Что такое ионный двигатель. Ионный двигатель - новые космические горизонты. Выстрел из АК

Основная проблема в освоении космических просторов - крайне низкие скорости у разработанных человечеством летательных аппаратов. Современные разработки имеют также и огромный расход топлива. Таким образом, если построить ракету и запустить ее, например, на Марс и обратно, то корабль будет просто огромный. И большую его часть будет занимать именно топливо. Приблизительно для высадки на Марс нужно более миллиарда тонн высококачественного ракетного топлива. К счастью, такая современная разработка ученых, как ионный двигатель, сможет в недалеком будущем решить эту проблему. Теоретически с его помощью можно разгоняться до двухсот километров за секунду. Основными плюсами можно назвать именно огромные развиваемые скорости и маленький запас горючего. Для работы такого агрегата, как ионный двигатель, нужны лишь электричество и инертный газ. Однако есть у него и некоторые недостатки, например, слабая разгонная скорость. Это заставляет задуматься о многих проблемах применения двигателя в условиях присутствия гравитационных полей.

Ионный двигатель: принцип действия

Благодаря высокому напряжению ионизируется газ в специальной камере. Вследствие этого ионы газа начинают выбрасываться прочь из камеры и создавать тягу. Однако, так как это цепная реакция, и сила тяги увеличивается очень медленно и постепенно, понадобится приблизительно полгода, чтобы разогнаться до двухсот километров в секунду. Примерно такое же количество времени уйдет и на торможение. С другой стороны, объективно эти цифры очень малы в сравнении с показателями у современных космических двигателей, которым на достижение подобных по качеству результатов необходимо было бы затратить в двадцать раз больше времени. Более того, инертный газ занимает в сотни раз меньше места, чем топливо у ракет. Единственная проблема, которую сложно решить - это наличие электричества. Солнечных батарей просто не хватит для работы таких приборов, как ионные двигатели, поэтому вероятно применение ядерного реактора.

Еще одним недостатком можно считать низкую маневренность. Также основным вопросом стоит проблема с гравитацией. Находясь в пределах поля Земли, двигатель просто не будет работать. С другой стороны, в условиях открытого космоса аналогов такого устройства, как ионный двигатель, пока нет.

Немного истории и перспективы

В фантастической литературе подобные приборы встречались довольно часто. Однако только в 1960 году был создан ионный двигатель своими руками (а точнее, руками научных сотрудников НАСА). Он назывался широко-лучевым электростатическим устройством. Уже в начале семидесятых прошли испытание ртутные электростатические двигатели в условиях открытого космоса.

К концу семидесятых генераторы на основе эффекта Холла использовали в Советском Союзе. В качестве именно основного двигателя ионный был применен на американском космическом аппарате в 1998 году. За ним последовали европейский зонд, японский космический корабль в 2003 году. На сегодняшний день НАСА разрабатывает знаменитый проект под названием «Прометей». Для него конструируют супермощный ионный двигатель, который питается от ядерного реактора.

Не секрет, что все реактивные двигатели работают за счёт закона сохранения импульса. Именно из него вытекает, что реактивная тяга - это произведение массового расхода на скорость выхода рабочего тела из сопла .

Эту скорость принято называть удельным импульсом реактивного двигателя. Давайте для примера найдём реактивную тягу при стрельбе из автомата Калашникова, которая является основной составляющей отдачи. Пусть масса пули будет 0,016 кг , начальная скорость пули 700 м/с , а скорострельность 10 выстр./с . Тогда отдача F=700∙0,016∙10=112 Н (или 11 кгс) . Большая отдача, но тут приведена техническая скорострельность 600 выстр./мин. В реальности стрельба ведётся очередями или одиночными и составляет ≈50 выстр./мин.

Выстрел из АК



Вернёмся к реальным реактивным двигателям, в которых вместо пуль обычно используются потоки выходящего с гиперзвуковой скоростью газа. Химические реактивные двигатели являются самыми распространёнными, но не единственными.

В этой статье, с большим предисловием, я хочу рассказать об ионных реактивных двигателях (далее ИРД). ИРД используют в качестве рабочего тела заряженные частицы - ионы. Ионы имеют массу, и если их разогнать электрическим полем, то можно создать реактивную тягу. Это всё в теории, а теперь подробнее. ИРД имеет некоторый запас газа, который ионизируют (т.е. нейтрально-заряженные атомы газа разбивают на отрицательные электроны и положительные ионы) с помощью газового разряда. Далее ионы разгоняются электрическим полем с помощью специальной системы сеток, и эта же система сеток блокирует движение электронов. После того, как положительные ионы вылетели из сопла, их нейтрализуют отрицательными электронами (в результате этого происходит рекомбинация и газ начинает светиться), чтобы ионы не притягивались обратно к двигателю, и тем самым не снижали его тяги.

Почему ксенон?

Обычно в ИРД в качестве рабочего тела используется газ ксенон, так как он имеет наименьшую энергию ионизации среди инертных газов.


Удельный импульс ионных реактивных двигателей достигает 50 км/с, что в 150 раз превышает скорость звука! Увы, но тяга таких двигателей составляет около 0,2 Н. Почему же так? Ведь удельный импульс очень большой. Дело в том, что масса ионов очень маленькая и массовый расход получается небольшим. Для чего тогда такие двигатели нужны, если они ничего не смогут сдвинуть с места? На Земле может быть не смогут, а вот в космосе, где нет сил сопротивления, они достаточно эффективные. Существует такое понятие как полный импульс - произведение тяги на время или произведение удельного импульса на массу топлива , который у ИРД является достаточно большим.

Решим следующую задачу. Пусть жидкостный ракетный двигатель имеет удельный импульс 5 км/с, а у нашего ИРД он будет 50 км/с. И давайте масса рабочего тела (в ЖРД она равна массе топлива) у обоих двигателей будет 50 кг. Примем массу космического аппарата равной 100 кг.
Найдём по формуле Циолковского конечную скорость аппарата (т.е. когда в нём закончится рабочая масса).

И что получается, если ионный и химический реактивные двигатели будут иметь одинаковую массу топлива, то ИРД сможет разогнать космический аппарат до больших скоростей, нежели химический РД. Правда на ИРД космический аппарат будет разгонятся дольше до конечной скорости, чем на ЖРД. Но в путешествиях к далёким планетам, высокая конечная (разгонная) скорость будет компенсировать этот недостаток.

Схема полёта к Марсу на ИРД



ИРД используются и в наше время. Например, аппарат Deep Space 1 сблизился с астероидом Брайль и кометой Борелли, передал на Землю значительный объём ценных научных данных и изображений.


Deep Space 1

Также космическая антенна LISA, которая сейчас находится на стадии проектирования, будет использовать ИРД для корректировки орбиты.


Laser Interferometer Space Antenna

И напоследок, давайте определим тягу ИРД, зная массу иона М=6,5∙10^-26 кг , ускоряющие напряжение U=50 кВ , ток нейтрализации I=0,5 А , элементарный заряд е=1,6∙10^-16 Кл .

Напряжение - это работа по переносу заряда, т.е. на выходе из сопла ион будет иметь кинетическую энергию равную произведению напряжения на заряд иона. Из кинетической энергии выражаем скорость (удельный импульс). Найдём массовый расход из определения тока, электрический ток - это проходящий заряд во времени. Получается, что массовый расход - это произведение массы иона и тока, делённое на заряд иона. Перемножая удельный импульс и массовый расход, получаем тягу равную 0,1 Н.

Подводя итог, хочу сказать, что существуют плазменные реактивные двигатели, у которых схожее устройство, но которые имеют намного больший массовый расход рабочего тела. Кто знает, может быть уже завтра на таких двигателях человечество будет летать на Марс и Луну.

Космические двигатели будущего

Создание ионного двигателя

Мы продоожаем рассказывать про виды двигателей .

Проблема перемещения в космосе стоит перед человечеством с момента начала орбитальных полетов. Ракета взлетая с земли расходует практически все свое топливо, плюс заряды ускорителей и ступеней. И если ракету еще можно оторвать от земли, заправив её огромным количеством топлива, на космодроме, то в открытом космосе заправляться попросту негде и нечем. А ведь после выхода на орбиту нужно двигаться дальше. А топлива нет.

И в этом то и состоит основная проблема современной космонавтики. Выбросить на орбиту корабль с запасом топлива до луны еще можно, под эту теорию строятся планы создать на луне базу дозаправки «дальнобойных» космических кораблей, летящих например на Марс. Но это все слишком сложно.

А решение проблемы было создано очень давно, еще в 1955 году, когда Алексей Иванович Морозов опубликовал статью «Об ускорении плазмы магнитным полем». В ней он описывал концепцию принципиально нового космического двигателя.

Устройство ионно плазменного двигателя

Принцип действия плазменного двигателя состоит в том, что рабочим телом выступает не сгорающее топливо, как в , а разогнанный магнитным полем до безумных скоростей поток ионов.

Источником ионов служит газ, как правило это аргон или водород, бак с газом стоит в самом начале двигателя, оттуда газ подается в отсек ионизации, получается холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева, высокоэнергетическая плазма подается в магнитное сопло, где она формируется в поток посредством магнитного поля, разгоняется и выбрасывается в окружающую среду. Таки образом достигается тяга.

С тех пор плазменные двигатели прошли большой путь и разделились на несколько основных типов, это электротермические двигатели, электростатические двигатели, сильноточные или магнитодинамические двигатели и импульсные двигатели.

В свою очередь электростатические двигатели делятся на ионные и плазменные (ускорители частиц на квазинейтральной плазме).

В данной статье мы напишем про современные ионные двигатели и их перспективные разработки, так как на наш взгляд именно за ними будущее космического флота.

Ионный двигатель использует в качестве топлива ксенон или ртуть. Первый ионный двигатель назывался сетчатый электростатический ионный двигатель.

Принцип его действия таков:

В ионизатор подается ксенон , который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны.

Положительные же ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против – 225 на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона.

Российские ионные двигатели. На всех хорошо видны катодные трубки, направленные в сторону сопла

Электроны, пойманные в катодную трубку выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается по двум причинам:

Во первых чтобы корпус корабля оставался нейтрально заряженным, а во вторых чтобы ионы «нейтрализованные» таким образом не притягивались обратно к кораблю.

Чтобы ионный двигатель работал нужны всего две вещи – газ и электричество. С первым все просто отлично, двигателю американского межпланетного аппарата Dawn, который стартовал осенью 2007-го, для полета в течении почти 6 лет потребуется всего 425 килограммов ксенона. Для сравнения для корректировки орбиты МКС с помощью обычных ракетных двигателей каждый год затрачивается 7,5 тонн горючего.

Одно плохо – ионные двигатели имеют очень небольшую тягу, порядка 50-100 миллиньютонов, что абсолютно недостаточно при перемещении в атмосфере Земли. Но в космосе, где нет практически никаких сопротивлений, ионный двигатель при длительном разгоне может достигнуть значительных скоростей. Общее приращение скорости за всё время миссии Dawn составит порядка 10 километров в секунду.

Тест ионного двигателя для корабля Deep Space

Недавние испытания проведенные американской компанией Ad Astra Rocket, проведенные в вакуумной камере показали, что их новый Магнитоплазменный двигатель с переменным удельным импульсом” (Variable Specific Impulse Magnetoplasma Rocket) VASIMR VX-200 может дать тягу уже в 5 ньютонов.

Второй вопрос – электричество. Тот же VX-200 потребляет 201 кВт энергии. Солнечных батарей такому двигателю просто мало. Следовательно необходимо изобретать новые способы получения энергии в космосе. Тут есть два пути – заправляемые батареи например тритиевые, выводимые на орбиту вместе с кораблем, либо автономный атомный реактор, который и будет питать кораблю на протяжении всего полета.

Во втором случае, в условиях космоса и его низких температур более интересно выглядит проект корабля с термоядерным реактором на борту, но пока НАСА разрабатывает только ядерный реактор.

Эти исследования проходят в рамках проекта Prometheus. В планах НАСА запустить в солнечную систему ядерный зонд, оснащенный мощными ионными двигателями, питающимися от бортового ядерного реактора.

Напоследок видео испытаний ионного двигателя VX-200.

Человек вышел в космос благодаря ракетным двигателям на жидком и твердом топливе. Но они же и поставили под вопрос эффективность космических полетов. Для того чтобы сравнительно небольшой хотя бы "зацепился" за его устанавливают на вершине ракеты-носителя внушительных размеров. А сама ракета, по сути, это летающая цистерна, львиная доля веса которой отведена под топливо. Когда все оно израсходуется до последней капли, на борту корабля остается мизерный запас.

Чтобы не упасть на Землю, периодически поднимает свою орбиту импульсами Топливо для них - примерно 7,5 тонны - несколько раз в году доставляют автоматические корабли. Но на пути к Марсу такой дозаправки не предвидится. Не пора ли распрощаться с устаревшими схемами и обратить внимание на более совершенный ионный двигатель?

Для того чтобы он заработал, безумных количеств топлива не потребуется. Только газ и электричество. Электроэнергия в космосе добывается улавливанием светового излучения Солнца панелями солнечных батарей. Чем дальше от светила, тем меньше их мощность, поэтому придется воспользоваться еще и Газ поступает в первичную камеру сгорания, где он бомбардируется электронами и ионизируется. Получившуюся холодную плазму отправляют на разгорев, а потом - в магнитное сопло, на разгон. Ионный двигатель выбрасывает из себя раскаленную плазму со скоростями, недоступными обычным ракетным двигателям. И получает необходимое ускорение.


Принцип работы настолько прост, что можно собрать демонстрационный ионный двигатель своими руками. Если электрод в форме вертушки предварительно сбалансировав, установить на острие иглы и подать высокое напряжение, на острых концах электрода появится синее свечение, создаваемое срывающимися с них электронами. Их истечение создаст слабую реактивную силу, электрод начнет вращаться.

Увы, ионные двигатели обладают настолько мизерной тягой, что не могут оторвать космический аппарат от поверхности Луны, не говоря уже о наземном старте. Наиболее наглядно это можно увидеть, если сравнить два корабля, отправляющихся к Марсу. Корабль с жидкостными двигателями начнет перелет после нескольких минут интенсивного разгона и потратит чуть меньше времени на торможение у Красной планеты. Корабль с ионными двигателями будет разгоняться два месяца по медленно раскручивающейся спирали, причем такая же операция ждет его в окрестностях Марса...


И все же ионный двигатель уже нашел свое применение: им оснащен ряд беспилотных космических аппаратов, отправленных в многолетние разведывательные миссии к ближним и дальним планетам Солнечной системы, в пояс астероидов.

Ионный двигатель - та самая черепаха, которая обгоняет быстроногого Ахилла. Израсходовав все топливо в считанные минуты, жидкостный двигатель умолкает навсегда и становится бесполезным куском железа. А плазменные способны работать годами. Не исключено, что ими будет оснащен первый космический аппарат, который на досветовой скорости отправится к - ближайшей к Земле звезде. Предполагается, что перелет займет всего лишь 15-20 лет.

Технология находится в процессе разработки!

Ионный двигатель создает возможность разогнать космический аппарат в условиях невесомости до скоростей, недоступных сейчас никаким другим из существующих типов космических двигателей.


Сущность, строение и принцип работы ионного двигателя:

– тип электрического ракетного двигателя , принцип работы которого основан на создании реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле.

Впервые устройство ионного двигателя было предложено русским ученым К.Э. Циолковским в 1906 г. В дальнейшем осуществлялось теоретическая проработка данного вопроса. В настоящее время происходит его практическое воплощение.

Работает, используя ионизированный газ и электричество .

Рабочим телом, как правило, является ионизированный инертный газ (аргон, ксенон и т. п.), но иногда и ртуть.

Инертный газ подается в ионизатор (газоразрядную, ионизирующую камеру) ионного двигателя . Сам по себе газ нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Зажигание двигателя инициируется кратковременной подачей электронов, эмитируемых в газоразрядную (ионизирующую) камеру. В ионизаторе высокоэнергетические электроны производят ионизацию рабочего тела – газа. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов.

Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны. Положительные же ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток (положительно-заряженной и отрицательно-заряженной). Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против -225 на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя космический аппарат, согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку (нейтрализатор), выбрасываются из двигателя под небольшим углом к соплу и потоку ионов.

Для выработки электричества используются солнечные батареи . Но в дальнейшем планируется использовать ядерные установки.

Использование внешнего магнитного поля в ионном двигателе позволяет повысить энергоэффективность системы.

Ионные двигатели характеризуются высоким импульсом. Они расходуют малое количество газа для совершения маневра.

Схема и устройство ионного двигателя:

Преимущества ионного двигателя для космического аппарата:

– создает возможность разогнать космический аппарат в условиях невесомости до скоростей, недоступных сейчас никаким другим из существующих типов космических двигателей,

расходует меньше топлива, чем обычные реактивные двигатели,

– в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах,

– для функционирования ионного двигателя достаточно небольшой электрической мощности – от 150 до 500 Ватт . Двигатели мощностью от 150 до 500 Ватт могут быть установлены на малые космические аппараты,

– низкая рабочая температура в отличии от обычных реактивных двигателей,

рабочее тело не обязательно должно быть высокой степени чистоты в отличии от обычного топлива в химических ракетах,

– простота сборки и эксплуатации конструкции,

ионный двигатель позволит увеличить срок эксплуатации космических аппаратов в 2-3 и более раза,

– для путешествия на Марс (и обратно) достаточно ионного двигателя мощностью порядка 50 кВт.

Перспективы применения ионных двигателей:

Применение ионных двигателей в космических аппаратах открывает новые перспективы развития космонавтики, в частности, запускаемых космических аппаратов.

Современные тенденции таковы, что доля запускаемых тяжелых космических аппаратов (свыше 1000 кг) неуклонно снижается и составляет порядка не более 30% от всех запусков.

Все более востребованными становятся малые космические аппараты, имеющие вес от 100 кг до 500 кг, находящиеся на низкой орбите до 1000 км. и функционирующие продолжительное время – в течение 5-10 лет.

К малым космическим аппаратам относятся спутники и системы мобильной связи и радионавигации, мониторинга Земли, атмосферы и околоземного космического пространства.

Ионные двигатели в ближайшем будущем позволят заменить двигатели орбитального движения малых космических аппаратов, что увеличит срок их активной работы (эксплуатации) в 2-3 раза и продлит срок их жизни с 2-3 лет до 5-10 лет.

В отдаленной перспективе планируется оснащать все, в т.ч. тяжелые, космические аппараты ионными двигателями, что позволит совершать путешествия к далеким планетам и звездам, пилотируемые экспедиции к планетам Солнечной системы, тяжелые транспортные перелеты.

Достигнутые технические характеристики ионного двигателя. Тяга, скорость, КПД ионного двигателя:

Применение ионных двигателей:

управление ориентацией и положением на орбите искусственных спутников Земли (в настоящее время),

главный тяговый двигатель небольшой автоматической космической станции (в настоящее время),

главный тяговый двигатель тяжелых космических аппаратов (в будущем).