Сравнение с другими приводными механизмами. Шевронная передача: достоинства и недостатки

Шевронные цилиндрические передачи. Шевронное колесо представляет собой сдвоенное косозубое колесо, выполненное как одно целое см. рис. 1, в. Вследствие разного направления зубьев на полушевронах осевые силы Fa2 взаимно уравновешиваются на колесе и на подшипники не передаются рис. 16. Это обстоятельство позволяет принимать у шевронных колес угол наклона зуба в 25 40, что повышает прочность зубьев и плавность передачи.

Шевронные зубчатые колеса изготовляют с дорожкой в середине колеса для выхода режущего инструмента червячной фрезы на рис. 16 или без дорожки нарезаются долбяком или гребенкой со специальной заточкой, см. рис. 1, в. Шевронные колеса без дорожки нарезают на специальных малопроизводительных и дорогих станках, поэтому их применяют реже, чем колеса с дорожкой.

Ширина дорожки а 10 15 m. Шевронный зуб требует строго определенного осевого положения шестерни относительно колеса, поэтому пары монтируют в подшипниках, допускающих осевую игру вала. Недостатком шевронных колес является большая стоимость их изготовления. Применяются в мощных быстроходных закрытых передачах. Геометрический и прочностной расчет шевронной передачи аналогичны расчетам косозубой передачи. Для шевронной передачи коэффициент ширины обода колеса ша 0,40,8. При строгой параллельности зубьев и осей О2О2 и O1O1 прямые зубья входят в зацепление по всей длине В рис. 17, а Если колесо шириной В, имеющее прямые зубья, разрезать нa ряд тонких колес 1, 2, 3, 4, 5 рис. 17, б и каждое из них повернуть на оси относительно предыдущего на некоторый угол, чтобы зуб сместился на дугу s, то получится колесо со ступенчатым зубом. При вращении колес в зацепление последовательно удут входить участки 1 1, 2 2, 3 3 и т. д. В такой же последовательности они будут и выходить из зацепления.

Взяв бесконечно большое число бесконечно тонких колес, получим косой винтовой зуб, наклоненный к оси вращения под углом в рис. 17, в. Косые зубья работают более плавно по сравнению с прямыми зубьями, так как одновременно в зацеплении находится большее число зубьев при той же ширине колес В. Существенным недостатком косозубых колес является наличие осевого усилия Рос, стремящегося сдвинуть колеса вдоль оси вала. Из рис. 17, в видно, что чем больше будет угол в, тем больше будет и осевое усилие Рос при одном и том же окружном усилии Р0кр. На рис. 17, в показано направление давления зуба шестерни на зуб колеса. Для исключения осевой нагрузки на опоры на валу устанавливают два косозубых колеса с наклоном зубьев в противоположные стороны.

При этом следует иметь в виду, что при неточной продольной установке колес на валу может оказаться, что будет соприкасаться только одна пара зубьев из двух сопряженных пар колес, например левая, как показано на рис. 18 как правило, один из валов делают самоустанавливающимся относительно другого.

Осевая сила Рос стремится сдвинуть влево вал вместе с закрепленным на нем колесом. Для распределения окружного усилия Рокр поровну на оба колеса необходимо предусмотреть продольный так называемый монтажный зазор е между опооой и бортиком вала. После сдвига шестерни и вала влево под действием силы Рос давление на обе половины колеса и шестерни распределяется поровну. 1.8

Конец работы -

Эта тема принадлежит разделу:

Зубчатые косозубые передачи

Параметрам шестерни приписывают индекс 1, параметрам колеса индекс 2. Зубчатые передачи самый распространенный вид механических передач, так как… Достоинства. 1. Высокая надежность работы в широком диапазоне нагрузок и… Классификация.

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основы теории зубчатого зацепления
Основы теории зубчатого зацепления. N Профили зубьев пары колес должны быть сопряженными, т. е. заданному профилю зуба одного колеса должен соответствовать вполне определенный профиль зуба другого

Изготовление зубчатых колес
Изготовление зубчатых колес. Заготовки зубчатых колес получают литьем, ковкой в штампах или свободной ковкой в зависимости от материала, формы и размеров. Зубья колес изготовляют накатывание

Материалы зубчатых колес
Материалы зубчатых колес. Выбор материала зубчатых колес зависит от назначения передачи и условий ее работы. В качестве материалов колес применяют стали, чугуны и пластмассы. Стали. Основным

Виды разрушения зубьев и критерии работоспособности зубчатых передач
Виды разрушения зубьев и критерии работоспособности зубчатых передач. В процессе работы на зубья действуют силы передаваемой нагрузки и силы трения. Для каждого зуба напряжения изменяются во

Общие сведения
Общие сведения. Цилиндрические колеса, у которых зубья расположены по винтовым линиям на делительном цилиндре, называют к о с о з у б ы м и см. рис. 1, б. В отличие от прямозубой в косозубой

Эквивалентное колесо
Эквивалентное колесо. А-А Как указывалось выше, профиль косого зуба в нормальном сечении А А рис. 14 соответствует исходному контуру инструментальной рейки и, следовательно, совпадает с профилем пр

Силы в зацеплении
Силы в зацеплении. В косозубой передаче нормальная сила Fn составляет угол в с торцом колеса рис. 15. Разложив Fn на составляющие, получим радиальную силу где Ft 2T2 d2 окружная сила осевую силу Пр

Расчет на контактную прочность
Расчет на контактную прочность. Вследствие наклонного расположения зубьев в косозубом зацеплении одновременно находится несколько пар зубьев, что уменьшает нагрузку на один зуб, повышая его прочнос

Расчет на изгиб
Расчет на изгиб. Аналогично расчету прямозубой передачи условия прочности на изгиб зубьев шестерни и колеса косозубой передачи где YF коэффициент формы зуба, выбирают по эквивалентному числу зубьев

Зубчатые передачи с зацеплением М. Л. Новикова
Зубчатые передачи с зацеплением М. Л. Новикова. Эвольвентное зацепление, распространенное в современном машиностроении, является л и н е й ч а т ы м, так как контакт зубьев происходит по линии прак

Косозубые зубчатые передачи, как и прямозубые, предназначены для передачи вращательного момента между параллельными валамя (рис. 36). У косозубых колес оси зубьев располагаются не по образующей делитель-ного цилиндра, а по винтовой линии, составляющей с образующей угол (рис. 37). Угол наклона зубьев р принимают равным , он одинаков для обоих колес, но на одном из сопряженных колес зубья наклонены вправо, а на другом влево.

Рис. 36. Цилиндрическая косозубая передача

Передаточное число для одной пары колес может быть . В прямозубых передачах линия контакта параллельна оси, а в косозубых расположена по диа-гонали на поверхности зуба (контакт в прямозубых передачах осуществляется вдоль всей длины зуба, а в косозубых — сначала в точке увеличивается до пря-мой, «диагонально» захватывающей зуб, и постепен-но уменьшается до точки).

Достоинства косозубых передач по сравнению с прямозубыми: уменьшение шума при работе; меньшие габаритные размеры; высокая плавность зацепления; большая нагрузочная способность; значительно меньшие дополнительные дина-мические нагрузки.

За счет наклона зуба в зацеплении косозубой передачи появляется осевая сила.

Направление осевой силы зависит от на-правления вращения колеса (рис. 37), на-правления винтовой линии зуба, а также от того, каким является колесо — ведущим или ведомым. Осевая сила дополнительно нагру-жает валы и опоры, что является недостатком косозубых передач.

Рис. 37. Усилия в косозубой цилиндрической передаче

Шевронные зубчатые колеса пред-ставляют собой разновидность косозубых колес (рис. 38).

Рис. 38. Шевронная зубчатая передача

Цилиндрическое зубчатое колесо, венец которого по ширине состоит из участков с правыми и левыми зубьями (рис. 38, а), называют шеврон-ным колесом. Часть венца зубчатого колеса, в пределах которого линии зубьев имеют одно направление, называют полушевроном. Различают шев-ронные колеса с жестким углом (рис. 38, б), предназначенным для выхо-да режущего инструмента при нарезании зубьев. Шевронные передачи об-ладают всеми преимуществами косозубых, а осевые силы (рис. 39) проти-воположно направлены и на подшипник не передаются.

Рис.39. Усилия в зацеплении шевронных зубчатых колес

В этих передачах допускают большой угол наклона зубьев (). Ввиду сложности изготовления шевронные передачи применяют реже, чем косозубые, т.е. в тех случаях, когда требует-ся передавать большую мощность и высокую скорость, а осевые нагрузки нежелательны.

Рис. 40

Косозубые и шевронные колеса в отличие от прямозубых имеют два шага и два модуля: в нормальном сечении (см. рис. 44) по делительной окружности — нормальный шаг р п, в торцовой плоскости — торцовый шаг р t . Из условия, что модуль зацепления равен шагу, деленному на число , имеем ; .

Для косозубых и шевронных колес значения нормального модуля т n стандартизованы, так как профиль косого зуба в нормальном сечении со-ответствует исходному контуру инструментальной рейки и, следовательно, т = т п (косозубые и шевронные колеса нарезают, тем же способом и инст-рументом, что и прямозубые). Нормальный модуль т п является исходным при геометрических расчетах.

Определим зависимость между нормальным и торцовым шагом и модулем через угол наклона зубьев.

Если левую и правую части разделим на , получим

Геометрические параметры цилиндрической косозубой и шевронной передач с эвольвентным профилем зуба рассчитают по формулам, приве-денным в табл. 15. По торцовому модулю т t рассчитывают делительные (начальные) диаметры, а до т п — все остальные размеры зубчатых колес.

Таблица 15. Геометрические параметры цилиндрической косозубой передачи

Параметр, обозначение Расчетные формулы
Нормальный модуль
Торцовый (окружной модуль)
Диаметр вершин зубьев в
Делительный диаметр d
Диаметр впадин зубьев
Шаг нормальный
Шаг торцовый (окружной)
Окружная толщина зубьев
Ширина впадин зубьев
Высота зуба
Высота головки зуба
Высота ножки зуба
Радиальный зазор
Межосевое расстояние
Длина зуба
Ширина венца

Окружная сила . На косой зуб действует осевая сила (см. рис. 37), радиальная (распорная) сила .

У косозубых колес зубья имеют наклон под углом b к образующей делительного цилиндра. Оси колес при этом остаются параллельными.

Это дает следующие преимущества по сравнению с прямозубыми колесами:

1. Повышение нагрузочной способности за счет увеличения суммарной длины контактной линии зубьев (увеличение числа пар зубьев, одновременно находящихся в зацеплении);

2. Большая плавность хода и меньший шум во время работы (зубья колеса входят в зацепление не сразу по всей длине, а постепенно ).

Угол наклона линии зубьев косозубых цилиндрических колес находится в пределах .


Расчет геометрических параметров косозубых колес проводят по тем же формулам, что и для прямозубых цилиндрических колес, подставляя вместо нормального m торцовый модульm t . Торцовый и нормальный модули связаны следующим соотношением:


- нормальный шаг зубьев;


- торцовый шаг зубьев


,

.

Тогда диаметры делительной окружности , окружности вершини окружности впадинкосозубого колеса, нарезанного без смещения, можно представить в следующем виде:


,

,

.

Силы в зацеплении цилиндрической косозубой передачи


- окружная сила;


- вспомогательная окружная сила;


- осевая сила;


- радиальная сила;


- сила нормального

давления.

Наличие в передаче осевой силы приводит к дополнительному нагружению вала изгибающим моментом, а подшипников - осевой силой, что ведет к необходимости применения в опорах радиально-упорных подшипников, воспринимающих радиальную и осевую нагрузку.

Проектные и проверочные расчеты косозубых передач по контактным напряжениям и напряжениям изгиба производят по тем же зависимостям, что и для прямозубых передач. При этом учитывают увеличение прочности зубьев вследствие угла наклона зубьев .

Расчетная схема нагружения валов цилиндрической косозубой передачи


Наличие в зацеплении осевых сил, которые дополнительно нагружают опоры валов, являются недостатком косозубых колес. Этот недостаток устраняется в шевронной передаче.

2.11. Шевронные передачи

Шевронная передача подобна сдвоенной косозубой передаче с противоположным направлением зубьев. Осевые силы здесь уравновешиваются на самом зубчатом колесе.


- угол наклона линии зубьев.

Преимущество: плавность хода еще выше, чем у косозубой передачи.

Недостаток: сложность изготовления (необходимость применения непроизводительных методов нарезания зубьев ).

Исключением являются передачи с раздвоенным силовым потоком (разнесенный шеврон)


2.12 Зубчатые конические передачи

Конические передачи предназначены для передачи вращательного движения между валами, оси которых пересекаются под некоторым углом. Наибольшее распространение получили ортогональные передачи с углом пересечения осей 90 град.

У конического зубчатого колеса (ЗК) образующей поверхностью является конус.

По направлению зубьев конические ЗК бывают:

1 – прямозубые;

2 – косозубые;

3 – с круговыми зубьями.

Передаточное отношение конической ЗП:


где d 1 , d 2 - половины углов при делительных конусах;


,

- диаметры делительных окружностей в среднем сечении.

При расчетах на прочность конические колеса заменяют на эквивалентные цилиндрические прямозубые колеса с делительным диаметром и числом зубьев:


,

.

Такой раздел в механике, как детали машин, проходят все студенты технических специальностей. Основные моменты акцентируются на зубчатых передачах, которые бывают нескольких видов. Прямозубая, косозубая, а также шевронная передача - все они используются практически во всех отраслях промышленности.

Какие функции выполняет зубчатое зацепление

Прежде чем говорить о том, что такое цилиндрическая шевронная передача, необходимо разобраться с общими положениями. Зубчатое зацепление используется для передачи вращательного движения между валами. Так в непосредственный контакт входит пара зубьев шестерни и колеса. Передаточное число изменяется в зависимости от размера шестерни и количества зубьев на ней.

Изменение угловых скоростей и моментов - основные функции любой зубчатой передачи, в том числе и шевронной. Широкое же применение в различных отраслях промышленности требует постоянного развития и улучшения технических характеристик передачи. В результате появляются новые виды зацеплений, используются высокопрочные сплавы зубьев и т.д.

Шевронные и все о них

Как мы уже разобрались, данный вид зацепления относится к зубчатым. Определимся немного с конструктивными особенностями данной передачи. От классической зубчатой мы имеем существенные отличия. Во-первых, венец состоит из зубьев, направленных в разные стороны. Соответственно по одной стороне венца они имеют наклон в одну, с обратной - в другую стороны.

Можно смело говорить о том, что шевронные передачи обладают огромным количеством преимуществ. К примеру, отсутствие осевой нагрузки на подшипник, что позволяет продлить срок службы узла. Помимо этого, данный тип передачи позволяет существенно увеличить угол наклона зубьев, который приблизительно равен 25-40 градусам. В то время как в обычном косозубом колесе пределом является 18 градусов.

Конечно, есть и свои нюансы. Во-первых, высокая сложность и дороговизна изготовления шеврона. Так как используется данный вид зацепления для передачи большой мощности и скорости при отсутствии осевых нагрузок, то точность изготовления должна быть очень высокой, а следовательно и себестоимость такого колеса получается высокой. Во-вторых, необходимость использования плавающего вала в конструкции. По этой простой причине инженеры стараются применять косозубую передачу, где это возможно, и только потом использовать шевронную.

Достоинства шевронного колеса

Следует отметить, что все механические передачи имеют общие преимущества и недостатки. Это относится и к шевронному зацеплению. Рассмотрим сильные стороны. Во-первых, высокая плавность хода, что достигается благодаря большому углу наклона зубьев. Следовательно, и габариты будут гораздо меньше по сравнению с косозубым колесом. Это позволяет несколько снизить массу изделия, а также размер узла в целом.

Долговечность при соблюдении норм эксплуатации (регулярная смазка, выбраковка, отсутствие перегрева и механических повреждений) составляет порядка 40 000 часов. Соответственно надежность данного узла будет очень высокой. Это обусловлено еще и отсутствием осевых нагрузок на подшипник. Как следствие, не возникает перегрева вала и опоры.

Высокий КПД (97-98 %) - еще одна сильная сторона шевронных колес. Данный показатель нередко является определяющим фактором при выборе типа передачи в том или ином узле, так как позволяет добиться минимальных потерь во время эксплуатации. Постоянное передаточное число также немаловажный фактор, который хоть и не выдвигается на первый план, но все же имеет место. Такие достоинства шевронной передачи играют немаловажную роль при эксплуатации в тяжелонагруженных узлах машин.

Немного о недостатках

Как и любой другой тип передач, данный имеет несколько минусов. В первую очередь, как было отмечено выше, сложность изготовления. Стоимость шевронного колеса достаточно высока, хоть оно и является долговечным. Зачастую на производстве при выходе из строя какого-либо узла важно заменить его как можно скорее. В этом случае отлично подойдут косозубые и прямозубые колеса, которые просты в изготовлении. Что же касается шевронного, то тут не все так однозначно. Точность монтажа также должна быть высокой, следовательно, увеличивается количество затрачиваемого времени на установку детали.

Шум во время работы - так ли это важно?

Еще один недостаток - шумность на высоких скоростях. Хотя отнести его исключительно к шевронной передаче было бы глупо, ведь это касается всего раздела. Пара металлических зубьев, входящих в зацепление на высокой скорости, - это всегда звонкий шум, который хоть и глушится с помощью специальной смазки и кожухов, но не полностью. Также было сказано и о плавающем валу, который необходим для корректной работы узла, а это увеличивает сложность конструкции. Изготовление шевронной передачи тщательно контролируется на всех этапах, поэтому бракованных изделий мало, хотя еще несколько лет назад ситуация была более печальной.

О профиле зуба

Как и во всех зубчатых зацеплениях, в шевроне может быть использован тот или иной тип зуба. Предварительно проводится расчет шевронной передачи. Используются следующие типы зубьев:

  • винтовые одного направления;
  • винтовые разных направлений;
  • эвольвентные;
  • неэвольвентные.


Применяемость того или иного типа зависит непосредственно от того, чего необходимо добиться во время работы узла. К примеру, если узел спроектирован с возможностью смещения центра профиля, используют эвольвентный зуб. Кроме того, есть три варианта расположения шестерни к колесу: сближенное, раздвинутое и нормальное. Изменяя расстояние до центра профиля, можно добиться того или иного положения, которое необходимо для повышения плавности, увеличения скорости хода и т.д.

Стоит также заострить особое внимание и на том факте, что неверно подобранный тип зуба в том или ином случае приведет к таким последствиям, как: снижение ресурса узла, повышенная шумность, перегрев подшипника и т.п. Следовательно, наиболее ответственным этапом является именно теоретический расчет передачи.

Распространение шевронных колес

Как уже было отмечено выше, механические передачи используются во многих отраслях промышленности. Рассмотрев шевронные передачи, которых наглядно показывают их целесообразность, можно сказать об уникальности. Тем не менее ввод в эксплуатацию шевронов повсеместно нельзя назвать целесообразным, что обусловлено высокой стоимостью и сложностью конструкции.

Но несмотря на это, без них нельзя обойтись на металлургических предприятиях. Там шевронная передача используется на режущих станках и другом оборудовании. Обусловлено это тем, что шевронное колесо может быть:

  • тихоходным;
  • среднескоростным;
  • скоростным;
  • быстроходным.

Тип работы зависит от окружной скорости. Наиболее часто шевронная передача применяется при высоких окружных скоростях (более 30 м/с). Автомобильная промышленность - еще одна отрасль, где без использования данной механической передачи обойтись довольно сложно. Это же касается и химической, а также пищевой промышленности.

Материал изготовления

Практически все зубчатые передачи подвергаются интенсивному износу. По этой причине необходимо использовать высокопрочные сплавы, которые бы справлялись с работой в тяжелых условиях. Непосредственно колесо шеврона или шестерня изготавливаются из стали, а вот зубья предпочтительно должны быть бронзовыми. Но если использовать бронзу в чистом виде, то это слишком дорого. По этой простой причине зубья выплавляются из высоколегированной стали с бронзовым напылением.

Нередко бывает так, что узел подвергается преждевременному износу. Случается это по разным причинам:

  • биение в передаче;
  • перегрев колеса и шестерни;
  • недостаточное количество смазки.

В большинстве таких случаев его не меняют на новый, а ремонтируют путем наплавления зубьев. Данный метод используется практически во всех механических передачах, если это возможно и целесообразно.

Подведем итоги

Основное достоинство шевронной передачи заключается в возможности её использования на высоких скоростях. Немаловажную роль играет и то, что нет осевой нагрузки на подшипник. Соответственно, исключается перегрев узла, что является наиболее распространенной причиной выхода последнего из строя.

В это же время высокие расходы на изготовление шевронного колеса и шестерни не позволяют использовать данный узел повсеместно. Это же касается и времени на установку шевронной передачи, а также высокой квалификации специалистов, занимающихся монтажом и вводом в эксплуатацию узла.

Геометрические параметры. У косозубых колес зубья располага­ются не по образующей делительного цилиндра, а составляют с ней некоторый угол /? (рис. 8.23, где а - косозубая передача; б - шев­ронная, и рис. 8.24). Оси колес при этом остаются параллельными. Для нарезания косых зубьев используют инструмент такого же исходного контура, как и для нарезания прямых. Поэтому профиль косого зуба в нормальном сечении п - п совпадает с профилем прямого зуба. Модуль в этом сечении должен быть также стандарт­ным (см. табл. 8.1).

В торцовом сечении / - t параметры косого зуба изменяются в зависимости от угла /?: окружной шаг pt =pn /cosfi , Окружной модуль mt=mn/cos/?, делительный диаметр d = mtz = Th ^/ Cos /?.

Индексы пи / приписывают параметрам в нормальном и тор­цовом сечениях соответственно.

Прочность зуба определяют его размеры и форма в нормальном сечении. Форму косого зуба в нормальном сечении принято опреде­лять через параметры эквивалентного прямозубого колеса (рис. 8.25).

Нормальное к зубу сечение косозу - бого колеса образует эллипс с полуося­ми с = г и е=г/ Cos/?, где r =d /2. В зацеп­лении участвуют зубья, расположенные

На малой оси эллипса, так как второе колесо находится на расстоянии C = D /2. Радиус кривизны эллипса на малой оси (см. геометрию эллипса)

Rv = E 2 / C = R / Cos 2 /?.

В соответствии с этим форма косого зуба в нор­мальном сечении определя­ется эквивалентным прямо­зубым колесом, диаметр ко­торого

Dv = D / Cos 2 P (8.21)

И число зубьев

Zv = сЦтп = Dj { Mn Cos 2 /?)= Mtz /(Mt Cos 3 /?),

Zv=z/cos30. (8.22)

Пример. При Р= 20°, <4 = 1,134 Zv= 1,2 Z.

Увеличение эквивалентных параметров (Dv и Zv ) с увеличением угла Fi является одной из причин повышения прочности косозубых пере­дач . Вследствие наклона зубьев получается колесо как бы боль­ших размеров или при той же нагрузке уменьшаются габариты передачи. Ниже показано, что косозубые передачи по сравнению с прямозубыми обладают еще и другими преимуществами: много - парность зацепления, уменьшение шума и пр. Поэтому в современ­ных передачах косозубые колеса получили преимущественное рас­пространение.

Многопарность и плавность зацепления. В отличие от прямых косые зубья входят в зацепление не сразу по всей длине, а постепен­но. Зацепление здесь распространяется в направлении от точек 1 к точкам 2 (см. рис. 8.24). Расположение контактных линий в поле косозубого зацепления изображено на рис. 8.26, а, б* (ср. с рис. 8.5 - прямозубое зацепление). При вращении колес линии контакта перемещаются в поле зацепления в направлении, показанном стрел­кой. В рассматриваемый момент времени в зацеплении находится три пары зубьев 7, 2 и 3. При этом пара 2 зацепляется по всей длине

♦Точнее, контактные линии расположены не под углом /?, а под углом Ft . Разность этих углов невелика, а ее влияние на а л не превышает 2%. Поэтому здесь и далее принимаем
Зубьев, а пары 7 и 5 - лишь частично. В следующий мо­мент времени пара 3 выхо­дит из зацепления и нахо­дится в положении 5". Одна­ко в зацеплении еще оста­лись две пары 2 и Г. В от­личие от прямозубого косо - зубое зацепление не имеет зо­ны однопарного зацепления. В прямозубом зацеплении нагрузка с двух зубьев на один или с одного на два передается мгновенно. Это явление сопровождается ударами и шумом. В ко - созубых передачах зубья нагружаются постепенно по мере захода их в поле зацепления, а в зацеплении всегда находится минимум две пары. Плавность косозубого зацепления значительно понижает шум и дополнительные динамические нагрузки.

Отмеченное преимущество косозубого зацепления становится особенно значительным в быстроходных передачах, так как дина­мические нагрузки возрастают пропорционально квадрату скоро­сти.

В косозубом зацеплении нагрузка распределяется на всю сум­марную длину контактных линий 7, 2, 5. Удельная нагрузка умень­шается с увеличением суммарной длины контактных линий /L. С по­мощью рис. 8.26 нетрудно установить, что при еа, равном целому числу,

K = BwEa / Cos /?

И /L не изменяется при движении, так как уменьшению линий 3 всегда соответствует равное приращение линии 7. Точно так же постоянна при любом еа, но при е^, равном целому числу. Если отмеченные условия не соблюдаются, то k периодически изменяет­ся, а формула (8.24) будет определять среднюю величину, которую принимают за расчетную.

В соответствии с формулой (8.24) /z растет с увеличением /?, что выгодно. Однако во избежание больших осевых сил в зацеплении
(см. ниже) рекомендуют принимать /?=8...20°. Для шевронных ко­лес допускают /? до 30° и даже до 40°.

На боковой поверхности косого зуба линия контакта располага­ется под некоторым углом к (рис. 8.27, а). Угол X увеличивается с увеличением /?. По линии контакта нагрузка распределяется нерав­номерно. Ее максимум на средней линии зуба, так как при зацепле­нии серединами зубья обладают максимальной суммарной жест­костью.

При движении зуба в плоскости зацепления линия контакта перемещается в направлении от 7 к 5 (рис. 8.27, б). При этом опасным для прочности может оказаться положение 7, в котором у зуба отламывается угол. Трещина усталости образуется у корня зуба в месте концентрации напряжений и затем распространяется под некоторым углом ц. Вероятность косого излома отражается на прочности зубьев по напряжениям изгиба, а концентрация нагрузки Q - на прочности по контактным напряжениям.

С наклонным расположением контактной линии связана целесо­образность изготовления косозубой шестерни из материала, значи­тельно более прочного (высокотвердого), чем у колеса. Это объясня­ется следующим. Ножки зубьев обладают меньшей стойкостью против выкрашивания, чем головки, так как у них неблагоприятно сочетание направления скольжения и перекатывания зубьев (см. рис. 8.6 и 8.8). Следовательно, ножка зуба колеса, работающая с голов­кой зуба шестерни, начнет выкрашиваться в первую очередь. При этом вследствие наклона контактной линии нагрузка (полностью или частично) передается на головку зуба колеса, работающую с ножкой зуба шестерни. Слабая ножка зуба колеса разгружается, и выкрашивание прекращается. Дополнительная нагрузка ножки зуба шестерни не опасна, так как она изготовлена из более стойкого материала. Применение высокотвердой шестерни позволяет допол­нительно повысить нагрузочную способность косозубых передач на 25...30%.

Расчет коэффициента торцового перекрытия еа. Для нефланкиро - ванных передач без смещения (для других случаев см. ГОСТ 16532 - 70)

Еа= (1 + cos/?) cos p. (8.25)

Знак «+» - для внешнего, а «-» - для внутреннего заце­пления. Для прямозубых пе­редач рекомендуют 1,2, для косозубых Величина еа за­висит от числа зубьев z и угла наклона зубьев р. С увеличени­ем z увеличивается еа. Поэтому
выгодно применять колеса с большими z или при заданном диамет­ре D колеса с малым модулем т . С увеличением /? растет окружной шаг ры, а рабочая длина линии зацепления Ga остается неизменной (см. выше). При этом еа уменьшается. Уменьшение еа является одной из причин ограничения больших /?.

Силы в зацеплении. В косозубой передаче (рис. 8.28, а) нормаль­ную силу Fn раскладывают на три составляющие:

TOC o "1-3" h z окружную силу Ft=2Tldu - ч

Осевую силу Fa =Ft tg/?, I

Радиальную силу Fr =F [ tgaw=Ft tg^/cos/?, > (8.26)

В свою очередь, сила I

Fn= F " T / Cosoiw =/^/(cosan, cos^). J

Наличие в зацеплении осевых сил, которые дополнительно на­гружают опоры валов, является недостатком косозубых колес. Этот недостаток устраняется в шевронной передаче (см. рис. 8.28, б и 8.23), которая подобна сдвоенной косозубой передаче с проти­воположным направлением зубьев. Осевые силы здесь уравновеши­ваются на самом зубчатом колесе.

1 __ 2 Cos Pup dw sinaw

Сравнивая отношение qjpup в формуле (8.7) для прямозубых [фор­мулы (8.8) и (8.9)] и косозубых колес, а также учитывая, что у по­следних отсутствует зона однопарного зацепления, находим

(?/Рпр)жос= (?/Рпр)прям (Cos 2 Р)/еа

(<Гя )жос= (Ыфям ^/(СОЬ2Р)/ва.

Обозначим

J(cos2P)/ea (8.28)

Коэффициент повышения прочности косозубых передач по кон­тактным напряжениям. В соответствии с формулой (8.10) для косо­зубых передач получаем

°н= 1.18 ZJ ^ F ^i ^M (8.29)

При проектном расчете /? и еа неизвестны. Поэтому величину ZHp в формуле (8.29) предварительно оценивают приближенно. При­няв в среднем /? = 12° и ва= 1,5,получаем 0,8, а формулы (8.11) и (8.13) проектного расчета путем умножения числовых коэффици­ентов на Vzg для косозубых передач запишем в виде

^-JWW }

Расчет прочности зубьев по напряжениям изгиба. Расчет выполня­ют по аналогии с прямозубыми передачами с учетом увеличения прочности косозубых передач (см. выше). При этом формулы (8.19) и (8.20) для косозубых передач записываются в виде: для проверочного расчета

YFSYFliKFFtl(bjn„H[(TFl (8.32)

Для проектного расчета (принимая приближенно KFv & 1; см. табл. 8.3)

/я, =у/ 2 TxKFaKFp YFSYFfi /(Zl Il / M [ Gf ]). (8.33)

Здесь YFp - коэффициент повьппения прочности косозубых передач по напряжениям изгиба:

Коэффициент перекрытия ва [см. формулу (8.25)] учитывает умень­шение нагрузки расчетного зуба ввиду многопарности зацепления. Yp=l- /?°/Ю0>0,7- коэффициент, учитывающий повышение из - гибной прочности вследствие наклона контактной линии к осно­ванию зуба и неравномерного распределения нагрузки (см. рис. 8.27). При этом равнодействующая нагрузки приближается к ос­нованию зуба, а изгибающий момент уменьшается. Формула для Yp получена на основании экспериментов. Коэффициент формы зуба Yfs выбирается по графику рис. 8.20, при эквивалентном числе зубьев Zv - по формуле (8.22), a Zu фт и /? выбирают по табл. 8.5, 8 .6.