Цилиндр как геометрическая фигура. Цилиндр: площадь боковой поверхности. Формула площади боковой поверхности цилиндра

Цилиндр представляет собой геометрическое тело, ограниченное двумя параллельными плоскостями и цилиндрической поверхностью. В статье поговорим о том, как найти площадь цилиндра и, применив формулу, решим для примера несколько задач.

У цилиндра есть три поверхности: вершина, основание, и боковая поверхность.

Вершина и основание цилиндра являются окружностями, их легко определить.

Известно, что площадь окружности равна πr 2 . Поэтому, формула площади двух окружностей (вершины и основания цилиндра) будет иметь вид πr 2 + πr 2 = 2πr 2 .

Третья, боковая поверхность цилиндра, является изогнутой стенкой цилиндра. Для того чтобы лучше представить эту поверхность попробуем преобразовать её, чтобы получить узнаваемую форму. Представьте себе, что цилиндр, это обычная консервная банка, у которой нет верхней крышки и дна. Сделаем вертикальный надрез на боковой стенке от вершины до основания банки (Шаг 1 на рисунке) и попробуем максимально раскрыть (выпрямить) полученную фигуру (Шаг 2).

После полного раскрытия полученной банки мы увидим уже знакомую фигуру (Шаг 3), это прямоугольник. Площадь прямоугольника вычислить легко. Но перед этим вернемся на мгновение к первоначальному цилиндру. Вершина исходного цилиндра является окружностью, а мы знаем, что длина окружности вычисляется по формуле: L = 2πr. На рисунке она отмечена красным цветом.

Когда боковая стенка цилиндра полностью раскрыта, мы видим, что длина окружности становится длиной полученного прямоугольника. Сторонами этого прямоугольника будут длина окружности(L = 2πr) и высота цилиндра(h). Площадь прямоугольника равна произведению его сторон – S = длина х ширина = L x h = 2πr x h = 2πrh. В результате мы получили формулу для расчета площади боковой поверхности цилиндра.

Формула площади боковой поверхности цилиндра
S бок. = 2πrh

Площадь полной поверхности цилиндра

Наконец, если мы сложим площадь всех трёх поверхностей, мы получим формулу площади полной поверхности цилиндра. Площади поверхности цилиндра равна площадь вершины цилиндра + площадь основания цилиндра + площадь боковой поверхности цилиндра или S = πr 2 + πr 2 + 2πrh = 2πr 2 + 2πrh. Иногда это выражение записывается идентичной формулой 2πr (r + h).

Формула площади полной поверхности цилиндра
S = 2πr 2 + 2πrh = 2πr(r + h)
r – радиус цилиндра, h – высота цилиндра

Примеры расчета площади поверхности цилиндра

Для понимания приведенных формул попробуем посчитать площадь поверхности цилиндра на примерах.

1. Радиус ос­но­ва­ния цилиндра равен 2, высота равна 3. Определите площадь боковой поверхности цилиндра.

Площадь полной поверхности рассчитывается по формуле: S бок. = 2πrh

S бок. = 2 * 3,14 * 2 * 3

S бок. = 6,28 * 6

S бок. = 37,68

Площадь боковой поверхности цилиндра равна 37,68.

2. Как найти площадь поверхности цилиндра, если высота равна 4, а радиус 6?

Площадь полной поверхности рассчитывается по формуле: S = 2πr 2 + 2πrh

S = 2 * 3,14 * 6 2 + 2 * 3,14 * 6 * 4

S = 2 * 3,14 * 36 + 2 * 3,14 * 24

Площадь каждого основания цилиндра равна πr 2 , площадь обоих оснований составит 2πr 2 (рис.).

Площадь боковой поверхности цилиндра равна площади прямоугольника, основание которого равно 2πr , а высота равна высоте цилиндра h , т. е. 2πrh .

Полная поверхность цилиндра составит: 2πr 2 + 2πrh = 2πr (r + h ).


За площадь боковой поверхности цилиндра принимается площадь развертки его боковой поверхности.

Поэтому площадь боковой поверхности прямого кругового цилиндра равна площади соответствующего прямоугольника (рис.) и вычисляется по формуле

S б.ц. = 2πRH, (1)

Если к площади боковой поверхности цилиндра прибавить площади двух его оснований, то получим площадь полной поверхности цилиндра

S полн. =2πRH + 2πR 2 = 2πR (H + R).

Объем прямого цилиндра

Теорема. Объем прямого цилиндра равен произведению площади его основания на высоту , т. е.

где Q - площадь основания, а Н - высота цилиндра.

Так как площадь основания цилиндра равна Q, то существуют последовательности описанных и вписанных многоугольников с площадями Q n и Q’ n таких, что

\(\lim_{n \rightarrow \infty}\) Q n = \(\lim_{n \rightarrow \infty}\) Q’ n = Q.

Построим последовательности призм, основаниями которых являются рассмотренные выше описанные и вписанные многоугольники, а боковые ребра параллельны образующей данного цилиндра и имеют длину H. Эти призмы являются описанными и вписанными для данного цилиндра. Их объемы находятся по формулам

V n = Q n H и V’ n = Q’ n H.

Следовательно,

V= \(\lim_{n \rightarrow \infty}\) Q n H = \(\lim_{n \rightarrow \infty}\) Q’ n H = QH.

Следствие.
Объем прямого кругового цилиндра вычисляется по формуле

V = π R 2 H

где R - радиус основания, а H - высота цилиндра.

Так как основание кругового цилиндра есть круг радиуса R, то Q = π R 2 , и поэтому

Понятие цилиндра

Определение 1

Геометрическая фигура, образованная двумя равными кругами, лежащими в параллельных плоскостях, все точки которых соединены между параллельными прямыми, так что никакая точка не остается несоединенной, называется цилиндром (рис. 1).

Рисунок 1. Цилиндр

Круги при этом называются основаниями цилиндра , а прямые их соединяющие -- образующими . Прямая, которая проходит через центры окружностей оснований называется осью цилиндра , а совокупность всех образующих -- боковой поверхностью цилиндра .

Виды цилиндров

Определение 2

Цилиндр, у которого все образующие перпендикулярны к плоскостям, проходящим через основания, называется прямым . В противном же случае он является наклонным (рис. 2).

Рисунок 2. Прямой и наклонный цилиндры

Площадь поверхности цилиндра

Площадь поверхности цилиндра определяется следующим образом:

Найдем теперь формулы для вычисления площадь боковой поверхности и основания.

Так как в основании лежат круги, то очевидно, что

Теорема 1

Площадь боковой поверхности цилиндра определяется как произведение длины окружности, ограничивающей основание цилиндра на его высоту.

Доказательство.

Для доказательства этой теоремы нам необходимо найти площадь развертки боковой поверхности цилиндра (рис. 3).

Рисунок 3.

Видим, что разверткой боковой поверхности цилиндра является прямоугольник . Высота прямоугольника равняется высоте цилиндра $h$, а длина равняется длине окружности, ограничивающей основание цилиндра, то есть

Теорема доказана.

Объем цилиндра

Теорема 2

Объем цилиндра определяется как произведение площади основания цилиндра на его высоту.

Доказательство.

Рассмотрим цилиндр с радиусом $r$ и высотой $h$. Найдем ее объем $V$. Для этого сначала впишем в нее правильную $n-$угольную призму , в которую впишем еще один цилиндр. Пусть радиус второго цилиндра равняется $r"$, а её объем равен $V"$ (рис. 4).

Рисунок 4.

Как мы знаем, объем призмы будет равен $S_{осн.пр.}h$. Следовательно, получим следующую оценку

Тогда из оценки, получим

Теорема доказана.

Пример задачи

Пример 1

Найти площадь полной поверхности цилиндра и его объем, если радиус его основания равняется $7$ см, а высота в два раза больше диаметра основания.

Решение.

Найдем вначале высоту цилиндра. Так как высота в два раза больше диаметра, получим

Как мы знаем

По теореме 1

По теореме 2

Ответ: $490\pi ,\ 1372\pi $