии.

Преимущества использования когенерационных установок с двигателями Стирлинга на местном топливе в регионах РФ:

Независимость от конъюнктуры рынка нефти и природного газа.
---Возможность загрузки местных предприятий на производство оборудования для заготовки и переработки местного топлива.
---Отсутствие необходимости создания хранилищ для запасов углеводородного топлива и его транспортировки.
---Отсутствие необходимости прокладки и обслуживания электросетей при электрификации отдаленных районов.
---Значительное сокращение расходов региональных бюджетов на закупку привозного топлива.
---Значительное сокращение расходов компаний нефтегазового комплекса на закупку привозного топлива за счет использования в качестве моторного топлива попутного нефтяного газа.

1..Стоимость 1 кВт/ч производимой электроэнергии с помощью когенерационной установки будет составлять от 30 до 50 коп., что в 2-3 раза дешевле существующих тарифов. (выделено КП)
2..Примерно в 2 раза увеличивается ресурс преобразователя прямого цикла когенерационной установки, по сравнению с ДВС.
3..При сгорании топлива содержание СО в обработанных газах в 3 раза ниже и значительно ниже содержание NO и СH, что соответствует самым жестким мировым экологическим стандартам.
4..Срок окупаемости когенерационных установок 2,5 года.

Модернизация котельных агрегатов в мини - ТЭЦ на основе применения двигателя Стирлинга.

ООО "ИИЦ "Стирлинг-технологии" - компания, работающая в области создания высокоэффективных инноваций для теплоэнергетического комплекса РФ. Специалистами компании разработана новая, не имеющая в мире аналогов, технология перевода существующих котельных станций теплоснабжения в мини-ТЭЦ за счет двигателей Стирлинга.

Пример компоновки оборудования при модернизации котельного агрегата в мини - ТЭЦ на основе применения утилизационной установки с двигателем Стирлинга.

Без изменения существующей конструкции котельной станции теплоснабжения, установка в дымоходе котельного агрегата нагревателя двигателя Стирлинга позволяет осуществлять преобразование теплоты уходящих дымовых газов в полезную механическую и электрическую энергию. Утилизация теплоты уходящих газов с помощью двигателя Стирлинга является наиболее перспективным направлением повышения экономичности котельного агрегата. Предлагаемая технология может быть эффективно использована при модернизации котельных различной мощности. Полученная электрическая энергия может быть использована как для покрытия потребностей в электроэнергии на собственные нужды котельной, так и выработки электроэнергии во внешнюю электросеть. Экономическая эффективность использования утилизационных установок с двигателями Стирлинга при модернизации котельных станций теплоснабжения:
1.Стоимость 1 кВтч производимой электроэнергии с помощью утилизационной установки с двигателем Стирлинга в 8 раза дешевле существующих тарифов центрального электроснабжения.
2.Срок окупаемости инвестиций при модернизации котельных в мини-ТЭЦ на основе применения утилизационных установок с двигателем Стирлинга не превышает 3 лет, в зависимости от исходных технико-экономических данных.

Использование биомассы при применении двигателя Стирлинга.

Пример компоновки твёрдотопливной установки с двигателем Стирлинга ООО "ИИЦ "Стирлинг-технологии".

Германская фирма "SOLO Stirling Engine" занимается разработкой систем Стирлинг - Когенерации с непосредственным использованием твердого горючего, преимущественно древесины, но сталкивается с некоторыми трудностями, как например удаление шлака из камеры сгорания или предотвращение спекания частиц топлива. Исследования при помощи Газогенератора летом 1998 показали, что произведенный там древесный газ, улучшает процесс сжигания твёрдого топлива и смол. Комбинация Газогенератора с Стирлинг - Когенерацией является высоко эффективным устройством, так как горячий газ получаемый из Газогенератора не нуждается в охлаждении для применения в Стирлинг - Когенерации.
Специалисты ООО «Инновационно - исследовательский центр «Стирлинг - технологии» в России, тоже активно занимаются разработкой аналогичных систем, например проектирование энергоснабжения коттеджного городка с использованием двигателей Стирлинга, работающих на генераторном газе из торфа. В тоже время ведуться разработки твёрдотопливных установок с двигателем Стирлинга, работающих на древесной щепе, угле и угольной пыли, торфе, сланцах, отходах сельского хозяйства и навозе, бытовом мусоре и т.д..

Солнечные энергосистемы.

Солнечная версия двигателя "Стирлинг 161", Германской фирмы SOLO системы (EURODISH).

Солнечная версия двигателя Стирлинг 161 используется между тем несколькими производителями в различных исполнениях. На испанском солнечном плато de Алмерию с 1997 работают 6 систем. В рамках поддержанного ЕС проекта в сотрудничестве с Schlaich Bergermann und Partner und MERO Raumsysteme GmbH, кроме всего прочего, теперь строится новое поколение системы Dish Стирлинг 10 кВт. Целью проекта является сокращение стоимостей капиталовложений до 5.000 евро / киловатт. При этом снова вступает в действие Стирлинг 161 при модификациях в Receiver, Cavity и корпусе. Характеристики нового Dish/Стирлинга системы (EURODISH): номинальная производительность СОЛО "Стирлинг 161" 10,0кВт брутто, диаметр солнечного зеркала 8,5м. В Alanya, центр исследования солнечной энергии Турции создал Kombassan холдинг - компанию, которая строит на подготовительных работах Cummins. Работы очень интенсивны и показывают хорошие результаты.

ПОСЛЕСЛОВИЕ КАФЕДРЫ ПРОГНОЗОВ

Вопросы, которые у меня возникают - естественны для избранного контекста обзора истории автомобилестроения.

Может ли повториться это техническое решение в условиях современных реалий экономического кризиса, когда все стараются «экономить»?

Рассмотрим варианты:

1. Мотор Стирлинга как единственный двигатель для автомобиля. Развитие сценария - «всеядный автомобиль».

Мой ответ - нет. В мире достаточно пока что и нефти и газа. В производстве и обслуживании бензиновых- дизельных ДВС занято столько людей и капиталов, что говорить о феномене «подрыва» я не вижу серьёзных оснований.

2.Может ли быть построен гибрид по схеме «ЛЮБОЕ топливо- Мотор - Стирлинга- электромотор»?

Очень похожий сценарий пытались реализовать в 1965 году в авиации.

Самолёт ИЛ -18П сам по себе - загадка. У меня есть предположение, что это был некий розыгрыш или специально созданная дезинформация, утечка которой может отвлечь денежные ресурсы конкурентов в неэффективное направление.

Такие примеры были в истории техники. Например, в начале 70ых годов, было принято решение развивать в СССР вычислительную технику по пути больших виртуальных машин серии ЕС. Я до сих пор помню великолепный афоризм своего преподавателя по программированию на Ассемблере: «Машины серии ЕС есть наилучший пример научно-технической диверсии США против СССР».

Это был тупиковый путь развития вычислительной техники, который средствами западных СМИ и умелыми действиями спецслужб стал для нас магистральным и добавил нашего отставания в развитии производства компьютеров. Огромные деньги были истрачены «не туда».

Может быть ситуация с паровым самолётом есть что-то похожее.

Ответ КП на вариант 2: «едва ли». Обоснования те же, что и в варианте 1.

3. Может ли быть построен гибрид по схеме «ДВС + рекуперация тепловой энергии с помощью мотора Стирлинга»? У бензинового- дизельного ДВС 70-75%

энергии топлива уходит в тепло и трение.

Сразу возникает развилка, подвариант А : получить на борту два вида механической энергии: от ДВС и от Стирлинга? подвариант Б: Получить на борту механику от ДВС и электроэнергию для электромотора.

Если вариант Б укладывается в общую концепцию проектирования многих современных гибридных автомобилей, где процессы рекуперации считают, целеполагающими, то варианту А большого количества примеров устойчивого успеха привести не могу.

В этих дирижаблях 1958ого и 1966 года использовались ДВА вида подъёмной силы: архимедова и от эффекта Магнуса. Как мы видим, эти технические решения появились после заката эры воздухоплавания. И мы ничего не знаем об их истинных свойствах. Только факты о проведённых НИОКР.

Можно, конечно говорить о том, что Парусно- винтовое судно или пароход с гребными колёсами и парусами одновременно являются такими примерами, но они всё же не вполне корректны, т.к. энергия ветра в этих этим системах всё-таки находится в Надсистеме и может использоваться независимо, а вариант А, всё-таки подразумевает утилизацию тепловой энергии, которая создаётся внутри ТС в процессе эксплуатации.

Говоря о моторах Стирлинга можно надеяться на то, что они могут получить импульс развития от кризиса как всеядные маленькие электростанции, но едва ли они «проникнут» в автомобиль. Окклюзия водорода и гелия, проникновение этих веществ сквозь металлические стенки, растворение их в металле - явление далеко не академическое, а вполне техническое. Огромные рабочие давления в сочетании с транспортной вибрацией тоже заставляет предполагать большие проблемы с обходом противоречия: «для увеличения долговечности необходимы толстые стенки, но это уменьшает теплопередающие способности стенок и увеличивает вес мотора».

Мы совсем не обсудили другое свойство этих удивительных машин. Возможность использовать их и как тепловые насосы. Это яркие проявления принципа инверсии, которым изобилует история всех машин, где есть нагревание, но об этом можно говорить часами. Сделаем как-нибудь отдельный выпуск об этом.

Менее ста лет назад двигатели внутреннего сгорания пытались завоевать свое законное место в конкурентной борьбе среди прочих имеющихся машин и движущихся механизмов. При этом в те времена превосходство бензинового двигателя не являлось столь очевидным. Существующие машины на паровых двигателях отличались бесшумностью, великолепными для того времени характеристиками мощности, простотой обслуживания, возможностью использования различного вида топлива. В дальнейшей борьбе за рынок двигатели внутреннего сгорания благодаря своей экономичности, надежности и простоте взяли верх.

Дальнейшая гонка за совершенствования агрегатов и движущих механизмов, в которую в середине 20 века вступили газовые турбины и роторные разновидности двигателей, привела к тому, что несмотря на верховенство бензинового двигателя были предприняты попытки ввести на «игровое поле» совершенно новый вид двигателей - тепловой, впервые изобретенный в далеком 1861 году шотландским священником по имени Роберт Стирлинг. Двигатель получил название своего создателя.

Двигатель Стирлинга: физическая сторона вопроса

Для понимания, как работает настольная электростанция на Стирлинге , следует понимать общие сведения о принципах работы тепловых двигателей. Физически принцип действия заключается в использовании механической энергии, которая получается при расширении газа при нагревании и его последующем сжатии при охлаждении. Для демонстрации принципа работы можно привести пример на основе обычной пластиковой бутыли и двух кастрюль, в одной из которых находится холодная вода, в другой горячая.

При опускании бутылки в холодную воду, температура которой близка к температуре образования льда при достаточном охлаждении воздуха внутри пластиковой емкости ее следует закрыть пробкой. Далее, при помещении бутыли в кипяток, спустя некоторое время пробка с силой «выстреливает», поскольку в данном случае нагретым воздухом была совершена работа во много раз большая, чем совершается при охлаждении. При многократном повторении опыта результат не меняется.

Первые машины, которые были построены с использованием двигателя Стирлинга, с точностью воспроизводили процесс, демонстрирующийся в опыте. Естественно механизм требовал усовершенствования, заключающееся в применении части тепла, которое терял газ в процессе охлаждения для дальнейшего подогрева, позволяя возвращать тепло газу для ускорения нагревания.

Но даже применение этого новшества не могло спасти положение дел, поскольку первые «Стирлинги» отличались большими размерами при малой вырабатываемой мощности. В дальнейшем не раз предпринимались попытки модернизировать конструкцию для достижения мощности в 250 л.с. приводили к тому, что при наличии цилиндра диаметром 4,2 метра, реальная выходная мощность, которую выдавала электростанция на Стирлинге (Stirling) в 183 кВт на деле составляла всего 73 кВт .


Все двигатели Стирлинга работают по принципу цикла Стирлинга, включающего в себя четыре основные фазы и две промежуточные. Основными являются нагрев, расширение, охлаждение и сжатие. В качестве стадии перехода рассматриваются переход к генератору холода и переход к нагревательному элементу. Полезная работа, совершаемая двигателем, строится исключительно на разнице температур нагревающей и охлаждающей частей.

Современные конфигурации Стирлинга

Современная инженерия различает три основных вида подобных двигателей:

  • альфа-стирлинг, отличие которого в двух активных поршнях, расположенных в самостоятельных цилиндрах. Из всех трех вариантов данная модель отличается самой высокой мощностью, обладая самой высокой температурой нагревающегося поршня;
  • бета-стирлинг, базирующийся на одном цилиндре, одна часть которого горячая, а вторая холодная;
  • гамма-стирлинг, имеющий кроме поршня еще и вытеснитель.

Производство электростанции на Стирлинге будет зависеть от выбора модели двигателя, что позволит учесть всю положительные и отрицательные стороны подобного проекта.

Преимущества и недостатки

Благодаря своим конструктивным особенностям данные двигатели обладают рядом преимуществ, но при этом не лишены недостатков.

Настольная электростанция Стирлинга, которую невозможно в магазине, а только у любителей, самостоятельно осуществляющих сбор подобных устройств, относятся:

  • большие размеры, которые вызваны потребностью к постоянному охлаждению работающего поршня;
  • использование высокого давления, что требуется для улучшения характеристик и мощности двигателя;
  • потеря тепла, которая происходит за счет того, что выделяемое тепло передается не на само рабочее тело, а через систему теплообменников, чей нагрев приводит к потере КПД;
  • резкое снижение мощности требует применения особых принципов, отличающихся от традиционных для бензиновых двигателей.

Наряду с недостатками, у электростанций, функционирующих на агрегатах Стирлинга, имеются неоспоримые плюсы:

  • любой вид топлива, поскольку как любые двигатели, использующие энергию тепла, данный двигатель способен функционировать при разнице температур любой среды;
  • экономичность. Данные аппараты могут стать прекрасной заменой паровым агрегатам в случаях необходимости переработки энергии солнца, выдавая КПД на 30% выше;
  • экологическая безопасность. Поскольку настольная электростанция кВт не создает выхлопного момента, то она не производит шума и не выбрасывает в атмосферу вредных веществ. В виде источника получения мощности выступает обычное тепло, а топливо выгорает практически полностью;
  • конструктивная простота. Для своей работы Стирлинг не потребует дополнительных деталей или приспособлений. Он способен самостоятельно запускаться без использования стартера;
  • повышенный ресурс работоспособности. Благодаря своей простоте, двигатель может обеспечить не одну сотню часов беспрерывной эксплуатации.

Области применения двигателей Стирлинга

Мотор Стирлинга чаще всего применяется в ситуациях, когда требуется аппарат для преобразования тепловой энергий, отличающийся простотой, при этом эффективность прочих видов тепловых агрегатов существенно ниже при аналогичных условиях. Очень часто подобные агрегаты применяются в питании насосного оборудования, холодильных камер, подводных лодок, батарей, аккумулирующих энергию.

Видео материал: YouTube.com/watch?v=fRY6rkuw3LA

Одним из перспективных направлений области использования двигателей Стирлинга являются солнечные электростанции, поскольку данный агрегат может удачно применяться для того, чтобы преобразовывать энергию солнечных лучей в электрическую. Для осуществления этого процесса двигатель помещается в фокус зеркала, аккумулирующего солнечные лучи, что обеспечивает перманентное освещение области, требующей нагрева. Это позволяет сфокусировать солнечную энергию на малой площади. Топливом для двигателя в данном случае служит гелии или водород.

Двигатель Стирлинга - это агрегат, который преобразует тепло в механическую энергию. Его можно подключить к генератору и получать электричество. Или к насосу, циркулярке, короче, к любому потребителю механической энергии. Он, в перспективе, очень хорошо подходит для стационарного автономного энергоснабжения. Почему?

1. Может работать на любом топливе. В том числе, на дровах, опилках и т.п. Может сделать Стирлинг, работающий от солнечного тепла или от разности температур воздуха и воды (хотя последний вариант я не рассматриваю всерьез, об этом будет отдельный пункт).

2. Тихая работа и большой моторесурс. Малый расход масла.

3. Простота в обслуживании (особенно, по сравнению с ближайшим аналогом - паровой машиной).

4. Относительно высокий КПД. Гораздо выше, чем у паровой машины, но ниже, чем у ДВС. На получение 1 кВт*ч электроэнергии от хорошо сделанного, мощного любительского Стирлинга будет расходоваться примерно 3-4 кг дров. Можно сравнить это со стоимостью той же энергии, полученной от бензогенератора.

5. Хотя КПД и ниже, чем у ДВС, можно использовать отходящее тепло для нагрева воды. Это повышает суммарную выгоду, извлекаемую из данного двигателя - она оказывается гораздо больше, чем у ДВС. Справедливости ради нужно сказать, что в ДВС такое использование тоже возможно, но для этого нужен дополнительный теплообменник.

На сегодня в серийном производстве по доступной цене таких двигателей нет. Я поставил перед собой задачу разработать такой двигатель, доступный для изготовления силами любителей.

О чем эта страничка

Некоторые мифы о двигателях Стирлинга

КПД двигателя Стирлинга равен КПД цикла Карно? Это не так. КПД ЦИКЛА Стирлинга равен КПД цикла Карно. Но в поршневой машине цикл Стирлинга реализовать невозможно. Тот цикл, который реализуется в двигателях Стирлинга - довольно сильно отличается от цикла Стирлинга. Кроме того, имеются неизбежные потери.

Нужен водород или гелий под страшным давлением? Нет, не нужен. Водород или гелий под большим давлением нужны для двигателя, имеющего такие же массогабаритные показатели, как автомобильный ДВС. Если снизить требования к массогабаритным показателям, то можно снизить давление и использовать другие рабочие тела. Известны случаи применения воздуха, аргона, углекислого газа и я даже слышал про пропан, хотя это вызывает сомнение.

Движущиеся части и уплотнения подвержены высокой температуре? Высокой температуре подвержена только одна движущаяся часть - верхняя часть "горячего" поршня. Поршневые кольца размещаются в холодной и охлаждаемой полости. Поэтому, условия работы уплотнений в двигателе Стирлинга гораздо легче, чем в ДВС. Тут, правда, есть не совсем еще понятная мне проблема теплоотвода от "горячего" поршня, о которой я нигде ничего не читал. Но во всяком случае, известно, что уплотнения для Стирлингов делали из фторопласта и такие уплотнения показывали хороший ресурс. Также могут работать обычные уплотнения, с чугунными поршневыми кольцами и смазкой маслом.

Смазка создает непреодолимые трудности? Нет. Нужен только подбор масла. Фирмой Phillips были выпущенными мелкими сериями двигатели серии 102C, имевшие масляную смазку. Поскольку масло с воздухом могут образовывать взрывоопасные смеси, это все же налагает определенные ограничения на давление, достигаемое внутри машины - насколько я знаю, его боятся поднимать более 6 атмосфер. В истории фирмы Филлипс был случай, когда большой двигатель Стирлинга на воздухе взорвался и убил человека. Впрочем, если внутри будет не воздух, а газ, не поддерживающий горение, например, азот, то масло вроде бы не должно взорваться (это лучше уточнить у химиков). Предпринимаются попытки использовать разные другие материалы для уплотнений поршней - фторопласт, материалы под названием "Рулон", "Витон", графит, композиции графита и стекла. При этом, картер делается сухим. Вроде бы, все это может работать достаточно долго, во всяком случае, пару тысяч часов. Также обсуждалась смазка водой и даже делалась машина с такой смазкой, но нет данных о результатах ее испытаний.

Эффективные двигатели были созданы только в XX веке? Нет. Еще братья Стирлинги создали двигатель мощностью 42 л.с. и КПД порядка 18%, работавший в кузнице (можно предположить, что каждый день по многу часов) около 3 лет. В то время не было никаких хороших сталей, никакой термодинамической науки, только опыт и интуиция. В конце XIX века серийно выпускались двигатели малой мощности (до 1 л.с.), которые не отличались высоким КПД, зато очень тихо работали, были весьма надежны, долговечны, нетребовательны к топливу и просты в обслуживании, что позволяло им держать определенную нишу на рынке вплоть до второй мировой войны.

Чего нет в книге Уолкера

Книга Уолкера была написана достаточно давно, с тех пор тема развивалась. Вот - краткий обзор того, что было достигнуто.

Двигатели с приводом Рингбома

Как известно, в двигателе Стирлинга - не менее двух подвижных поршней (либо один поршень и один вытеснитель). Это дает достаточно сложный механизм привода. Двигатели с приводом Рингбома - это двигатели (гамма или бета-типов), в которых вытеснитель приводится в действие с помощью пневмопривода. При этом, сам пневмопривод работает от перепада давления в газовом тракте машины. См. патент США №856102 Была разработана теория таких машин, которая позволила создавать хотя бы работающие прототипы. Зачастую эти прототипы делались путем переделки одноцилиндровых ДВС. Родной поршень ДВС используется как ползун, к нему добавляется шток и второй поршень, который уже является рабочим поршнем двигателя Стирлинга. А привод вытеснителя пневматический, поэтому никаких изменений в конструкцию ДВС больше не нужно. Прототипы такого рода были построены. Однако до практического внедрения, насколько я знаю, дело не дошло. Вся эта история описана в книге James R.Senft "Ringbom Stirling Engines", которую можно купить где-то в Америке. Я покупал ее с помощью пластиковой карты, кажется, она называетcя Visa Electron, и книжку мне доставляли по почте. Все это работает, так что рекомендую.

С моей точки зрения, двигатели с приводом Рингбома не настолько просты, как кажется. Их преимуществом я вижу более подходящий, чем чистые синусоиды, закон движения поршней. Особенно это важно в случае низкого перепада температур. Другое преимущество - это простота кинематического механизма, впрочем, она отчасти компенсируется дополнительными деталями, необходимыми для привода вытеснителя. Недостатком мне кажется то, что пневматически управляемый вытеснитель движется с большим ускорением - его на каждом такте выстреливает, как пробку из бутылки. Впрочем, ударные нагрузки гасятся пневматическими амортизаторами и скорее тут стоит безпокоиться не о прочности, а об уравновешивании и вибрациях. Поскольку закон движения вытеснителя, управляемого пневматически, заранее неизвестен и зависит от конкретных условий в каждый момент (от температуры нагревателя, числа оборотов, нагрузки), то нельзя предусмотреть даже никаких дополнительных балансирующих приспособлений. То есть, можно быть уверенными, что двигатель с приводом Рингбома вовсе не поддается балансировке.

Ну и вообще, тема двигателей с приводом Рингбома - это тема для изследований. При ориентации на практический результат нужно следовать уже опробованным образцам. Поэтому меня эта тема интересует не слишком сильно.

Единственное, что еще хочу отметить, что двигатели Рингбома в чем-то родственны свободно-поршневым двигателям, но они гораздо проще в плане реализации. Оказывается, свободно-поршневые двигатели исключительно сложны из-за того, что закон их движения допускает слишком много степеней свободы. Заставить их при этом работать стабильно, с учетом изменчивости нагрева, нагрузки и деградации уплотнений - задача сверхсложная. Двигатели Рингбома лишены этого недостатка - поршень у них движется за счет механизма, а пневмопривод вытеснителя в определенном режиме работает устойчиво.

Низкотемпературные двигатели

Это - двигатели, работающие на разнице температур от нескольких градусов. Такие двигатели делаются исключительно гамма-типа, у них - плоский вытеснительный цилиндр, вытеснитель с очень коротким ходом, а объем рабочего цилиндра во много раз меньше объема вытеснительного. Они обладают очень маленькой мощностью. Например, машина с вытеснительным цилиндром диаметром в 25см, с приводом Рингбома, при разнице температур в 90 градусов выдавала всего 1 ватт. Много интересных моделей такого рода придумано и реализовано Хубертом Стерховым (Hubert Stierhof), например http://www.geocities.com/hustierhof/MC_SOLAR.html

В основном, они изучаются для использования солнечной энергии. Тут нужно сделать важное замечание, что любой двигатель Стирлинга можно до определенной степени улучшить, увеличивая давление газа. Если бы этот же двигатель можно было накачать газом на 100 атмосфер, то он выдал бы уже 100 ватт. Напрямую это сделать невозможно, так как прочность материалов ограничена, а также ограничена теплопроводность поверхностей подвода и отвода тепла. Однако, это указывает некоторую перспективу для создания низкотемпературных двигателей значительной мощности. Если чуть-чуть пофантазировать на эту тему, то можно представить себе низкотемпературный двигатель сделанный с вогнутым или выпуклым дном, например, на основе баллонов от сжиженного газа. Например, 5-литровый пропановый баллон имеет диаметр порядка 25 сантиметров и его можно накачать до 10-15 атмосфер. То есть, можно себе представить, что из него получится двигатель примерно на 10 ватт при перепаде температур в 90 градусов.

Двигатели с одной движущейся деталью

Такие машины тоже были придуманы. У них есть настоящий рабочий поршень, но вытеснитель в них - "виртуальный". Во-первых, это машина "замедленного нагрева" или Thermal lag engine. В чем ее смысл? Рабочий поршень и стенки рабочего цилиндра - холодные, но из цилиндра имеется переход в горячую камеру - нагреватель. Сначала происходит сжатие воздуха рабочим поршнем, и он вытесняется в горячую камеру. Пока поршень находится в верхней мертвой точке, газ успевает нагреться и его давление увеличивается. Тогда происходит рабочий ход - газ расширяется и толкает поршень. При этом он выходит в рабочий цилиндр и охлаждается. Это охлаждение происходит за то время, когда поршень находится в нижней мертвой точке. Картинку рисовать не буду и даже не просите, но есть патент США Тайлера за номером 5414997, где все написано и нарисовано, правда, по английски. Более того, в патент включено чуть ли не полное описание, как сделать машину, со всеми основными размерами, и показатели ее производительности.

Эта машина просто подкупает своей простотой. Самое приятное - то, что нет никаких особых требований к точному изготовлению горячих частей. А эти горячие части зачастую делаются из нержавейки, должны сочетать в себе точную форму, устойчивость к коррозии, высокую теплопроводность в одних местах и низкую в других, имеют сложную форму и должны держать давление. Уфф, сколько требований.

Но... на самом деле ее рабочий процесс происходит не совсем так, как хотелось бы. Нагрев и охлаждение газа происходят более интенсивно в тот момент, когда газ движется. То есть, следует ожидать, что газ начнет нагреваться уже во время фазы сжатия, а охлаждаться он начнет уже во время фазы расширения. Также, при отсутствии регенератора происходит постоянный контакт нагретого и охлажденного газа между собой, а это ведет к большим термодинамическим потерям.

Я не думаю, что от этой машины можно ожидать сколько-нибудь существенного КПД. Видимо, автор патента столкнулся с этой проблемой на практике, поэтому в патенте нарисована не только самая простая схема, но и более сложные. Работающую машину такого рода с регенератором люди тоже сделали. http://www.stirlingengines.org.uk/thermo/lamina.html Насколько я могу себе представить, там подобный процесс "замедленного нагрева" и "замедленного охлаждения" происходит не только в нагревателе и холодильнике, но и в каждой точке регенератора. Поскольку при этом температурные градиенты между газом и стенкой меньше, то и КПД такой машины должен быть больше (именно эти градиенты ведут к потерям КПД). Может быть, она может быть вообще серьезной машиной, но это нужно пробовать.

Если кто-то когда-то захочет такую машину построить, то пишите - обсудим, что можно сделать. У меня есть еще кое-какие (довольно сырые) идеи на тему того, как сделать машину подобного рода, но обезпечить сдвиг фаз другим образом. Например, используя двухцилиндровый мотоциклетный двигатель с малым фазовым углом между цилиндрами. Основная идея - что в районе верхней мертвой точки газ (уже сжатый) резко прокачивается через нагреватель, имеющий большое гидравлическое сопротивление. Этот процесс чем-то подобен процессу сгорания в ДВС, но сгорание тут внешнее. А вот как охлаждать газ в такой машине - я так до сих пор и не придумал.

Следующая машина с одной движущейся деталью - это термоакустическая машина. Она, по своей сути устроена почти так же, как и машина замедленного нагрева с регенератором, но там колебания поршня происходят со звуковой частотой, и в игру вступает фазовый сдвиг между давлением и перемещением в звуковой волне. В качестве поршня в такой машине можно использовать просто микрофон соответствующей мощности, резонансная частота которого совпадает с частотой звуковых колебаний в цилиндре.

Примеры двигателей, которые могут послужить прототипами

Источники информации здесь:

1. The Phillips Stirling Engine, C.M.Hargreaves, Elseiver, 1991

Пара слов о масштабировании

Вопросы конструирования

Гильза горячего цилиндра - нужна ли она

Альфа, бэта или гамма?

Так ли вредно вредное пространство?

Некоторые закономерности, взаимосвязи и компромиссы

Материалы нагревателя

Нагреватель - где же узкое место?

Усилитель нагревателя

Регенераторы

Уплотнение поршня, смазка, взрывоопасность

Варианты привода

Картер под давлением, без давления, или вообще без картера

Нужна ли горячая шапка на поршень и цилиндр?

Моя программа расчёта

ссылка

Ущербность метода Шмидта, адиабатной модели и расчёта по числу Била

Метод Шмидта полностью игнорирует все вопросы теплообмена. То же делает и адиабатная модель. Хотя от адиабатной модели есть минимальная польза - она хотя бы позволяет оценить один вид потерь. Расчёт по числу Била говорит о том, что можно ожидать от хорошо сделанной машины, но не даёт никаких указаний на то, как же сделать такую машину.

Сильные стороны программы Simple

Программа simple др.Уриели содержит существенные элементы расчёта теплообменников. Особенно хорошо обстоит дело с расчётом сетчатого регенератора - в неё заведены аппроксимации экспериментальных данных по продувке сеток. Так же очень важно, что посчитаны потери на трение газа в теплообменниках.

Слабые стороны программы Simple

Расчёт нагревателя и холодильника вряд ли удовлетворителен - используется метод аналогии Рейнольдса, который пригоден для развитого турбулентного течения. Числа Рейнольдса в нагревателях могут быть довольно низкими, особенно для машин низкого давления, и соответствовать переходному или ламинарному режиму

Не учитывается такой важный вид потерь, как челночные потери. Величина челночных потерь велика и они могут существенно снизить КПД

Цикл Стирлинга считается непременной принадлежностью именно двигателя Стирлинга. В то же время, детальное изучение принципов работы множества созданных на сегодняшний день конструкций, показывает, что значительная часть из них имеет рабочий цикл, отличный от цикла Стирлинга. Например, альфа-стирлинг с поршнями разного диаметра имеет цикл, более похожий на цикл Эрикссона. Бета- и гамма-конфигурации, имеющие достаточно большой диаметр штока у поршня-вытеснителя, также занимают некое промежуточное положение между циклами Стирлинга и Эрикссона.

При движении вытеснителя в бета-конфигурации изменение состояния рабочего тела происходит не по изохоре, а по наклонной линии, промежуточной между изохорой и изобарой. При некотором отношении диаметра штока к общему диаметру вытеснителя можно получить изобару (это отношение зависит от рабочих температур). В этом случае поршень, который ранее был рабочим, играет лишь вспомогательную роль, а настоящим рабочим становится шток вытеснителя. Удельная мощность такого двигателя оказывается примерно в 2 раза большей, чем в привычных стирлингах, ниже потери на трение, т. к. давление на поршень более равномерно. Схожая картина в альфа-стирлингах с разным диаметром поршней. Двигатель с промежуточной диаграммой может иметь нагрузку, равномерно распределённую между поршнями, т. е. между рабочим поршнем и штоком вытеснителя.

Важным преимуществом работы двигателя по циклу Эрикссона или близкому к нему является то, что изохора заменена на изобару или близкий к ней процесс. При расширении рабочего тела по изобаре не происходит никаких изменений давления, никакого теплообмена, кроме передачи тепла от рекуператора рабочему телу. И этот нагрев тут же совершает полезную работу При изобарном сжатии происходит отдача тепла рекуператору.
В цикле Стирлинга при нагреве или охлаждении рабочего тела по изохоре происходят потери тепла, связанные с изотермическими процессами в нагревателе и охладителе.

Конфигурация

Инженеры подразделяют двигатели Стирлинга на три различных типа:

  • Альфа-Стирлинг - содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень - горячий, другой - холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, в то время как цилиндр с холодным поршнем находится в более холодном теплообменнике. У данного типа двигателя отношение мощности к объёму достаточно велико, но, к сожалению, высокая температура «горячего» поршня создаёт определённые технические проблемы.

Регенератор находится между горячей частью соединительной трубки и холодной.

  • Бета-Стирлинг - цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.
  • Гамма-Стирлинг - тоже есть поршень и «вытеснитель», но при этом два цилиндра - один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.

Также существуют разновидности двигателя Стирлинга не попадающие под вышеуказанные три классических типа:

  • Роторный двигатель Стирлинга - решены проблемы герметичности (патент Мухина на герметичный ввод вращения (ГВВ), серебряная медаль на международной выставке в Брюсселе «Эврика-96») и громоздкости (нет кривошипно-шатунного механизма, т.к. двигатель роторный) .

Недостатки

  • Материалоёмкость - основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.
  • Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела - водород, гелий.
  • Тепло не подводится к рабочему телу непосредственно , а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплобменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.
  • Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. В последнем случае реакция двигателя на управляющее действие водителя является практически мгновенной.

Преимущества

Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.

  • «Всеядность» двигателя - как все двигатели внешнего сгорания (вернее - внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями воды в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.
  • Простота конструкции - конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.
  • Увеличенный ресурс - простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.
  • Экономичность - в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.
  • Бесшумность двигателя - стирлинг не имеет выхлопа, а значит - не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).
  • Экологичность - сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.

Применение

Двигатель Стирлинга с линейным генератором переменного тока

Двигатель Стирлинга применим в случаях, когда необходим компактный преобразователь тепловой энергии, простой по устройству, либо когда эффективность других тепловых двигателей оказывается ниже: например, если разницы температур недостаточно для работы паровой или газовой турбины.

Термоакустика – раздел физики о взаимном преобразовании тепловой и акустической энергии. Он образовался на стыке термодинамики и акустики. Отсюда такое название. Наука эта очень молодая. Как самостоятельная дисциплина она возникла в конце 70-х годов прошлого века, когда швейцарец Никалаус Ротт закончил работу над математическими основами линейной термоакустики. И всё же она возникла не на пустом месте. Её возникновению предществовали открытия интересных эффектов, которые мы просто обязаны рассмотреть.

С ЧЕГО ЭТО НАЧИНАЛОСЬ
Термоакустика имеет длинную историю, которая берёт своё начало более двух веков назад.

Первые официальные записи о колебаниях, порождаемых теплом, сделаны Хиггинсом в 1777 г. Он экспериментировал с открытой стеклянной трубкой, в которой акустические колебания возбуждались с помощью водородной горелки, расположенной определённым образом. Этот опыт вошёл в историю, как «поющее пламя Хиггинса».

Рисунок 1. Поющее пламя Хиггинса

Однако, современным физикам более известен другой эксперимент, получивший название «трубка Рийке». В процессе своих опытов Рийке создал новый музыкальный инструмент из органной трубки. Он заменил водородное пламя Хиггинса на подогреваемый проволочный экран и экспериментально показал, что самый сильный звук рождается в том случае, когда экран расположен на расстоянии четверти трубки от её нижнего конца. Колебания прекращались, если накрыть верхний конец трубки. Это доказывало, что для получения звука необходима продольная конвективная тяга. Работы Хиггинса и Рийке позже послужили основой для зарождения науки о горении, которая сегодня применяется везде, где используется это явление от

Рисунок 2. Трубка Рийке.

горения пороховых шашек до ракетных двигателей. Явлениям, протекающим в трубке Рийке посвящены тысячи диссертаций во всём мире, но интерес к этому устройству не ослабевает до сих пор.

В 1850 г. Сондхаусс обратился к странному явлению, которое наблюдают в своей работе стеклодувы. Когда шарообразное утолщение из горячего стекла гонит воздух в холодный конец трубки стеклодува, генерируется чистый звук. Анализируя явление, Сондхаусс обнаружил, что звук генерируется, если нагревать шарообразное утолщение на конце трубки. При этом звук изменяется с изменением длины трубки. В отличие от трубки Рийке трубка Сондхаусса не зависела от конвективной тяги.

Рисунок 3. Трубка Сондхаусса.

Похожий эксперимент позже осуществил Таконис. В отличие от Сондхаусса он не подогревал конец трубки, а охлаждал его криогенной жидкостью. Это доказывало, что для генерации звука важен не подогрев, а перепад температур.
Первый качественный анализ колебаний, вызванных теплом, был дан в 1887 г. Лордом Рэлеем. Сформулированное Рэлеем объяснение перечисленных выше явлений сегодня известно термоакустикам как принцип Рэлея. Он звучит примерно так: «Если газу передать тепло в момент наибольшего сжатия или отобрать тепло в момент наибольшего разряжения, то это стимулирует колебания. » Несмотря на свою простоту, эта формулировка полностью описывает прямой термоакустический эффект, то есть преобразование тепловой энергии в энергию звука.

Вихревой эффект

Вихревой эффект (эффект Ранка-Хилша, англ. Ranque-Hilsch Effect ) - эффект разделения газа или жидкости при закручивании в цилиндрической или конической камере на две фракции. На периферии образуется закрученный поток с большей температурой, а в центре - закрученный охлажденный поток, причем вращение в центре происходит в другую сторону, чем на периферии. Впервые эффект открыт французским инженером Жозефом Ранком в конце 20-х годов при измерении температуры в промышленном циклоне. В конце 1931 г Ж.Ранк подает заявку на изобретенное устройство, названное им «Вихревой трубой» (в литературе встречается как труба Ранке). Получить патент удается только в 1934 году в Америке (Патент США № 1952281). В настоящее время реализован ряд аппаратов, в которых используется вихревой эффект, вихревых аппаратов. Это «вихревые камеры» для химического разделения веществ под действием центробежных сил и «вихревые трубы», используемые как источник холода.

С 1960-х годов вихревое движение является темой множества научных исследований. Регулярно проводятся специализированные конференции по вихревому эффекту, например, в Самарском аэрокосмическом университете.

Существуют и применяются вихревые теплогенераторы и микрокондиционеры.

В этом мире есть вещи гениальные, непостижимые и совершенно нереальные. Настолько нереальные, что кажутся артефактами из некой параллельной Вселенной. К числу таких артефактов наряду с двигателем Стирлинга, вакуумной радиолампой и чёрным квадратом Малевича в полной мере относится т.н. "турбина Тесла".
Вообще говоря отличительная черта всех подобных вещей - абсолютная простота. Не упрощённость, а именно простота. То есть как в творениях Микеланджело - отсутствует всё лишнее, какие-то технические или смысловые "подпорки", чистое сознание, воплощённое "в железе" или выплеснутое на холст. И при всём при этом абсолютная нетиражность. Чёрный Квадрат - это своего рода "орт" искусства. Второго такого написанного другим художником быть не может.

Всё это в полной мере относится и к турбине Тесла. Конструктивно она представляет собой несколько (10-15) тонких дисков, укреплённых на оси турбины на небольшом расстоянии друг от друга и помещённые в кожух, напоминающий милицейский свисток.

Не стоит и объяснять, что дисковый ротор намного более технологичен и надёжен, чем даже "колесо Лаваля", я уж молчу о роторах обычных турбин. Это первое достоинство системы. Второе состоит в том, что в отличие от других типов турбин, где для ламинаризации течения рабочего тела необходимо принимать специальные меры. В турбине Тесла рабочее тело (которым может быть воздух, пар или даже жидкость) течёт строго ламинарно. Поэтому потери на газодинамическое трение в ней сведены к нулю: КПД турбины составляет 95%.

Правда следует иметь в виду, что КПД турбины и КПД термодинамического цикла - несколько разные вещи. КПД турбины можно охарактеризовать, как отношение энергии, преобразуемой в механическую энергию на валу ротора турбины к энергии рабочего цикла (то есть разнице начальной и конечной энергий рабочего тела). Так КПД современных паровых турбин так же весьма высок - 95-98%, однако КПД термодинамического цикла в силу ряда ограничений не превышает 40-50%.

Принцип действия турбины основан на том, что рабочее тело (допустим - газ), закручиваясь в кожухе, за счёт трения "увлекает" за собой ротор. При этом отдавая часть энергии ротору, газ замедляется, и благодаря возникающей при взаимодействии с ротором кориолисовой силе, подобно чаинкам в чае "скатывается" к оси ротора, где имеются специальные отверстия, через которые осуществляется отвод "отработанного" рабочего тела.
Турбина Тесла, как и турбина Лаваля преобразует кинетическую энергию рабочего тела. То есть превращение потенциальной энергии (например сжатого воздуха или перегретого пара) в кинетическую необходимо произвести до подачи на ротор турбины с помощью сопла. Однако турбина Лаваля, имея в целом достаточно высокий КПД, оказывалась крайне неэффективной на низких оборотах, что заставляло конструировать редукторы, размеры и масса которых многократно превышали размеры и массы самой турбины. Фундаментальным отличием турбины Тесла является тот факт, что она вполне эффективно работает в широком диапазоне частот вращения, что позволяет соединять её вал с генератором непосредственно. Кроме того, турбина Тесла легко поддаётся реверсированию.

Интересно, что сам Никола Тесла позиционировал своё изобретение, как способ высокоэффективного использования геотермальной энергии, которую он считал энергией будущего. Кроме того турбина без каких-либо переделок может превратиться в высокоэффективный вакуумный насос - достаточно раскрутить её вал от другой турбины или электродвигателя.

Технологичность турбины Тесла позволяет изготавливать её варианты буквально из чего угодно: дисковый ротор можно сделать из старых компакт-дисков или "блинов" от вышедшего из строя компьютерного "винчестера". При этом мощность такого двигателя не смотря на "игрушечные" материалы и габариты получается весьма внушительной. Кстати о габаритах: двигатель мощностью 110 л.с. был не больше системного блока нынешнего персонального компьютера.

Устройства на эффекте Ранка

Эффект Ранка с самого начала привлекал изобретателей кажущейся простотой технической реализации - в самом деле, простейшая реализация вихревой трубы представляет собой кусок трубы самый обычной, куда с одной стороны внутрь тангенциально подаётся исходный поток, а на противополжном торце установлена кольцевая диафрагма, и из её внутреннего отверстия выходит охлаждённая часть потока, а из щели между внешним краем диафрагмы и внутренней поверхностью трубы - его горячая часть. Однако на самом деле не всё так просто - добиться эффективного разделения удаётся далеко не всегда, да и КПД таких установок обычно заметно уступает широко распространённым компрессорным тепловым насосам. Кроме того, обычно параметры установки на эффекте Ранка рассчитаны для конкретной мощности, определяемой скоростью и расходом вещества исходного потока, и когда параметры входного потока отклоняются от оптимальных значений, КПД вихревой трубы существенно ухудшается. Тем не менее следует заметить, что возможности некоторых установок на эффекте Ранка внушают уважение - например, рекордное охлаждение, которого удалось достигнуть на одной ступени, составляет более 200°С!

Впрочем, с учётом нашего климата, гораздо больший интерес представляет использование эффекта Ранка для обогрева, да при этом ещё хотелось бы и не выходить за рамки «подручных средств».

Суть эффекта Ранка

При движении потока газа или жидкости по плавно поворачивающей поверхности трубы у её внешней стенки образуется область повышенного давления и температуры, а у внутренней (либо в центре полости, если газ закручен по поверхности цилиндрического сосуда) - область пониженной температуры и давления. Это достаточно хорошо известное явление называется эффектом Ранка по имени открывшего его в 1931 г. французского инженера Жозефа Ранка (G.J.Ranque, иногда пишут «Ранке»), или эффектом Ранка-Хилша (немец Robert Hilsh продолжил исследование этого эффекта во второй половине 1940-х годов и улучшил эффективность вихревой трубы Ранка). Конструкции, использующие эффект Ранка, представляют собой разновидность теплового насоса, энергия для функционирования которого берётся от нагнетателя, создающего поток рабочего тела на входе трубы.

Парадоксальность эффекта Ранка заключается в том, что центробежные силы во вращающемся потоке направлены наружу. Как известно, более тёплые слои газа или жидкости имеют меньшую плотность и должны подниматься вверх, а в случае цетробежных сил - стремиться к центру, более холодные имеют большую плотность и, соответственно, должны стремиться к периферии. Между тем при большой скорости вращающегося потока всё происходит с точностью до наоборот!

Эффект Ранка проявляется как для потока газа, так и для потока жидкости, которая, как известно, является практически несжимаемой и потому фактор адиабатического сжатия / расширения к ней неприменим. Тем не менее, в случае жидкости эффект Ранка обычно выражен значительно слабее - возможно, именно по этой причине, да и очень малая длина свободного пробега частиц затрудняет его проявление. Но это верно, если оставаться в рамках традиционной молекулярно-кинетической теории, а у эффекта могут быть и совсем другие причины.

На мой взгляд, на данный момент наиболее полное и достоверное научное описание эффекта Ранка представлено в статье А.Ф.Гуцола (в формате pdf). Как ни удивительно, в своей основе его выводы о сути явления совпадают с полученными нами «на пальцах». К сожалению, он оставляет без внимания первый фактор (адиабатическое сжатие газа у внешнего радиуса и расширение у внутреннего), который, на мой взгляд, весьма существенен при использовании сжимаемых газов, правда, действует он только внутри устройства. А второй фактор А.Ф.Гуцол называет «разделением быстрых и медленных микрообъёмов».

Сегодня о двигателе Стирлинга.
(много интересного видео)
Часть 1.
Для очень многих это неизвестно что такое, поэтому будет много теории.
Еще это чудесное изобретение называют двигателем внешнего сгорания.
Рабочий поршень заполнен воздухом или газом, а снаружи на него воздействует тепло.
Так что для такого двигателя бензин не нужен, он может работать на всем что выделяет тепло, солнце, дрова, уголь, газ, нефть, ядерное топливо. На всем где можно получить разницу температур, есть модели которые работают даже от тепла руки.


Работа двигателя от тепла чашки:

Достаточно сказать что холодильники, тепловые насосы и кондиционеры по сути тоже являются двигателями Стирлинга, только работающими в обратном направлении.

Промышленные солнечные установки где солнечный свет концентрируется на рабочем теле двигателя создавая огромный перепад температуры.
Мощность таких установок достигает 50-70 кВт.







КПД таких двигателей может быть от 5 на обычные модельки до 70% на промышленные варианты работающие под давлением 300 атмосфер, это на 50-70% выше двигателей внутреннего сгорания. Достаточно сказать что на космических аппаратах и новейших подводных лодках используются именно двигатели Стирлинга.

Это двигатель разработаный NASA для работы в космосе, мощность 2500 кВт.
рабочее тело в водороде под давлением 300 атмосфер.

Тогда возникает вопрос, почему же это чудо изобретение не стоит в каждом доме и дворе,
когда достаточно положить рабочее тело в обычный костер и наслаждаться наличием электричества? Ответ думаю очевиден, пока есть нефть и те кто ней владеет в обычном пользовании мы это не увидим.
Для контроля за запасами нефти развязываются войны и стираются целые государства.
Думаю что никого не удивляет что США несет демократию только в те страны где есть нефтедобыча, Сирия, Кувейт, Ирак, Ливия, Иран, Судан, Пакистан и тд.
И почему то нет никакого интересна к другим диктаторским режимам.

Это была лирика.
Промышленно изготовленный двигатель Стирлинга для бытовых целей продается, но цена его абсолютно не разумная в районе 20-25 тыс. долл. При мощности 5-7 кВт.
Желающих наверное не очень много.

Только совсем недавно немецкая фирма производящая бытовые котлы отопления, получила лицензию на установку в свои изделия двигателей с линейным генератором тока.
При тепловой мощности 16-20 кВт. (это примерно обогрев дома площадью 120-150 метров)
все излишнее тепло не выходит в трубу а преобразуется в электричество примерно 2 кВт.
Размер такой преобразователь имеет как термос на 3 литра.
Сложно сказать сколько будут стоить такие котлы, но заимев такой преобразователь,
вопрос электроснабжения был бы решен. Положил рабочее тело в костер или топку и все!
Можно себе представить как бы перевернулась энергозависимость, если бы в каждой котельной которая подает тепло на обогрев целых районов стояли в топках огромные Стирлинги высокого давления. Возможно на весь отопительный сезон можно было не зависеть от электростанций.
А собственно кто тогда будет приносить мега прибыль генерирующим компаниям?

В продаже можно встретить красивые, работающие модели Стирлинга,
но и модели стоят очень дорого, вот например та которая на фото стоит 32000 рублей.


Видео их работы:

Фото самодельных моделей



Видео работы самодельных двигателей:

Работают даже от солнца:

Более продвинутый и мощный аппарат с водяным охлаждением:

Интересное видео работы школьной модели:

Промышлеными образцами нас не балуют.
Но никто не может запретить изготовить такой двигатель самостоятельно, хоть он и будет намного менее надежным и производительным чем промышленный образец, но он будет всеядным, а это как раз то что нам нужно.
Для тех кто пробурился и нашел у себя в огороде нефть, это тема не для вас,
ищите схемы перегонных кубов.)))

История.
Двигатель Стирлинга был впервые запатентован шотландским священником Робертом Стирлингом 27 сентября 1816 года. Основной принцип работы двигателя Стирлинга заключается в постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре.
Стоит сказать что первый промышленный Стирлинг проработал на механическом заводе приводя в действие механический молот 80 лет.
В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году фирма «Филипс» инвестировала в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 %. Двигатель Стирлинга имеет много преимуществ и был широко распространён в эпоху паровых машин.
В основном есть три разновидности двигателя стирлинга.

Альфа-Стирлинг - содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень - горячий, другой - холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, в то время как цилиндр с холодным поршнем находится в более холодном теплообменнике. У данного типа двигателя отношение мощности к объёму достаточно велико, но, к сожалению, высокая температура «горячего» поршня создаёт определённые технические проблемы.

Регенератор находится между горячей частью соединительной трубки и холодной.

Бета-Стирлинг - цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.

Гамма-Стирлинг - тоже есть поршень и «вытеснитель», но при этом два цилиндра - один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.

Недостатки Стирлинга:
Материалоёмкость - основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.
Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела - водород, гелий.
(тут да, подводную лодку или космический корабль нам раскурочить не дадут)
Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплобменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.
Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. (инерция, а нам как раз это и нужно для генератора.)

Преимущества:
Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.
КПД двигателя Стирлинга может достигать 65-70% КПД от цикла Карно при современном уровне проектирования и технологии изготовления. Кроме того крутящий момент двигателя почти не зависит от скорости вращения коленвала. В двигателях внутреннего сгорания напротив максимальный крутящий момент достигается в узком диапазоне частот вращения.
«Всеядность» двигателя - как все двигатели внешнего сгорания (вернее - внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями воды в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.
Двигатель не будет «капризничать» из-за потери искры, засорившегося карбюратора или низкого заряда аккумулятора, поскольку не имеет этих агрегатов. Понятие «двигатель заглох» не имеет смысла для Стирлингов. Стирлинг может остановиться, если нагрузка превышает расчетную. Повторно запуск осуществляется однократным проворотом маховика коленчатого вала.
Простота конструкции - конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.
Увеличенный ресурс - простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.
Экономичность - в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.
Сгорание топлива происходит вне внутреннего объема двигателя (в отличии от ДВС), что позволяет обеспечить равномерное горение топлива и полное его дожигание (т.е. отбор максимума содержащейся в топливе энергии и минимизация выброса токсичных компонентов).
В конструкции двигателя отсутствует система высоковольтного зажигания, клапанная система и, соответственно, распредвал. Грамотно спроектированный и технологично изготовленный двигатель Стирлинга не требует регулировки и настройки в процессе всего срока эксплуатации.
Бесшумность двигателя - стирлинг не имеет выхлопа, а значит - не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).
Экологичность - сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.

Подводные лодки
Преимущества «стирлинга» привели к тому, что ещё в первой половине 1960-х годов военно-морские справочники указывали на возможность установки на подводных лодках типа «Шёурмен» производства Швеции воздухонезависимых двигателей Стирлинга. Однако ни «Шёурмены», ни последовавшие за ними «Наккены» и «Вестеръётланды» указанные силовые установки так и не получили. И только в 1988 году головная субмарина типа «Наккен» была переоборудована под двигатели Стирлинга. С ними она прошла под водой более 10 000 часов. Другими словами, именно шведы открыли в подводном кораблестроении эру вспомогательных анаэробных двигательных установок. И если «Наккен» - первый опытный корабль этого подкласса, то субмарины типа «Готланд» стали первыми серийными лодками с двигателями Стирлинга, которые позволяют им находиться под водой непрерывно до 20 суток. В настоящее время все подводные лодки ВМС Швеции оснащены двигателями Стирлинга, а шведские кораблестроители уже хорошо отработали технологию оснащения этими двигателями подводных лодок, путём врезания дополнительного отсека, в котором и размещается новая двигательная установка. Подобные двигатели установлены также в новейших японских подводных лодках

Одной из нетрадиционных областей применения двигателя Стирлинга есть медицина. Его применяют в системах искусственного сердца. Источником энергии в таких системах, как правило, есть радиоизотопы.

Пример применения двигателя для охлаждения процессора

Для нас плюсы всей этой технологии в том что грамотный человек сможет воспроизвести конструкцию из тех материалов которые будут под рукой, но для качественной и долговечной конструкции нужно подумать об этом заранее, уже сегодня.
Для каждого человек может такой двигатель быть источником энергии.
Если поселение больше 30-50 человек, то можно истопника придумать для круглосуточного
получения электричества. А электричество это ВСЕ.
Насосы, добыча воды, освещение, охрана периметра, работа электроинструмента, бытовые приборы, компьютер с собранными данными, в общем оплот цивилизации.
Инетесное видео от энтузиастов которые восстанавливают двигатели Стирлинга
успешно работавшие в начале прошлого века.

Что хочется сказать в заключении.
Вероятнее всего двигатель Стирлинга является панацеей в период БП для получения энергии,
как электрической так и механической.
Потому что не привязан к солнцу, которое светит днем, а электричество нужно ночью,
мало того когда света нужно больше всего зимой так на небе висят предательские тучи месяцами.
Не привязан к ветру, который дует когда хочет и как хочет, не знаю как у вас, у меня достаточный ветер дует 20 дней в году.
Не привязан к бензину и нефти, может в Тюмени и можно докопаться до нефти при желании,
у нас только если копать насквозь до залежей Венесуэлы.
Не привязан к напору и потоку воды, кому то и хорошо в предгорьях среди рек и ручьев, ближайшая от меня большая вода строго на север по горизонту 12 км или строго вниз 40 метров.

Стирлинг подарил нам свое уникальное изобретение которое можно и нужно реализовывать.
Удобство, надежность, всеядность как например обычная печка или топка.
Главное подбрасывать дрова в топку, или уголь, у кого как.

Спасибо за внимание, продолжение следует…