Для чего нужна система зажигания. Проверка состояния и исправности зажигания. Регуляторы опережения зажигания

Система зажигания предназначена для воспламенения топливовоздушной смеси в цилиндрах бензинового двигателя. Топливовоздушная смесь воспламеняется в камере сгорания двигателя посредством электрического разряда между , установленной в головке цилиндров. Для создания искры между электродами свечи зажигания применяют системы зажигания от магнето и батарейные системы зажигания, источниками высокого напряжения в которых являются индукционные катушки.

Рис. Схема батарейной системы зажигания

Система зажигания состоит из следующих основных элементов:

  • источник тока ИТ, функцию которого выполняет или генератор
  • выключатель ВК цепи электроснабжения (выключатель зажигания)
  • датчик Д углового положения коленчатого вала
  • регуляторы момента зажигания РМЗ, которые задают определенный момент подачи высокого напряжения на свечу в зависимости от частоты вращения коленчатого вала, разрежения Δрк во впускном трубопроводе и октанового числа бензина
  • источник высокого напряжения ИВН, содержащий промежуточный накопитель энергии НЭ и преобразователь низкого напряжения в высокое
  • силовое реле СР, в качестве которого могут служить механические контакты прерывателя или электронный ключ (транзистор или тири­стор)
  • распределитель Р импульсов высокого напряжения по свечам
  • помехоподавительные устройства ПП (экранирующие элементы системы зажигания или помехоподавительные резисторы)
  • свечи зажигания СВ, на которые подается высокое вторичное напряжение

В батарейной системе зажигания источником энергии является аккумуляторная батарея или генератор (в зависимости от режима работы двигателя). принципиально отличается от батарейной тем, что источник электроэнергии в ней - магнитоэлектрический генератор, конструктивно объединенный с индукционной катушкой. Система зажигания от магнето в настоящее время на автомобилях практически не применяется, однако находит применение на пусковых бензиновых двигателях тракторных дизелей.

Система зажигания обеспечивает генерацию импульсов высокого напряжения в нужный момент времени на тактах сжатия в цилиндрах двигателя и их распределение по цилиндрам в соответствии с порядком их работы. Момент зажигания характеризуется углом опережения зажигания УОЗ, который представляет собой угол поворота коленчатого вата от положения в момент подачи искры до положения, когда поршень проходит через верхнюю мертвую точку ВМТ.

Электрическая искра вызывает появление в ограниченном объеме топливовоздушной смеси первых активных центров, от которых на­чинается развитие химической реакции оксидирования топлива, со­провождающейся выделением теплоты. Процесс сгорания рабочей смеси разделяют на три фазы:

  • начальная, в которой формируется пламя, инициированное ис­кровым разрядом в свече
  • основная, в которой пламя распространяется на большую часть камеры сгорания
  • конечная, в которой пламя догорает у стенок цилиндра

Рис. Система зажигания с накоплением энергии:
а - в магнитном поле; б - в электрическом поле

Для бесперебойного искрообразования на свечу зажигания необходимо подать напряжение до 30 кВ.

Высокий уровень напряжения обеспечивает промежуточный источник энергии. По способу накопления энергии в промежуточном источнике различают системы с накоплением энергии в магнитном поле (в индуктивности) или в электрическом поле конденсатора (в емкости). В обоих случаях для получения импульса высокого напряжения используется катушка зажигания, представляющая собой трансформатор (или автотрансформатор), содержащий две обмотки: первичную L1 с малым числом витков и электросопротивле­нием в доли и единицы ома и вторичную обмотку L2 с большим числом витков и сопротивлением в единицы и десятки килоом.

Автотрансформаторная связь обмоток упрощает конструкцию и технологию изготовления катушки, а также несколько увеличивает вторичное напряжение. Коэффициент трансформации катушек зажигания находится в пределах 50-225.

В системах зажигания с накоплением энергии в катушках зажигания (в индуктивности) первичная обмотка L1 катушки подключается к источнику электроснабжения последовательно через механический или электронный прерыватель S2. В системах зажигания с накоплением энергии в электрическом поле конденсатора (в емкости) первичная обмотка катушки периодически подключается к конденсатору управляемым электронным переключателем S2. Конденсатор предварительно за­ряжается от источника электроснабжения на автомобиле через статический преобразователь напряжения.


Работа любого бензинового двигателя внутреннего сгорания была бы невозможна без специальной системы зажигания. Именно она отвечает за воспламенение смеси в цилиндрах в строго определенный момент. Различают несколько возможных вариантов:

  • контактная;
  • бесконтактная;
  • электронная.
Каждая из этих систем зажигания авто имеет свои особенности и конструкцию. Однако вместе с этим, большинство элементов разных вариантов одинаковы.

Одинаковы элементы разных систем зажигания автомобиля

Незаменимым и наиболее востребованным является наличие аккумуляторной батареи. Даже в отсутствие или при поломке генератора при помощи неё можно ещё некоторое время продолжать движение. Генератор также есть неотъемлемой частью, без которой нормальное функционирование любой из систем невозможно. Свечи зажигания, бронепровода, высоковольтная и управляющие элементы дополняют любую из упомянутых систем. Основное различие меду ними заключается в типе, управляющего моментом зажигания и отвечающего за искрообразование устройства.

Контактный прерыватель-распределитель зажигания

Это устройство инициирует возникновение искры высокого, до 30000 В, вольтажа на контактах свечей зажигания. Для этого он соединяется с высоковольтной катушкой, благодаря которой происходит образование высокого напряжения. Сигнал на катушку передается при помощи проводов от специальной контактной группы. При её размыкании кулачковым механизмом происходит образование искры. Момент её возникновения должен строго соответствовать требуемому положению поршней в цилиндрах. Это достигается благодаря четко рассчитанному механизму, передающему вращательное движение на прерыватель-распределитель. Одним из недостатков устройства является влияние механического износа на время возникновения искры и на её качество. Это влияет на качество работы двигателя, а значит может требовать частых вмешательств в регулировку его работы.


Бесконтактное зажигание

Этот тип устройств не зависит на прямую от размыкания контактов. Основную роль в моменте искрообразования здесь играет транзисторный коммутатор и особый датчик. Отсутствие зависимости от чистоты и качества поверхности контактной группы может гарантировать более качественное искрообразование. Однако этот тип зажигания тоже использует прерыватель-распределитель, который отвечает за передачу тока на нужную свечу в нужный момент.


Электронное зажигание

В этой системе воспламенения смеси полностью отсутствуют механические движущиеся части. Благодаря наличию специальных датчиков и особого блока управления, образование искры и момент её раздачи на цилиндры выполняются гораздо более точно и надежно, чем у вышеупомянутых систем. Это дает возможность улучшить работу двигателя, увеличить его мощность и снизить расход топлива. Кроме того, радует и высокая надежность устройств такого типа.


Основные этапы работы системы зажигания

Различают несколько основных этапов работы любых систем зажигания:

  1. накопление необходимого заряда;
  2. высоковольтное преобразование;
  3. распределение;
  4. искрообразование на свечах зажигания;
  5. возгорание смеси.
На любом из этих этапов слаженная и точная работа системы чрезвычайно важна, а значит свой выбор необходимо останавливать на надежных и проверенных устройствах. Лучшей по праву считается электронная система зажигания.

Видео про принцип работы системы зажигания:

Чтобы воспламенить топливовоздушную смесь, в нужный момент в цилиндр должна быть подана электрическая искра. Эту задачу выполняет электронная система зажигания.

Устройство электронной системы зажигания

В электронной системе зажигания инжектора используется принцип статического распределения высокого напряжения, то есть в системе отсутствуют подвижные детали. На инжекторных авто высокое напряжение с катушки зажигания подается в два цилиндра, поршни которых в данный момент движутся к верхней мертвой точке. В одном из цилиндров происходит такт сжатия смеси, во втором - такт выпуска.

Такой принцип распределения высокого напряжения называется "методом холостой искры" . На современных инжекторных двигателях устанавливают индивидуальные катушки зажигания на каждый из цилиндров.

Управление углом опережения зажигания
В электронных системах зажигания моментом искрообразования управляет контроллер. Определив значение оборотов коленвала в данный момент и нагрузку на двигатель, контроллер рассчитывает базовый угол опережения зажигания. Далее этот угол может быть скорректирован (например, уменьшен, если обнаружена детонация). Рассчитав окончательное значение угла опережения зажигания, контроллер выдает управляющий сигнал на модуль зажигания в момент, когда поршень, движущийся к ВМТ, займет требуемое положение.

Состав системы зажигания инжекторного двигателя

В электронной системе зажигания можно выделить следующие детали:
Модуль зажигания

Модуль зажигания включает в себя две катушки зажигания и два высоковольтных ключа-коммутатора.


Катушка зажигания служит для накопления энергии, достаточной для воспламенения топливовоздушной смеси, в ее вторичной цепи формируется высокое напряжение, которое далее подается на свечи зажигания. Катушка зажигания состоит из двух индуктивно связанных обмоток (первичной и вторичной).

Коммутатор служит для включения и выключения тока в первичной обмотке катушки зажигания. Контроллер рассчитывает необходимое время включенного состояния в зависимости от текущих оборотов коленвала и напряжения бортсети и подает на коммутатор управляющий сигнал. В течение времени включенного состояния (времени накопления) ток в первичной обмотке катушки зажигания возрастает до заданного оптимального значения, при котором величина запасаемой энергии достигает максимума. Если время накопления слишком велико, то катушка зажигания будет работать с насыщением, что приведет к ее перегреву и снижению КПД.

Высоковольтные провода зажигания
С помощью высоковольтных проводов высокое напряжение с катушки зажигания подается на свечи зажигания. Высоковольтный провод представляет собой токопроводящую жилу в силиконовой изоляции, на концах которой и находятся высоковольтные контактные наконечники. Высоковольтный провод обладает сопротивлением 6-15 кОм. Это делается специально для снижения уровня электромагнитных помех, которые возникают в момент искрообразования.
Свечи зажигания
Свеча зажигания: 1 - контакт; 2 - изолятор; 3 - корпус; 4 - электропроводное стекло; 5 - уплотнение; 6 - центральный электрод; 7 - боковой электрод

Свечи зажигания служат для воспламенения топливовоздушной смеси. При увеличении напряжения вторичной цепи до величины пробоя искровой промежуток между центральным и боковым электродами свечи зажигания становится токопроводящим, запасенная энергия катушки зажигания преобразуется в искру, воспламеняющую топливовоздушную смесь.

Величина напряжения пробоя искрового промежутка зависит от зазора между электродами, от геометрии электродов, от давления в камере сгорания и от коэффициента избытка воздуха смеси в момент воспламенения. С ростом давления в камере сгорания напряжение пробоя увеличивается.

Длина искрового промежутка влияет на качество сгорания топливовоздушной смеси. Чем больше искровой промежуток, тем увереннее происходит ее воспламенение. Но максимальное значение межэлектродного расстояния ограничивается максимально допустимым значением вторичного напряжения катушки зажигания, скоростью нарастания вторичного напряжения, которое, в свою очередь, определяется конструктивными особенностями катушки зажигания, высоковольтных проводов и свечей зажигания.

Датчик положения коленвала (ДПКВ)
Чтобы обеспечить оптимальное управление двигателем, контроллер системы управления должен всегда знать точное положение поршней в цилиндрах двигателя относительно ВМТ. Для этой цели шкив привода генератора дополнили зубчатым венцом. Расчетное количество зубьев на венце 60, при этом два из них отсутствуют. Угловое расстояние между зубьями составляет 6°.

В паре с зубчатым шкивом работает ДПКВ. Воздушный зазор между ДПКВ и зубчатым венцом составляет 0,7-1,1 мм.

С началом прокрутки двигателя контроллер анализирует сигнал ДПКВ, пытаясь выделить два пропущенных зуба на венце шкива (после пропущенных идет первый зуб). Как только это происходит, становится возможным расчет угла опережения зажигания, расчет фаз впрыска топлива и управление модулем зажигания и форсунками. Сигнал ДПКВ используется также для расчетов скорости вращения коленвала и его ускорения.

Система зажигания предназначена для поджигания топливовоздушной смеси в бензиновых и газовых двигателях внутреннего сгорания. Поджог осуществляется за счет электрического разряда между электродами свечи при подведении к ней напряжения в 18000 – 20000 Вольт.

Основные составные части системы зажигания (каждый из элементов описан подробно ниже):

  • выключатель зажигания;
  • катушка зажигания;
  • прерыватель-распределитель;
  • регуляторы опережения зажигания;
  • свечи зажигания;
  • провода, соединяющие данные элементы.

Система зажигания с распределителем

На рисунке 10.6 приведена типичная схема системы зажигания с распределителем.

Рисунок 10.6

Выключатель зажигания

Выключатель зажигания собран в сборе с замком зажигания. Основная функция данного выключателя - запитывание потребителей электрическим током от источников питания. Система зажигания в целом - это тоже потребитель электротока. Как видно из схемы ниже, через выключатель от источника питания запитывается первичная обмотка катушки зажигания.

Катушка зажигания

По сути, катушка зажигания - это трансформатор, который преобразует низкое напряжение от бортовых источников питания (12 В) в напряжение, достаточное для получения мощной искры между электродами свечи, необходимой для поджигания топливовоздушной смеси в цилиндре двигателя. Достаточное напряжение – это 20 – 30, а то и 60 тысяч вольт.

Для такого рода преобразования в корпусе катушки имеются две обмотки – первичная и вторичная, а также сердечник. Каждая обмотка имеет различное количество витков и сечение проводов.

Когда вы поворачиваете ключ и включаете зажигание от аккумуляторной батареи, электрический ток поступает на первичную обмотку и через контакты замыкается на «массу». При прохождении через первичную обмотку тока вокруг катушки создается электромагнитное поле. Как только контакты разомкнутся и течение тока через первичную катушку резко прекратится, во вторичной катушке возникнет необходимое напряжение и ток. И уже ток в 30 и более тысяч вольт от вторичной обмотки катушки зажигания потечет через распределитель к свече зажигания.

Прерыватель-распределитель

Прерыватель-распределитель (в простонародии - «трамблер») предназначен для того, чтобы прерывать и распределять: прерывать - ток, текущий через первичную обмотку катушки зажигания, распределять – ток от вторичной катушки зажигания между свечами зажигания в той последовательности, которая предусмотрена порядком работы двигателя. В центр крышки распределителя подсоединен высоковольтный провод от вторичной обмотки катушки зажигания, а по периметру крышки расположены выводы, которые через высоковольтные провода соединены со свечами зажигания.

Прерыватель может быть контактным и бесконтактным. В контактном прерывателе разрыв цепи первичной обмотки катушки зажигания происходит за счет контактов, что очень ненадежно.

Примечание
Причина ненадежности контактов в том, что исчезающее магнитное поле пересекает витки не только вторичной, но и первичной обмотки, вследствие чего в ней возникает ток самоиндукции и напряжение около 250-300 вольт. Это приводит к искрению и обгоранию контактов, кроме того, замедляется прерывание тока в первичной обмотке, что приводит к уменьшению напряжения во вторичной обмотке. Конечно, это решается установкой конденсатора (обычно емкостью в 0,25 мкф). Однако все-таки имеет место такое явление, как эрозия – постепенное разрушение поверхности контактов, вследствие которого контакты прилегают неплотно и понижается напряжение, возникающее во вторичной обмотке катушки зажигания.

Чтобы исключить механическую составляющую прерывателя, вместо контактов установили специальное устройство, называемое датчиком Холла. Никаких контактов, только управляющие импульсы, которые контролируют работу катушки зажигания.

Регуляторы опережения зажигания

Для того чтобы топливовоздушная смесь успела сгореть, пока поршень движется от верхней мертвой точки к нижней, ее необходимо поджигать немного раньше. Основным показателем момента зажигания является угол опережения зажигания, который говорит нам о том, за сколько градусов до ВМТ на такте сжатия возникнет пробой между электродами свечи.

В распределителях описанного выше типа изменение угла опережения зажигания осуществляется механическим путем - проворачиванием контактов относительно приводного вала в ту или иную сторону.

Свечи зажигания

Элемент, благодаря которому в цилиндре поджигается топливовоздушная смесь, называется свечой зажигания . Устройство этого элемента простейшее (смотрите рисунок 10.7): корпус с нарезанной резьбой и электродом (отрицательным, так как контактирует с «массой» - головкой блока цилиндров), изолятор, внутри которого проходит положительный электрод. К этому электроду с одной стороны через наконечник подсоединен высоковольтный провод системы зажигания. Положительный электрод расположен рядом с отрицательным электродом (воздушный зазор между ними составляет 0,8-1,2 мм - в зависимости от модели свечи). Когда от распределителя зажигания высоковольтный разряд по проводу подводится к положительному электроду, воздушный зазор пробивается, то есть возникает искра - довольно мощная, чтобы поджечь топливовоздушную смесь.


Рисунок 10.7

Микропроцессорная система зажигания

Как уже не раз было сказано, развитие автомобилестроения движется семимильными шагами и на смену системе зажигания с распределителем пришли микропроцессорные системы. В них нет каких-либо вращающихся и подвижных частей (смотрите рисунок 10.8), но есть катушки зажигания (все чаще - по катушке на каждый цилиндр), электронный блок управления (с интегрированным блоком зажигания) и коммутатор (если блок катушки зажигания один) или коммутаторы (если катушек зажигания несколько).


Рисунок 10.8

В электронный блок управления стекаются данные от ряда датчиков, обрабатывая которые ЭБУ выдает управляющий сигнал на коммутатор (или коммутаторы), определяющий, в какой момент поджечь в цилиндре топливовоздушную смесь. Получение каждого искрового разряда производится по электронным сигналам с очень высокой точностью и без использования каких-либо подвижных частей. Во многих двигателях искра образуется не только во время такта сжатия (это значит, что каждая свеча генерирует искровой разряд каждый раз, когда поршень доходит до ВМТ). Содержание вредных компонентов в отработавших газах при этом несколько снижается.


Please enable JavaScript to view the

Система зажигания авто предопределена для создания искрового разряда, распределения его по свечам зажигания и все это в подходящий момент работы мотора. В определенных моделях авто импульсы системы поступают на блок управления с помощью погружного топливного насоса. В дизельных моторах зажигание случается во время впрыска топливной смеси при такте сжатия.

Система зажигания бывает трех типов:

  • Контактная. Появление импульсов осуществляется в тот миг, когда контакты находятся в стадии разрыва.
  • Бесконтактная. Появлению импульсов способствует коммутатор (генератор импульсов).
  • Микропроцессорная. Механизм представляет собой электронный прибор, управляющий моментом воспламенения искры, а также и другими системами транспортного средства.

В двухтактных силовых агрегатах, для работы которых не нужен внешний источник питания, устанавливают системы от магнето. Магнето – это самостоятельное устройство, которое объединяет источник тока и катушку зажигания.

Все эти системы используют единый принцип для своей работы, а отличаются лишь методом образования управляющего импульса.

Строение системы зажигания:

  1. Источник питания. Во время запуска двигателя машины источником питания служит аккумулятор, а во время его эксплуатации – генератор авто.
  2. Замок зажигания — приспособление, благодаря которому осуществляется передача напряжения. Выключатель (замок зажигания) есть механический либо электрический.
  3. Накопитель энергии. Это устройство, главная роль которого в накоплении и преобразовании энергии в достаточном количестве для образования разряда меж электродами свечки зажигания. В устройстве современных автомобилей применяются такие накопители: емкостные, индуктивные. Первый вид накопителя представлен в виде емкости, использующей высокое напряжение для накапливания заряда, который в виде энергии поступает в определенное время на свечку. Второй вид накопителя, то есть накопитель индуктивный имеет вид катушки зажигания. Сначала первичная обмотка подсоединяется к плюсовому полюсу, а через прибор разрыва – к минусовому. Работающее устройство разрыва способствует появлению напряжения самоиндукции в обмотке. Относительно вторичной обмотки, то в ней появляется напряжение в количестве достаточном для того чтобы пробить воздушный зазор свечки.
  4. Свечки зажигания. Каждая свеча – это приспособление в виде изолятора из фарфора, накрученного на металлическую резьбу и имеющего два электрода, расположенные в интервале от 0,15 до 0,25 мм один от другого. Первым электродом является центральный проводник, а вторым – резьба металлическая.

  1. Система распределения зажигания. Предназначение системы – снабжение в необходимое мгновение энергией свечки зажигания. Она состоит из: распределителя (коммутатора), а также блока управления.

Распределитель зажигания – это приспособление, распределяющее высокое напряжение по электропроводам, подсоединенным к свечкам цилиндра. Этот процесс может иметь статическую или механическую природу. Статический распределитель не имеет в своей конструкции вращающихся деталей. В этом случае катушка зажигания прикрепляется прямо к свечке, а управление процессом осуществляется не чем иным как блоком управления зажиганием. Силовой агрегат, имеющий четыре цилиндра, будет иметь в своей конструкции и 4 катушки. Высоковольтные провода в этой системе не применяются. Что касается механического распределителя зажигания, то это устройство представлено в виде вала, запуск которого осуществляется при запуске двигателя, а распространение напряжения по проводам осуществляется с помощью специального «бегунка».

Коммутатор – это электронное приспособление, которое применяется для создания импульсов, приводящих в действие автотрансформатор (катушку).

Блок управления системой зажигания существует в виде микропроцессорного механизма, который устанавливает тот момент, когда нужно подать импульс в катушку. При этом учитываются показатели лямбда-зондов, коленвала, распредвала, температурные показатели.

Особенность функционирования

Система зажигания классическая функционирует следующим образом. Кулачки, активировавшиеся с помощью обращения вала привода трамблера, создают «разрыв», передаваемый на первичную обмотку авторансформатора заряд в размере 12 вольт. После исчезновения напряжения в обмотке образовывается ЭДС самоиндукции, а в обмотке вторичной зарождается напряжение в размере около 30 тысяч вольт. Далее высокое напряжение появляется в распределителе, а потом расходится на свечки в том количестве, которое требуется во время периода работы силового агрегата. В этом случае такого напряжения вполне достаточно для того чтобы пробить искровым зарядом зазор воздуха между электродами свечек зажигания.

Для полного перегорания топлива необходим процесс опережения зажигания. Учитывая то, что топливная смесь перегорает не сразу, ее нужно зажечь немного заранее. Миг подачи искры должен быть четко отрегулирован, ведь в случае несвоевременного зажигания может иметь место потеря мощности двигателя, повышенная детонация.