Что такое дизель? Принцип работы, устройство и технические характеристики дизельного двигателя. Дизельный двигатель – история и развитие Будущие требования к дизелям легковых автомобилей

Задумывались ли вы уважаемые автомобилисты над тем, почему экономные Европейцы чаще всего приобретают автомобили с дизельными двигателями? Ведь уровень жизни и доходы на душу населения в Европе позволяет людям не сильно задумываться о стоимости топлива. Но не смотря на нормальное благосостояние граждан Европы они по-прежнему все-равно продолжают чаще всего покупать автомобили с дизельными моторами. И причина здесь между прочим не только в экономии топлива. Из-за одной только экономии педантичные Европейцы никогда бы не стали массово скупать дизельные автомобили. На самом деле в самом Евросоюзе связана с рядом иных преимуществ, которые имеют эти дизельные автотранспортные средства, если их сравненивать с бензиновыми аналогами. Давайте друзья вместе с нами (вами) узнаем подробно, а какие-же преимущества помимо экономии топлива есть у дизельных двигателей.

1. Дизельные двигатели более экономичные.


Как нам всем давно известно самое главное и значительное преимущество любого дизельного мотора по сравнению с бензиновыми аналогами, является его меньший . Низкий расход дизельного агрегата связан с его особенностью преобразования данного дизельного топлива в энергию. Так например, такой дизельный силовой агрегат более эффективно сжигает горючее (топливо), что позволяет ему получать от одного объема соженного топлива около 45 - 50% всей энергии. Бензиновый же мотор получает от того же объема приблизительно 30% энергии. То есть, 70% бензина сгорает просто впустую!!!

Кроме того, дизельные двигатели имеют более высокую степень сжатия, чем бензиновые моторы. А так как на степень этого сжатия влияет время воспламенения топлива, то соответственно получается, что чем выше степень сжатия, тем больший КПД имеет двигатель.

Также, все современные дизельные моторы из-за отсутствия в них дроссельной заслонки на впускном коллекторе более эффективны, которая как правило использовалась да и используется сегодня во всех бензиновых автомобилях. Это позволяет дизелям (моторам) избегать потери драгоценной энергии связаной с всасыванием воздуха, который необходим для воспламенения топлива в бензиновых двигателях.

2. Дизельные двигатели надежнее чем бензиновые.


За последние 50 лет дизельные моторы зарекомендовали себя, как более надежные, чем их бензиновые соконкуренты. Главной особенностью этого дизельного агрегата является отсутствие в самой машине системы зажигания, которая работает от высокого напряжения. В итоге получается, что в машине с дизельным мотором отсутствуют радиочастотные помехи от линии высокого напряжения, которые часто становятся виновниками проблем с электроникой автомобиля.

Так же считается, что большинство внутренних компонентов дизельного двигателя имеют более долгий срок службы и это действительно так. А все из-за более высокой степени сжатия, где компоненты такого дизельного силового агрегата уже изначально являются более долговечными.

Именно по этой важной причине в мире существует очень много дизельных автомобилей с пробегом около и не так много с таким же пробегом бензиновых машин.

Есть правда один существенный минус у дизельных моторов, который раньше не давал покоя всем поклонникам мощных автомобилей. Дело в следующем, у дизельных двигателей старого поколения на каждый литр объема мотора была (выдавалась) очень маленькая мощность. Но к нашему счастью инженеры решили эту проблему с появлением на авторынке машин с турбинами. В итоге, почти все современные дизельные моторы сегодня оснащаются турбинами, которые и позволяют им сравняться по мощности (а порой даже превзойти) с бензиновыми аналогами. В том числе, с развитием новых технологий в современных дизелях инженерам удалось минимизировать практически все его недостатки, которые преследовали долгое время эти дизельные моторы.

3. Дизельный двигатель сам автоматически сжигает топливо.

Еще одно главное преимущество всех дизельных моторов заключается в том, что дизельные автомобили как бы автоматически сами по себе, сжигают внутри себя топливо не затрачивая фактически для этого ни какой лишней энергии. Напомним своим читателям следующее, не смотря на то, что дизельный двигатель использует для себя четырехтактный цикл (впуск, сжатие, сгорание и выхлоп), сжигание дизельного топлива у него происходит как бы самопроизвольно прямо внутри двигателя от большой степени сжатия. для того-же сжигания топлива нужны (необходимы) свечи зажигания, которые постоянно находятся под высоким напряжением и выдают искру, которая и воспламеняет бензин в камере сгорания.

В дизельных же двигателях в свечах зажигания необходимости нет, а также ему не нужны и высоковольтные провода ну и т.п. составляющие. По этой причине затраты на содержание автомобилей с дизельными агрегатами значительно снижаются, если их сравнивать с тем же бензиновыми автомобилями, в которых периодически нужно менять свечи зажигания, высоковольтные провода и связанные с ними другие компоненты.

4. Стоимость дизельного топлива сопоставима со стоимостью того же бензина, или даже ниже.

Не смотря на то, что в России стоимость дизельного топлива находится на том же почти уровне, что и цена бензина, нужно отметить следущее, что стоимость дизельного топлива во многих странах мира в том числе и в странах Европы в сравнении с нашей страной, заметно ниже, чем тот же самый бензин. То есть получается, что помимо пониженного расхода топлива владельцы данных дизельных автомобилей в других странах мира тратят на диз-топливо гораздо меньше денег, чем остальные владельцы бензиновых автотранспортных средств.

Но даже с тем условием, что в нашей стране солярка стоит также как и бензин (или даже дороже), то преимущество по той же эффективности данных дизельных автомобилей очевидно многим. Ведь запас хода машины на полном залитом баке диз-топлива получается на много больше, чем на том же автомобиле оснащенном бензиновым силовым агрегатом.

5. Более низкая стоимость владения.


С таким преимуществом (владением автомобиля с бензиновым двигателем) поспорить конечно трудно, так как в определенных случаях сама стоимость технического обслуживания и ремонта дизельных автомобилей значительно может превысить стоимость ТО (техобслуживание) бензиновых машин. И это действительно неоспоримый и доказанный факт. Но вот с другой стороны, если брать общие затраты, то стоимость владения дизельным автомобилем в совокупности получается значительно меньше, чем того-же бензинового аналога. Особенно на тех мировых авторынках, где наблюдается повышенный спрос именно на дизельные автомашины. Поясним нашим читателям, дело в том, что в стоимости владения машиной необходимо всегда учитывать на подержанном рынке и конкретную потерю рыночной цены автомобиля и естественный износ всех автозапчастей в процессе эксплуатации ТС (транспортного средства). Как правило дизельные автомобили теряют в цене намного меньше (и медленнее), чем те же бензиновые аналоги. Также, из-за более высокой долговечности деталей дизельного двигателя данные автомобили имеют более долгий срок своей службы, что естественно позволяет затрачивать значительно меньшие суммы денежных средств на .

Таким образом можно сказать, что в долгосрочной перспективе (от 5 лет и выше) владение дизельной машиной более выгодней, чем автомобилем с бензиновым агрегатом. Правда здесь друзья необходимо заметить, что стоимость дизельных автомоделей как правило бывает значительно выше бензиновых. Но, если вы в перспективе будете долгое время владеть таким диз-автомобилем и проезжать на нем 20.000 - 30.000 тыс. км в год, то такая переплата окупиться для вас за счет той-же экономии топлива.

6. Дизельные автомобили более безопасные.

На протяжении многих лет было доказано следующее, что дизельное топливо значительно безопаснее того-же самого бензина по нескольким причинам. Во-первых,- солярка меньше подвержена быстрому и легкому воспламенению (возгоранию) в сравнении ее с бензином. Например, то самое дизельное топливо не воспламеняется как правило при воздействии на него высокого источника тепла.

Во-вторых,- дизельное топливо не выделяет опасных паров, как тот-же бензин. В итоге вероятность воспламенения паров салярки что может вызвать пожар автомобиля, в дизельных автотранспортных средствах значительно ниже, чем в тех же бензиновых.

Все эти факторы делают дизельные автомобили на дорогах по всему миру намного безопаснее в отличии от бензиновых машин. Например, в случаях возникновения ДТП.

7. В выхлопе дизельного автомобиля меньше окиси углерода, чем в бензиновом.


С самого начала появления этих турбин инженеры столкнулись с определенной проблемой, которая была связана с питанием этих турбокомпрессоров. Как правило, сама крыльчатка турбины вращается за счет энергии, получаемой от выхлопных газов автомобиля. Если же сравнивать бензиновые и дизельные автомобили между собой, то турбины в дизельных моторах работают куда более эффективней, так как в дизельном автомобиле количество выхлопных газов на вырабатываемый объем гораздо больше, чем в бензиновом агрегате. Именно по этой причине турбокомпрессор(ы) дизельного мотора выдает(ют) максимальную мощность намного быстрее и раньше бензиновых автомобилей. То есть, уже на низких оборотах начинают ощущать максимальную мощность машины и ее крутящий момент.

9. Дизельные моторы без дополнительных модификаций могут работать на синтетическом топливе.

Еще одно главное преимущество дизельных двигателей это возможность их работы на синтетическом топливе без каких-либо существенных изменений в конструкции силового агрегата. Бензиновые же двигатели тоже по сути могут работать на альтернативном топливе. Но им для этого необходимы значительные изменения в самой конструкции силового агрегата. Иначе бензиновый двигатель работающий на альтернативном топливе просто быстро выйдет из строя.

В настоящий момент экспериментирует с биобутанолом (топливом), который отличным образом подходит в виде того синтетического биотоплива для всех бензиновых автомобилей. Этот вид топлива возможно не будет причинять бензиновым автомобилям никого существенного вреда без проведения каких-либо изменений в конструкции двигателя.

Принцип работы которого основан на самовоспламенении топлива при воздействии горячего сжатого воздуха.

Конструкция дизеля в целом мало чем отличается от бензинового двигателя , за исключением того, что в дизеле отсутствует как таковая система зажигания, поскольку воспламенение топлива происходит по другому принципу. Не от искры, как в бензиновом двигателе, а от высокого давления, с помощью которого сжимается воздух, из-за чего тот сильно разогревается. Высокое давление в камере сгорания накладывает особые требования к изготовлению деталей клапанов, которые предназначены для восприятия более серьезных нагрузок (от 20 до 24 единиц).

Дизельные двигатели применяются не только на грузовых, но и на многих моделях легковых автомобилей. Дизели могут работать на различных типах топлива - на рапсовом и пальмовом масле, на фракционных веществах и на чистой нефти.

Принцип действия дизельного двигателя

Принцип действия дизеля основан на компрессионном воспламенении топлива, которое попадает в камеру сгорания и смешивается с горячей воздушной массой. Рабочий процесс дизеля зависит исключительно от неоднородности ТВС (топливно-воздушной смеси). Подача ТВС в таком типе двигателя происходит раздельно.

Вначале подается воздух, который в процессе сжатия нагревается до высоких температур (около 800 градусов по Цельсию) , затем в камеру сгорания под высоким давлением (10-30 МПа) подается топливо, после чего происходит его самовоспламенение.

Сам процесс воспламенения топлива всегда сопровождается высокими уровнем вибраций и шума, поэтому двигатели дизельного типа являются более шумными в сравнении с бензиновыми собратьями.

Подобный принцип работы дизеля позволяет использовать более доступные и дешевые (до недавнего времени:)) виды топлива, снижая уровень затрат на его обслуживание и заправку .

Дизели могут иметь как 2, так и 4 рабочих такта (впуск, сжатие, рабочий ход и выпуск). Большинство автомобилей оснащено 4-х тактовыми дизельными двигателями.

Типы дизельных двигателей

По конструкционным особенностям камер сгорания дизели можно разделить на три типа:

  • С разделенной камерой сгорания. В таких устройствах подача топлива осуществляется не в основную, а в дополнительную, т.н. вихревую камеру, которая располагается в головке цилиндрового блока и соединяется с цилиндром каналом. При попадании в вихревую камеру воздушная масса максимально сжимается, тем самым улучшая процесс воспламенения топлива. Процесс самовоспламенения начинается в вихревой камере, затем переходит в основную камеру сгорания.
  • С неразделенной камерой сгорания. В таких дизелях камера располагается в поршне, а топливо подается в пространство над поршнем . Нераздельные камеры сгорания с одной стороны позволяют экономить расход топлива, с другой стороны - повышают уровень шума при работе двигателя.
  • Двигатели предкамерные. Подобные дизели оснащаются вставной форкамерой, которая соединяется с цилиндром тонкими каналами. Форма и размер каналов определяют скорость движения газов при сгорании топлива, снижая уровень шума и токсичности, увеличивая ресурс работы двигателя.

Топливная система в дизельном двигателе

Основой любого двигателя дизельного типа является его топливная система. Основной задачей топливной системы является своевременная подача нужного количества топливной смеси под заданным рабочим давлением.

Важными элементами топливной системы в дизельном двигателе являются:

  • насос высокого давления для подачи топлива (ТНВД);
  • топливный фильтр;
  • форсунки

Топливный насос

Насос отвечает за подачу топлива к форсункам по установленным параметрам (в зависимости от числа оборотов, рабочего положения регуляторного рычага и давления турбонаддува). В современных дизельных двигателях могут применяться два типа насосов для топлива - рядные (плунжерные) и распределительные.

Топливный фильтр

Фильтр является важной составляющей частью двигателя дизельного типа. Топливный фильтр подбирается строго в соответствии с типом двигателя. Фильтр предназначен для выделения и удаления из топлива воды, и лишнего воздуха из топливной системы.

Форсунки

Форсунки не менее важные элементы топливной системы в дизеле. Своевременная подача топливной смеси в камеру сгорания возможна только при взаимодействии топливного насоса и форсунок. В дизелях применяются два типа форсунок - с многодырчатым и шрифтовым распределителем. Распределитель форсунок определяет форму факела, обеспечивая более эффективный процесс самовоспламенения.

Холодный пуск и турбонаддув дизельного двигателя

Холодный пуск отвечает за механизм предпускового подогрева. Это обеспечивается за счет электрических нагревательных элементов - свечей накаливания, которыми оснащена камера сгорания. При запуске двигателя свечи накаливания достигают температуры в 900 градусов, подогревая воздушную массу, которая попадает в камеру сгорания. Питание со свечи накаливания снимается через 15 секунд после запуска двигателя. Системы подогрева перед запуском двигателя обеспечивают его безопасный запуск даже при низких атмосферных температурах.

Турбонаддув отвечает за повышение мощности и эффективности работы дизеля. Он обеспечивает подачу большего количества воздуха для более эффективного процесса сгорания топливной смеси и увеличения рабочей мощности двигателя. Для обеспечения нужного давления наддува воздушной смеси во всех рабочих режимах двигателя применяется специальный турбонагнетатель.

Остается только сказать, что споры относительно того, что лучше выбрать рядовому автолюбителю в качестве силовой установки в свой автомобиль, бензин или дизель , не утихают до сих пор. Преимущества и недостатки есть у обоих типов двигателя и выбирать необходимо, исходя из конкретных условий эксплуатации автомобиля.

Соглашение об использовании материалов сайта

Просим использовать работы, опубликованные на сайте , исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Топливо для дизелей, конструкция и работа системы питания дизеля топливом и воздухом, система выпуска отработавших газов, топливный насос высокого давления, форсунки. Топливо для газовых двигателей, конструкция и работа систем питания газовых двигателей.

    реферат , добавлен 29.01.2010

    Общие принципы работы тепловозных дизелей. Идеальный цикл Карно. Схемы устройства, принципов работы и индикаторные диаграммы четырехтактного дизеля. Дизельное топливо и варианты наддува цилиндров. Состав сырой нефти. Схема роторного нагнетателя воздуха.

    курсовая работа , добавлен 27.07.2013

    Характеристика основных вспомогательных систем тепловозных дизелей - топливной, водяной и масляной. Назначение фильтров предварительной, грубой и тонкой очистки топлива. Конструкция приборов для забора, очистки воздуха и выпуска отработавших газов.

    реферат , добавлен 27.07.2013

    Устройство и назначение системы питания двигателя КамАЗ–740. Основные механизмы, узлы и неисправности системы питания двигателя, ее техническое обслуживание и текущий ремонт. Система выпуска отработанных газов. Фильтры грубой и тонкой очистки топлива.

    реферат , добавлен 31.05.2015

    Назначение системы питания дизельного двигателя. Методы, средства и оборудование для диагностирования системы питания дизельного двигателя грузовых автомобилей. Принцип работы турбокомпрессора. Техническое обслуживание и ремонт грузовых автомобилей.

    курсовая работа , добавлен 11.04.2015

    Устройство системы питания дизельного двигателя. Фильтр тонкой очистки топлива и питание дизеля КамАЗ-740 воздухом. Основные возможные неисправности в системе, способы их устранения. Перечень работ при техническом обслуживании, технологическая карта.

    контрольная работа , добавлен 09.12.2012

    Основные размерения судна. Технические характеристики оборудования. Физико-химические показатели топлива. Анализ маслоиспользования и водоиспользования. Система пожаротушения углекислым газом. Диагностика дизелей. Автоматическая водораспыливающая система.

    отчет по практике , добавлен 17.03.2016

Проф. д-р. Франц К. Мозер, АВЛ Лист ГмбХ (Prof. Dr. Franz X. Moser, AVL List GmbH)

Введение

За последние десять – двадцать лет произошло ускоренное развитие дизельных двигателей как для легковых, так и для грузовых автомобилей. Значительно увеличились мощности, резко снизилась токсичность отработавших газов, главным образом за счет сокращения выбросов NOx и сажи. Было достигнуто значительное снижение шума, расхода топлива, улучшилась надежность, увеличились интервалы технического обслуживания, особенно для двигателей грузовиков. В результате всего этого дизели стали незаменимыми для всех типов транспортных средств и заняли значительную долю рынка силовых агрегатов (в Европе более 50%).

В настоящее время во всем мире ставится вопрос: по какому пути пойдет дальнейшее развитие дизеля под давлением ужесточающегося с каждым годом законодательства по токсичности транспортных средств? Может быть, в сегменте легковых автомобилей дизели исчезнут совсем, как прогнозируют некоторые эксперты? Ведь и бензиновые двигатели не стоят на месте и догоняют своего дизельного конкурента по расходу топлива. А в будущем дизельные моторы будут еще дороже бензиновых: стоимость и без того уже более дорогого дизеля будет возрастать из-за сложных систем очистки отработавших газов. Какие меры необходимы для того, чтобы сделать дизели будущего конкурентоспособными? Как будут выглядеть дизели будущего для легковых и грузовых автомобилей? Для легковых автомобилей доведенный бензиновый мотор с непосредственным впрыском топлива и турбокомпрессором, несомненно, может стать альтернативой дизелю. Для грузовых автомобилей и промышленности это менее вероятно.

На сегодняшний день дизель обладает самой обширной областью применения и самым большим спектром мощностей среди всех существующих моторов вообще, поэтому заменить его невозможно (рисунок 1). В дополнение следует заметить, что КПД дизельных двигателей, как видно на рисунке, достигает более 40% для малых агрегатов и более 50% у самых больших судовых и стационарных двигателей, что не может быть достигнуто никаким другим типом ДВС.

Рисунок 1. Область применения и КПД дизельных двигателей.


За последние 20 лет произошло удвоение удельной мощности и удельного крутящего момента дизелей легковых автомобилей (рисунок 2).

Рисунок 2. Соотношение удельной мощности к удельному крутящему моменту дизелей для легковых автомобилей.


У дизелей для грузовых автомобилей удельная мощность с 1970 г. увеличилась почти втрое, несмотря на то, что за последние пятнадцать лет токсичность выхлопных газов намного уменьшилась (рисунок 3).

Рисунок 3. Рост удельной мощности дизелей для грузовых автомобилей.


Параллельно этому развитию происходит постоянное увеличение максимального давления в камере сгорания с 90 Бар до 220 Бар (рисунок 4). Подобная тенденция наблюдается и в секторе дизелей для легковых автомобилей, где в недалеком будущем ожидаются максимальные давления в диапазоне от 180 до 200 Бар.

Рисунок 4. Рост максимального давления в камере сгорания дизелей грузовых автомобилей.


Будущие требования к дизелям легковых автомобилей

Из всего множества различных требований стоит особенно обратить внимание на следующие четыре: расход топлива, токсичность, комфорт при вождении автомобиля (например, тяговые качества, ездовые характеристики, акустика) и стоимость двигателя. Благодаря пониженному расходу топлива и хорошим тяговым характеристикам, возникающим при высоком крутящем моменте на низких частотах вращения коленчатого вала, дизель с непосредственным впрыском топлива занял большую долю рынка в Европе. Но уже сейчас, и особенно в перспективе, выполнение будущих законодательств по токсичности, а также относительно высокая себестоимость являются препятствием, преодоление которого будет являться основным направлением дальнейшей работы (рисунок 5).

Рисунок 5. Требования рынка к дизелю для легковых автомобилей.


Законодательство по нормам токсичности отработавших газов, начиная с норм EU4, представлено на рисунке 6. При этом следует учесть, что для достижения норм EU6 или US Tier2, Bin5, которые еще обсуждаются, необходимо разработать и принять множество мер.

Рисунок 6. Законодательства разных регионов по выбросу токсичных веществ для легковых автомобилей.


Еще сложнее будет выполнить будущие ограничения по CO2, особенно если учесть состояние продуктов различных производителей на сегодняшний день (рисунок 7). Прежде всего, производителям более тяжелых автомобилей предстоит большая работа для достижения поставленной цели: 120-130 г/км в 2012 году.

Рисунок 7. Законодательство по ограничению выбросов CO2 – стимулирование развития технологий ДВС.


Особые направления разработок дизелей легковых автомобилей

Учитывая обозначенные выше проблемы дизелей для легковых автомобилей, необходимы особые стратегии развития, нужны новые технические решения и подходы. Существует три возможных пути дальнейшего выполнения требований законодательства по токсичности, схематически представленные на рисунке 8. Во всех трех вариантах необходим фильтр частиц для достижения очень жестких ограничений по выбросам. Для уменьшения выбросов NOx возможно использование:

Рисунок 8. Стратегии уменьшения токсичности отработавших газов дизельных двигателей легковых автомобилей.


1) системы DeNOx, обладающей очень высокими показателями конвертирования;

2) особой организации рабочего процесса (улучшенный обычный рабочий процесс или альтернативный);

3) комбинации вышеуказанных вариантов 1) и 2).

Предположительно в 2015 г. будут реализованы все три варианта.

На данный момент специалисты АВЛ предпочитают способ, основанный полностью на оптимизации рабочего процесса, названный EmIQ (Intelligente Emissionsreduzierung - «умное» снижение токсичности), Рисунок 9.

Рисунок 9. Общий подход АВЛ к доводке рабочего процесса дизеля для легковых автомобилей.


При этом, с одной стороны, рабочий процесс оптимизируется в классическом смысле для достижения пониженных показателей выбросов NOx (рисунок 10), с другой стороны, производится особый контроль процесса сгорания (рисунок 11).

Рисунок 10. EmIQ Ч асть 1, процесс сгорания.


Рисунок 11. EmIQ Ч асть 2, управление рабочим процессом.


В рамках оптимизации рабочего процесса сгорания для достижения требуемого расхода топлива и удельной мощности возможно использование двухступенчатого наддува (рисунок 12) и доводка степени рециркуляции ОГ (в виде «внешней» рециркуляции ОГ - газов низкого давления из выпускного коллектора), рисунок 13.

Рисунок 12. Д вухступенчатый наддув: концепция и эффект.


Рисунок 13. Рециркуляция выхлопных газов низкого давления на дизелях различного назначения.


Для контроля оптимизированного процесса сгорания фирмой АВЛ был разработан основанный на физической модели алгоритм контроля CYPRESS™, основанный на давлении рабочей смеси как входном сигнале, схематически изображенный на Рисунке 14.

Рисунок 14. Основанный на давлении рабочей смеси как входном сигнале замкнутый цикл процесса сгорания, AVL CYPRESSTM.


Такой подход обеспечивает помимо прочего не только низкий выброс вредных веществ, но и ограничение разброса, возникающего из-за производственных погрешностей, что гарантирует стабильность процесса сгорания в течение длительного периода эксплуатации. Помимо этих основных эффектов также достигается ряд других преимуществ, приведенных на рисунке 15. Уже долгое время эксплуатируется демонстрационный автомобиль, показывающий осуществимость достижения ожидаемых результатов.

Рисунок 15. Результаты контроля процесса сгорания как замкнутого цикла AVL CYPRESSTM


Для достижения целей, поставленных к 2015 году, помимо вышеперечисленных подходов необходимы дополнительные решения (рисунок 16).

Рисунок 16. Технологии будущего дизелей для легковых автомобилей.


За счет оптимизации различных решений и технологий станет возможным не только удовлетворить все требования мировых законодательств по токсичности, но и одновременно сохранить или даже улучшить показатели расхода топлива, причем не за счет ухудшения важных для потребителя ездовых качеств, «удовольствия» от во ждения и управления автомобилем. Большим препятствием на этом пути является стоимость производства. Вышеописанные решения повлекут за собой дальнейшее повышение стоимости дизеля, хотя по сравнению со стоимостью доработанного бензинового двигателя разница в стоимости может и уменьшиться, так как и для бензиновых двигателей ожидается подорожание.

В заключение на рисунке 17 приведен обобщенный временной график внедрения вышеуказанных и некоторых дополнительных технических решений. Становится очевидным, что для того, чтобы в 2015 году надежно выполнялись требования к двигателям серийного производства, необходимо не только одновременно комбинировать многие из этих решений, но и начать работы по их разработке/реализации уже сегодня.

Рисунок 17. Пути развития технологий дизельных моторов для легковых автомобилей.


Будущие требования к дизелям грузовых автомобилей

Несмотря на то, что ряд будущих требований к дизелям для грузовых автомобилей аналогичен требованиям к легковым автомобилям, для двигателей грузовых и внедрение компенсирующих решений. На рисунке 18, в отличие от диаграммы для дизелей легковых автомобилей, критерий «удовольствие от вождения» заменен критерием «надежность и долговечность».

Рисунок 18. Требования рынка к дизелям средних и тяжелых грузовиков.


Основным направлением разработок будет компенсация ожидаемых ухудшений, которые возникнут вследствие введения ограничений по токсичности. Это означает, что необходимо искать решения, противодействующие: увеличению расхода топлива, ухудшению надежности и долговечности и увеличению стоимости продукта. В этом сегменте потребитель никогда не пойдет ни на какие компромиссы, особенно касающиеся расхода топлива и долговечности.

Учитывая эти условия, мировые ограничения по токсичности являются особым препятствием. На рисунке 19 представлены максимально допустимые значения выбросов сажи и NOx в США, Японии и Европе, которые будут действовать примерно с 2010 года, а также необходимые для их выполнения значения «сырой» эмиссии. За основу этой оценки взято значение эффективности системы очистки отработавших газов, которое возможно при использовании систем, имеющихся на сегодняшний день.

Рисунок 19. Ограничения токсичности ОГ для дизелей грузового транспорта и необходимые для этого «сырые» эмиссии.


Становится очевидным, что должны быть достигнуты выбросы сажи около 0,08 г/кВт*ч и NOx - 1,5 г/кВт*ч. Это актуально и для Японии, хотя предельно допустимый выброс NOx там менее строг, чем в США и в Европе (0,7 г/кВт*ч). Причиной этого является специфика работы транспортных средств в Японии, которая редко допускает достижение необходимой температуры отработавших газов для обеспечения работоспособности системы их нейтрализации. Эффективность системы очистки ОГ, достигающая в Японии 65-70%, намного ниже, чем в США и Европе, что в конечном итоге требует соблюдения адекватного уровня «сырой» эмиссии.

В отличие от легковых автомобилей, процедура сертификационных испытаний дизелей производится на моторном стенде. При этом проводятся как стационарные, так и нестационарные, так называемые транзиентные испытания, при которых двигатель, в отличие от испытаний двигателей легковых автомобилей, долгое время работает в режиме полной нагрузки. Это сильно усложняет задачу, т.к. в режиме полной нагрузки особенно сложно обеспечить и регулировать необходимую степень рециркуляции отработавших газов.

Грузовые автомобили классифицируются на легкие, средние и тяжелые. Обычно в этих трех классах применяются двигатели с рабочим объемом цилиндров примерно 0,8-1,2-2,0 л/цилиндр, к которым, в зависимости от класса, применяются разные требования. На рисунке 20 изображены основные требования к двигателям в этих классах, причем чем больше рабочий объем цилиндров двигателя (т.е. сам двигатель), тем большее значение придается расходу топлива, надежности и долговечности.

Рисунок 20. Требования к дизелям грузовых автомобилей.


В отношении стоимости двигателя ситуация прямо противоположна, так как легкие грузовые автомобили для доставок товаров к местам назначения особенно дороги в эксплуатации, причем расход топлива здесь не играет большой роли из-за относительно небольших годовых пробегов. Рассматривая будущие технические требования (рисунок 21), стоит отдельно отметить такие параметры, как удельная мощность, максимальное давление сгорания, долговечность и интервалы технического обслуживания.

Рисунок 21. Будущие технические требования к дизелям для грузовых автомобилей.


Значения этих параметров заметно возрастают с ростом рабочего объема двигателя. Также представляет интерес распределение общих эксплуатационных расходов, где для тяжелых грузовиков расход топлива составляет одну треть, что и объясняет такое повышенное внимание к этому параметру.

Особености развития дизелей грузовых автомобилей

Как уже было упомянуто выше, сертификационные испытания дизелей грузовых автомобилей проводятся на моторном стенде. Помимо стационарных испытаний во всех режимах, требуются также и транзиентные испытания, которые отличаются друг от друга в зависимости от страны по типам выбранных нагрузочных режимов. Помимо европейских, японских и американских транзиентных испытаний обсуждается и подготавливается обобщенное, так называемое „World Harmonized Transient Cycle“ испытание - WHTC. На рисунке 22 представлены эти четыре типа испытаний (на графиках с осями «крутящий момент» / «частота вращения коленчатого вала»).

Рисунок 22. Анализ различных транзиентных циклов


Становится очевидным, что распределение основных режимов нагрузок весьма различно, что делает унификацию моторов почти невозможной. Применение испытания WHTC решило бы эту проблему, но возникают сомнения, произойдет ли его внедрение. Выполнение требований на различных испытательных циклах сложно для каждого отдельного из них, так как нестационарные режимы в эксплуатации все больше и больше являются камнем преткновения.

Особенно сложным является прохождение испытаний, которые проводятся в режимах малых нагрузок и оборотов, как, например, на японском цикле или на цикле WHTC. Проще всего выполняются требования цикла USTC, где преобладают высокие частоты вращения коленчатого вала двигателя.

В течение последних лет на фирме АВЛ были достигнуты выдающиеся результаты на стационарных режимах (рисунок 23).

Рисунок 23. Результаты разработок по достижению минимальных выбросов сажи и NOx.


При этом применялись улучшенные и доработанные процессы сгорания, высокие или очень высокие степени рециркуляции отработавших газов и чрезвычайно высокие давления впрыска топлива - до 2500 бар. «Сырые» эмиссии NOx - 1,0 г/кВт*ч и сажи - 0,02 г/кВт*ч были достигнуты при сохранении вполне приемлемого расхода топлива.

Для достижения таких значений «сырых» эмиссий необходимы очень высокие давления впрыска топлива, до 2500 бар (рисунок 24). А для реализации удельной мощности более 28 кВт/л на двигателе, выполняющем требования EU6, не обойтись без применения двухступенчатого турбонаддува.

Рисунок 24. Максимальное давление газов в камере сгорания в зависимости от удельной мощности и степени рециркуляции отработавших газов для различных уровней выбросов / норм токсичности.


Необходимость в таких высоких давлениях объясняется большой степенью рециркуляции отработавших газов, необходимой также и на режимах полной нагрузки, так как в этом случае для обеспечения необходимого коэффициента избытка воздуха? требуются значительно более высокие давления воздуха во впускном коллекторе. Поэтому становится необходимой совершенно новая, очень жесткая и прочная конструкция блока и головки цилиндров, предпочтительно из высокопрочного чугуна (вермикулярный графит), а также «параллельное» расположение впускных каналов.

В свою очередь такая особая конструкция головки цилиндров в совокупности с требованием высокой эффективности работы моторного тормоза делает необходимым расположение валов газораспределения, одного или двух, в головках цилиндров (OHC или DOHC).

Сложность работы двигателя на транзиентных режимах для различных циклов испытаний отображена на рисунке 25. На тех испытаниях, где часто происходит разгон с низких оборотов, а именно испытания JPTC и WHTC, наблюдается значительное увеличение выбросов NOx и сажи по сравнению со стационарным режимом.

Рисунок 25. Увеличение выбросов на переходных режимах.


Таким образом, будущие требования по токсичности могут быть удовлетворены только интенсивными разработками и улучшением работы двигателя на переходных режимах, а прежний, преимущественно стационарный подход к оптимизации поршневого двигателя, устарел.

Особенностью дизелей грузовых транспортных средств является необходимость единовременного контроля взаимозависимых параметров «давление воздуха во впускном коллекторе» и «степень рециркуляции отработавших газов». Вместо двух раздельных контроллеров на фирме АВЛ был разработан так называемый MMCD™ контроллер: один контроллер с несколькими переменными величинами, который, основываясь на физической модели, компенсирует интерференцию обоих переменных параметров (рисунок 26).

Рисунок 26. Концепция и результаты основанного на физической модели алгоритма контроля давления воздуха во впускном коллекторе и процента рециркуляции отработавших газов.


Таким образом, возможно значительное уменьшение выбросов NOx на переходном режиме при сохранении уровня выбросов сажи неизменным (рисунок 27).

Рисунок 27.Уменьшение выбросов на переходных режимах с помощью AVL MMCDTM контроллера.


На рисунке 28 приведены технологии и решения, с помощью которых удастся выполнить будущие требования для дизелей грузовых автомобилей. При этом должен быть предусмотрен фильтр для частиц и система SCR (впрыск мочевины). Применение топливных систем, обеспечивающих высокие давления впрыска, может быть достаточным и иметь преимущества перед использованием фильтра, конечно, если это будет совместимо с общими «политическими» тенденциями.

Рисунок 28. Технологии для будущих дизелей тяжелых грузовиков


Дизель в 2015 году

Необходимые технологии дизелей легковых и грузовых автомобилей для соответствия требований 2015 года известны.

В обеих областях разработки будут проходить эволюционным путем, технологические «скачки» не предвидятся, да и не требуются.

Учитывая большое количество новых технологий, которые необходимо будет внедрить в серийное производство, начинать работы по их разработкам нужно уже сегодня.

Как и до сих пор, большую часть работ для достижения целей должны будут везти производители двигателей.

На сегодняшний день ситуация оценивается таким образом, что двигатели для развивающихся стран едва ли будут в корне отличаться по своему технологическому уровню от двигателей для индустриально развитых стран.

Двигатель и система нейтрализации токсичности отработавших газов должны рассматриваться как единое целое.

Дизель для легковых автомобилей в 2015 году будет обладать следующими свойствами:

Максимальное давление газов в камере сгорания 180-200 бар, облегченные конструкции, преимущественно применение чугуна для блока и головки цилиндров.

Удельные мощности до 75 кВт/л, двухступенчатый турбонаддув с или без промежуточного охлаждения наддувочного воздуха.

Гибкая система впрыска топлива Common Rail, возможность обеспечения давления впрыска до 2000 бар.

Оптимизированная, высокотехнологичная система контроля расхода воздуха и рециркуляции отработавших газов, основанная на физической модели алгоритма контроля.

Основанный на давлении рабочей смеси, как входном сигнале, замкнутый цикл процесса сгорания и физический модельный алгоритм контроля процесса сгорания. На режимах неполных (частичных) нагрузок смешанные альтернативные (гомогенные - гетерогенные) рабочие процессы (напр. HCCI).

Фильтр частиц как базовая модификация, конвертирование NOx преимущественно с помощью SCR (впрыск мочевины), возможно также адсорбирование NOx.

Дизель для грузовых автомобилей в 2015 году будет обладать следующими свойствами:

Максимальное давление газов в камере сгорания 220-250 бар, оптимизированная конструкция головки и блока цилиндров из чугуна.

Удельные мощности 35–40 кВт/л, двухступенчатый турбонаддув с или без промежуточного охлаждения наддувочного воздуха, комбинированный наддув.

Гибкая система впрыска, обеспечение давления впрыска до 2500 бар, предпочтительно Common Rail, стандартизированные форсунки.

Привод валов газораспределения со стороны маховика, расположение валов газораспределения, одного или двух, в головке цилиндров (OHC или DOHC).

Высокоэффективный, встроенный моторный тормоз.

Оптимизированная, высокотехнологичная система контроля расхода воздуха и рециркуляции отработавших газов, основанная на физической модели алгоритма контроля; степень рециркуляции на режимах полной нагрузки до 30%.

Фильтр частиц как базовая комплектация, возможно применение «открытого» фильтра, SCR (впрыск мочевины).

За дополнительной информацией, пожалуйста, обращайтесь по указанным ниже адресам:

Проф., доктор Франц. К. Мозер Исполнительный вице-президент AVL LIST GMBH A-8020 Graz, Hans-List-Platz 1 email: [email protected] Тел.: +43 316 787 1200, Факс: +43 316 787 965 www.avl.com

Г-н Левит Семен Моисеевич Директор по развитию бизнеса «Силовые установки транспортных средств» в России и СНГ ООО «АВЛ» Россия, 127299, Москва, ул. Б. Академическая, д.5, стр.1 email: [email protected] Тел.: +7 495 937 32 86, Факс: +7 495 937 32 89

Использование дизельных двигателей

После изобретения Дизеля, его двигатель, претерпев некоторые изменения в течении ста лет стал самым востребованным и практичным в использовании в разных областях деятельности. Главной его особенностью стала высокая эффективность и экономичность.
Сегодня дизельный двигатель используют:

    на стационарных силовых агрегатах;

    на грузовых и легковых машинах;

    на тяжелых грузовиках;

    на сельхоз/спец/строительной технике;

    на тепловозах и судах.

Дизели могут иметь рядную и V-образную структуру. Без проблем работают с системой наддува воздуха.

Основные параметры

При эксплуатации двигателя, важны следующие параметры:

    мощность двигателя;

    удельная мощность;

    экономичная, и в тоже время надежная эксплуатация;

    практичная компоновка в силовом отсеке;

    комфорт и совместимость с окружающей средой.

От того, в какой области деятельности применяется дизель, будет меняться его внутренняя конструкция.

Применение дизельного двигателя

    Стационарные силовые агрегаты
    Рабочие обороты, в стационарных агрегатах как правило фиксированные, поэтому двигатель и система питания должны работать вместе в постоянном режиме. В зависимости от интенсивности нагрузки, подача топлива контролируется регулятором частоты вращения коленчатого вала, для поддержания заданных оборотов. На стационарных силовых агрегатах чаще всего используют аппаратуру впрыска с механическим регулятором. Иногда как стационарные могут использоваться и двигатели для легковых авто и грузовиков, но только при правильно настроенном регуляторе.

    Легковые авто и легкие грузовики

    На легковых автомобилях используются быстроходные дизели т. е. способные развивать высокий крутящие момент в широком диапазоне частот вращения коленчатого вала. Система с электронным управлением впрыска Common Rail получила здесь своё широкое применение. Электроника отвечает за впрыск определенного количества топлива и этим достигается полное сгорание, повышение мощности и экономичность. В Европе дизельные легковые автомобили оснащаются системами впрыска топлива, т. к. расход топлива у них ниже, чем у двигателей с разделенными камерами сгорания (на 15-20%).

    Эффективной системой повышения мощности двигателя является турбонаддув. Для создания наддува во всех режимах работы двигателя используется турбонагнетатель.

    Ограничение по нормам токсичности отработавших газов (ОГ) и рост мощности обеспечили использование систем впрыска топлива с большим давлением. Ограничения содержания вредных веществ в ОГ обусловили постоянное совершенствование конструкции дизелей.

    Тяжелые грузовые автомобили

    Основным критерием здесь является экономичность, поэтому для грузовых автомобилей применяют дизельные двигатели с системой непосредственного впрыска топлива. Частота вращения коленчатого вала здесь достигает 3500 оборотов. К этим двигателям также применимы жесткие требования норм по отработавшим газам, это говорит о контроле и высоких требованиям качества к существующей системы, а также к разработке новых.

    Строительная спец/сельскохозтехника

    Самое широкое использование дизель получил именно здесь. Основными критериями здесь стали не только экономичность, но и надежность, просто и удобство в обслуживании. Мощности и шумности не придается такое значение, как например для легковых дизельных авто. На спец/сельхозтехнике используют дизели различной мощности. Чаще всего для таким машин применяется механическая система впрыска топлива, а также простая система воздушного охлаждения.

    Тепловозы

    Схожесть двигателей тепловозов с корабельными двигателями говорит об их надежности и длительной эксплуатации. Они могут работать на топливе худшего качества. По размерам могут быть от двигателей для большегрузовых авто до средних судов.

    От области применения судового дизеля зависят требования к нему. Для морских и спортивных катеров используют дизели высокой мощности (здесь применяют четырехтактные двигатели с частотой вращения коленчатого вала до 1500 в мин, имеющие до 24 цилиндров). Двухтактные двигатели экономичныи применяются при длительной эксплуатации. Эти низкооборотные двигатели имеют наивысший КПД до 55%, и работают на мазуте и для этого нужна специальная подготовка на судне. Мазут необходимо нагревать (примерно до 160 С) - тогда вязкость мазута уменьшается и его можно использовать для работы фильтров и насосов.
    На судах среднего размера используют дизельные двигатели, которые изначально были созданы для большегрузных авто. В конечном итоге это двигатель, настроенный и отрегулированный в зависимости от его характера эксплуатации и не требующий дополнительных затрат на разработку.

    Многотопливные дизели

    Сегодня эти двигатели уже не актуальны, так как они не проходят контроль качество ОГ и не имеют необходимых характеристик (совершенности и мощности). Они были разработаны для специального применения для местностей с нерегулярной поставкой топлива и могли работать как на дизельном топливе, так и на бензине либо на других заменителях.

Сравнительные параметры

С помощью таблицы ниже, можно сравнить основные параметры дизельных и бензиновых двигателей.

Тип системы впрыска

Номинальн.частота вращения коленвала (мин)

Степень сжатия

Среднее давление (бар)

Удельная мощность (кВт/л)

Удельная масса (кг/кВт)

Удельный расход топлива (г/кВтч)

Для легковых автомобилей:

Без наддува воздуха(3)

С наддувом воздуха(3)

Без наддува воздуха(4)

С наддувом воздуха(4.5)

Для грузовых автомобилей

Без наддува воздуха (4)

С наддувом воздуха (4)

С наддувом воздуха (4.5)

Для строительной и спец/сельхозтехники

1000…3600 16…20 7…23 6…28 1…10 190…280

Для тепловозов

Судовые, 4-тактные

Судовые, 2-тактные

Бензиновые двигатели

Для легковых автомобилей

Без наддува воздуха

С наддувом воздуха

Для грузовых автомобилей

Преимущества и недостатки дизеля

Сегодня дизельные двигатели имеют КПД до 40-45%, крупные двигатели более 50%. Из-за своих особенностей, дизель не имеет жестких требований к топливу, это позволяет использовать тяжелые масла. Чем тяжелее топливо, тем выше эффективность двигателя и его теплотворность.

Дизель не может развить высокие обороты - топливо не успеет догореть в цилиндрах, и для возгорания требуется время. Здесь используются дорогие механические детали, что делает двигатель более тяжелым.

По мере впрыска топлива происходит его сгорание. При низких оборотах, двигатель дает высокий вращающий момент - это делает автомобиль более управляемым «отзывчивым» при движении, чем автомобиль с бензиновым двигателем. Поэтому на большее количество грузовых автомобилей ставят дизельный двигатель, плюс это более экономично.
В отличие от бензинового двигателя, дизель имеет меньше окиси углерода в выхлопе. Что благоприятно сказывается на окружающей среде. В России больше всего загрязняют атмосферу старые и не отрегулированные грузовики и автобусы.

Дизельное топливо нелетучее, т. е. плохо испаряется, поэтому вероятность возгорания дизеля намного меньше, тем более в нем не используется искра зажигания, в отличие от бензина.