CAN шина - что это такое? CAN-шина – как работает электроника в современных автомобилях? Какой вид проводки используется в системе can

Чтобы связно и гармонично управлять системами, обеспечить качество и функциональность передачи данных, многие автомобилестроительные компании применяют современную систему, известную как CAN-шина. Принцип ее организации заслуживает подробного рассмотрения.

Общая характеристика

Визуально CAN-шина выглядит как асинхронная последовательность. Ее информация передается по двум витым проводникам, радиоканалу или оптоволокну.

Управлять шиной способны несколько устройств одновременно. Их количество не ограничено, а скорость обмена информацией запрограммирована до 1 Мбит/с.

CAN-шина в современных автомобилях регламентируется спецификацией "CAN Sorcjfication version 2,0".

Он состоит из двух разделов. Протокол А описывает передачу информации с применением 11-битной системы передачи данных. Часть В выполняет эти функции при применении 29-битного варианта.

CAN имеет узлы персональных тактовых генераторов. Каждый из них посылает сигналы всем системам одновременно. Получающие устройства, присоединенные к шине, определяют, относится ли сигнал к их компетенции. Каждая система обладает аппаратной фильтрацией адресованных ей посланий.

Разновидности и маркировка

Одной из самых известных на сегодняшний день является разработанная Робертом Бошем CAN-шина. CAN BUS (под таким названием известна система) бывает последовательная, где импульс подается за импульсом. Она называется Serial bus. Если же информация передается по нескольким проводам, то это параллельная шина Parallel bus.

I - узлы управления;

II - коммуникации системы.

Опираясь на разновидности идентификаторов КАН-шин, встречается маркировка двух типов.

В случае, когда узел поддерживает 11-битный формат обмена информацией и не обозначает ошибки на сигналы 29-битного идентификатора, его маркируют "CAN2,0A Active, CAN2,0B Passive".

Когда таковые генераторы используют оба типа идентификаторов, шина имеет маркировку "CAN2,0B Active".

Встречаются узлы, поддерживающие коммуникации в 11-битном формате, а увидев в системе 29-битный идентификатор, выдают сообщение об ошибке. В современных автомобилях подобные CAN-шины не используются, ведь система должна быть логичной и согласованной.

Система же функционирует при двух типах скоростей передачи сигналов - 125, 250 кбит/с. Первые предназначены для вспомогательных устройств (стеклоподъемники, освещение), а вторые обеспечивают главное управление (коробка-автомат, двигатель, ABS).

Передача сигналов

Физически проводник CAN-шины современного автомобиля выполнен из двух составляющих. Первый - черного цвета и называется CAN-High. Второй проводник, оранжево-коричневый, именуется CAN-Low. Благодаря представленной структуре коммуникаций из схемы автомобиля удалена масса проводников. При производстве транспортных средств это позволяет уменьшить вес изделия до 50 кг.

Общая сетевая нагрузка состоит из разрозненных сопротивлений блоков, которые входят в состав протокола, называемого КАН-шина.

Различны и скорости передачи-получения каждой системы. Поэтому обеспечивается обработка разнотипных сообщений. Согласно описанию шины-CAN, эту функцию выполняет преобразователь сигналов. Он называется межсетевым электронным интерфейсом.

Расположен этот прибор в конструкции управляющего блока, но бывает выполнен в виде обособленного прибора.

Представленный интерфейс применяют также для вывода и ввода сигналов диагностического характера. Для этого предусмотрено наличие унифицированной колодки OBD. Это особый разъем для диагностики системы.

Разновидности функций шин

Существуют разные типы представленного устройства.

  1. КАН-шина агрегата силового. Это быстрый канал, который передает послания со скоростью 500 кбит/с. Его главная задача заключается в коммуникации блоков управления, например трансмиссия-двигатель.
  2. Система "Комфорт" - более медлительный канал, передающий данные со скоростью 100 кбит/с. Он связывает все устройства системы "Комфорт".
  3. Информационно-командная программа шины также передает сигналы медленно (100 кбит/с). Ее основное предназначение - обеспечить связь между обслуживающими системами, например телефоном и навигацией.

При изучении вопроса, чем является CAN-шина, может показаться, что по количеству программ она похожа на систему самолета. Однако, дабы обеспечить качество, безопасность и комфорт при управлении автомобилем, никакие программы не будут лишними.

Помехи в шине

Все управляющие блоки присоединены к CAN-шине трансиверами. Они имеют приемники сообщений, представляющих собой избирательные усилители.

Описание шины CAN оговаривает поступление посланий по проводникам High и Low в усилитель дифференциальный, где он обрабатывается и направляется в блок управления.

Усилитель определяет этот выходной сигнал как разность напряжений проводов High и Low. Такой подход позволяет исключить влияние внешних помех.

Чтобы понять, что собой представляет КАН-шина и ее устройство, следует вспомнить ее облик. Это два проводника, скрученные между собой.

Так как сигнал помехи поступает сразу на оба провода, в процессе обработки значение напряжения Low отнимается от напряжения High.

Благодаря этому CAN-шина считается надежной системой.

Типы сообщений

Протоколом предусматривается использование при обмене информацией посредством шины CAN четырех типов команд.


I - CAN-шина;

II - резистор сопротивления;

III - интерфейс.

В процессе приема-передачи информации на проведение одной операции отводится определенное время. Если оно вышло, формируется фрейм ошибки. Error Frame также длится определенное количество времени. Неисправный блок автоматически отключается от шины при накоплении большого количества ошибок.

Функциональность системы

Чтобы понять, что такое CAN-шина, следует разобраться в ее функциональном назначении.

Она призвана передавать фреймы в реальном времени, которые содержат информацию о значении (например, перемена скорости) или о возникновении события от одного узла-передатчика к приемникам программы.

Команда состоит из 3 разделов: имени, значения события, времени наблюдения за переменной величиной.

Ключевое значение придается переменной показателя. Если в сообщении нет данных о времени, тогда это сообщение принимается системой по факту его получения.

Когда компьютер коммуникационной системы запрашивает показатель состояния параметра, он посылается в приоритетной очередности.

Разрешение конфликтов на шине

Когда сигналы, поступающие на шину, приходят на несколько контроллеров, система выбирает, в какой очередности будет обработан каждый. Два или более устройства могут начать работу практически одновременно. Чтобы при этом не возник конфликт, производится мониторинг. CAN-шина современного автомобиля производит эту операцию в процессе отправки сообщения.

Существует градация сообщений по приоритетной и рецессивной градации. Информация, имеющая самое низкое числительное выражение поля арбитража, выиграет при наступлении конфликтного положения на шине. Остальные передатчики постараются отослать свои фреймы позже, если ничего не изменится.

В процессе передачи информации время, указанное в нем, не теряется даже при наличии конфликтного положения системы.

Физические составляющие

Устройство шины состоит, помимо кабеля, из нескольких элементов.

Микросхемы приемопередатчика часто встречаются от компании Philips, а также Siliconix, Bosch, Infineon.

Чтобы понять, что такое КАН-шина, следует изучить ее компоненты. Максимальная длина проводника при скорости 1 Мбит/с достигает 40 м. Шина- CAN (известная еще как CAN-BUS) в конце наделена терминатором.

Для этого на конец проводников устанавливаются резисторы сопротивления по 120 Ом. Это необходимо, дабы устранить отражения сообщения на конце шины и убедиться, что она получает соответствующие уровни тока.

Сам проводник в зависимости от конструкции может быть экранированным или неэкранированным. Концевое сопротивление может отходить от классического и находиться в диапазоне от 108 до 132 Ом.

Технология iCAN

Рассматривая шины транспортного средства, следует уделить внимание программе блокировки работы двигателя.

Для этого разработан обмен данными посредством шины CAN, iCAN-модулем. Он подключается к цифровой шине и отвечает за соответствующую команду.

Имеет небольшие габариты и присоединяется к любому отделению шины. При старте движения автомобиля iCAN посылает команду соответствующим блокам, и мотор глохнет. Преимуществом данной программы является отсутствие разрыва сигнала. Существует инструктирование электронного блока, после этого сообщение отключает функционирование соответствующих исполнительных элементов.

Этот тип блокировки характеризуется наивысшей скрытностью, а потому и надежностью. При этом ошибки не записываются в память ЭБУ. CAN-шина предоставляет всю информацию о скорости, движении автомобиля данному модулю.

Защита от угона

Модуль iCAN устанавливается в каком угодно узле, где расположены жгуты, в месте установки шины. Из-за минимальных габаритов и особого алгоритма действий выявить блокировку обычными методами при совершении угона практически нереально.

Внешне этот модуль маскируется под разные контролирующие датчики, что также делает невозможным его обнаружение. При желании возможно настроить работу прибора для автоматической защиты им стекол автомобиля, зеркал.

При наличии у транспортного средства автозапуска двигателя, iCAN не помешает его работе, так как срабатывает при старте движения.

Ознакомившись с устройством и принципами обмена данными, которой наделена CAN-шина, становится понятным, почему все современные автомобили применяют эти технологии при разработке управления транспортным средством.

Представленная технология по своему устройству довольно сложна. Однако все заложенные в нее функции обеспечат максимально эффенктивное, безопасное и комфортное управление автомобилем.

Существующие разработки помогут обеспечить защиту транспортного средства даже от угона. Благодаря этому, а также комплексу других фунций, шина-CAN популярна и востребована.

CAN шина представляет собой интерфейс, использующийся для более упрощенного управления транспортным средством. Это обеспечивается благодаря обмену данными между разными системами, передача информации производится в зашифрованном виде.

[ Скрыть ]

Где находится CAN-шина?

Модуль CAN в машине являет собой сеть датчиков и контроллеров, которые предназначены для объединения всех управляющих устройств в одну систему.

Эта автомобильная технология используется как колодка, с которой можно соединять следующие управляющие блоки:

  • «сигналки» — к противоугонной системе может подключаться модуль автоматического запуска двигателя;
  • антиблокировочной системы «АБС»;
  • механизмов безопасности, в частности, подушек и их датчиков;
  • системы управления силовым агрегатом автомобиля;
  • приборной комбинации;
  • системы круиз-контроля;
  • кондиционера и отопительного узла;
  • системы управления автоматической трансмиссией и т. д.

CAN-модуль — это устройство, место монтажа которого может отличаться производителем транспортного средства.

Если неизвестно, где расположен интерфейс, этот момент уточняется в сервисной документации к авто, он обычно устанавливается:

  • под капотом автомобиля;
  • в салоне транспортного средства;
  • под контрольной комбинацией.

Технические характеристики

Описание основных свойств системы диагностики и анализа CAN:

  • общая скорость технологии при передаче пакетных данных варьируется в районе 1 мб/с;
  • если информация передается между блоками управления, то скорость отправки составит около 500 кб/с;
  • при функционировании устройства в режиме «Комфорт» передача данных осуществляется при 100 кб/с.

Назначение и функции кан-шины

Если правильно устанавливать и выполнять подсоединение проводов к интерфейсу, то можно обеспечить следующие опции:

  • уменьшение параметра воздействия внешних помех на функционирование основных и дополнительных механизмов и узлов;
  • возможность выполнить соединение и настраивать любые электронные приборы, в том числе охранные комплексы;
  • простой принцип подключения и функционирования дополнительных электронных устройств и приборов, которые имеются в авто;
  • более быстрая процедура передачи информации на определенное оборудование и механизмы авто;
  • возможность отправки и получения цифровых данных одновременно, а также анализ информации;
  • оперативная настройка и подключение опции дистанционного пуска ДВС.

Подробнее о назначении и общих характеристиках CAN-модуля рассказал канал «Crossover 159».

Устройство и принцип работы

По конструкции данный интерфейс выполнен в виде модуля в пластмассовом корпусе или колодки для подсоединения проводников. Цифровая шина включает в себя несколько кабелей CAN. Подключение этого устройства к бортовой сети осуществляется посредством одного проводника.

Шина работает по принципу отправки данных в закодированном виде. Каждое передающееся сообщение обладает специальным уникальным идентификаторов. Может быть информация: «скорость передвижения авто составляет 50 км/ч», «температура охлаждающей жидкости 90 градусов Цельсия» и т. д. При отправке сообщений все электронные блоки получают данные, проверяющиеся идентификаторами. Если информация имеет отношение к определенному модулю, то она обрабатывается, если нет — то игнорируется.

В зависимости от модели, длина идентификатора интерфейса может быть 11 или 29 бит.

Каждое устройство производит считывание информации, передающейся в шину. Передатчик, обладающий более низким приоритетом, должен отпустить шину, так как доминантный уровень искажает его передачу. Если приоритет передающихся пакетов будет более высоким, то он не трогается. Устройство, которое при отправке сообщений потеряло связь, через определенный временной интервал восстановит ее автоматически.

Работа CAN-шины возможна в нескольких режимах:

  1. Автономный, фоновый или спящий. При включении данного режима все основные агрегаты и узлы выключены и двигатель не заведен. На шину все равно подается напряжение от бортовой сети. Его значение небольшое, что дает возможность не допустить разряда АКБ.
  2. Пробуждение или запуск интерфейса. В данном режиме устройство начинает работу, это происходит при включении системы зажигания. Если автомобиль оснащен клавише Старт/Стоп, то CAN-шина начинает работу при ее нажатии. Производится включение функции стабилизации напряжения, в результате чего питание начинает поступать на контроллеры и датчики.
  3. Включение активного режима приводит к началу процесса обмена информацией между исполнительными механизмами и регуляторами. Величина напряжения в сети возрастает, так как шина может потреблять до 85 мА тока.
  4. Режим отключения или засыпания. При остановке двигателя автомобиля все агрегаты и механизмы, подключенные по CAN-интерфейсу, выключаются. Питание на них перестает подаваться.

Пользователь Valentin Belyaev подробно рассказал о принципе действия цифрового интерфейса.

Преимущества и недостатки

Если автомобиль оснащен цифровым интерфейсом, это обеспечивает следующие плюсы:

  1. Простота монтажа сигнализации на транспортное средство. Наличие CAN-шины в авто позволяет обеспечить более быстрый и упрощенный алгоритм подключения охранной системы.
  2. Высокая скорость отправки информации между агрегатами и системами, что обеспечивает быстродействие узлов.
  3. Хорошая устойчивость к воздействию помех.
  4. Все цифровые интерфейсы имеют многоуровневую систему контроля. Благодаря этому можно не допустить образования ошибок при отправке и приеме информации.
  5. Цифровой интерфейс, работая в активном режиме, выполняет разброс скорости по различным каналам самостоятельно. Благодаря этому все системы работают максимально оперативно.
  6. Безопасность CAN-шины. При попытке получения несанкционированного доступа к автомобилю система может произвести блокировку узлов и агрегатов.
  1. Некоторые системы обладают ограничениями по объему передающейся информации. Если автомобиль сравнительно новый и оборудован разными электронными устройствами, это приводит к росту нагрузки на канал передачи данных. В результате время отклика увеличивается.
  2. Большинство передающейся информации по цифровому интерфейсу имеет определенное назначение. На полезные данные в системе предусмотрена небольшая часть трафика.
  3. Возможна проблема отсутствия стандартизации. Это часто происходит при применении протоколов высших уровней.

Разновидности и маркировка

По типу идентификаторов такие устройства делятся на два вида:

  1. CAN2, 0A. Это маркировка интерфейсов, которые могут работать в 11-битном формате передачи информации. Данная разновидность устройств не в состоянии определять ошибки импульсов от блоков, которые работают с 29 бит.
  2. CAN2, 0B. Это маркировка шин, работающих в формате 11 бит. Основная особенность заключается в возможности передачи информации на блоки управления при выявлении 29-битного идентификатора.

В зависимости от области применения, шины разделяются на три класса:

  1. Для двигателя транспортного средства. При подключении шины обеспечивается максимальная скорость передачи данных и связи между управляющими устройствами. Отправка информации осуществляется по дополнительному каналу. Основное назначение состоит в синхронизации работы микропроцессорного модуля с другими системами. К примеру, антиблокировочным узлом колес, трансмиссией и т. д.
  2. Цифровые интерфейсы класса Комфорт. Этот класс шин предназначен для взаимодействия с любыми устройствами данного типа. Интерфейс используется для работы с системами электронного изменения положения электрозеркал, узла обогрева кресел, управления люком и т. д.
  3. Информационно-командные устройства. Они характеризуются аналогичной скоростью при отправке данных. Такие шины обычно применяются для связи между системами, которые требуются для обслуживания автомобиля.

Канал «Diyordie» рассказал о назначении цифрового интерфейса, а также о его разновидностях в автомобиле.

Подключение сигнализации своими руками

Чтобы подключить охранный комплекс к цифровому интерфейсу, надо знать место установки микропроцессорного модуля управления сигнализаций. Это устройство устанавливается под приборной комбинацией машины. Возможен монтаж блока за вещевым ящиком или аудиосистемой.

Необходимые приборы и инструменты

Предварительно надо подготовить:

  • тестер для проверки напряжения - мультиметр;
  • изоленту;
  • отвертку с крестовым наконечником.

Пошаговая инструкция

Установка выполняется так:

  1. Приступая к задаче, надо убедиться в работоспособности противоугонного комплекса. В случае, когда монтаж системы не был выполнен, надо подключить все устройства к блоку управления, а его — к аккумулятору.
  2. Производится поиск основного кабеля, который идет на цифровой интерфейс. Этот провод всегда толстый и обычно имеет оранжевую оболочку.
  3. Микропроцессорный модуль противоугонной системы надо подключить к этому проводнику. Для осуществления задачи применяется колодка цифровой шины.
  4. Если блок управления охранной системы не был установлен, производится его монтаж. Он должен быть размещен в скрытом месте, не подверженном воздействию влаги. При монтаже модуль надежно фиксируется с помощью пластиковых стяжек или саморезов.
  5. Все места соединения проводов надо заизолировать с применением термоусадочных трубок либо изоленты. После подключения производится диагностика выполненных действий. Если возникли проблемы, надо воспользоваться мультиметром для поиска поврежденного участка.
  6. На последнем этапе необходимо произвести проверку и настройку всех каналов передачи данных. Если имеются дополнительные каналы, они также настраиваются.

Канал «Гаражный любитель» подробно рассказал об установке и подключении противоугонного комплекса Старлайн с CAN-шиной.

Работа с терминалом

Варианты настройки

Если используется терминал, есть два варианта настроить работу интерфейса:

  1. С помощью специальной программы «Конфигуратор» для компьютера. При запуске утилиты надо перейти во вкладку «Настройки» и выбрать пункт CAN. В открывшемся окне указываются необходимые параметры.
  2. Используя команды «CanRegime». Обычно этот вариант применяется для дистанционной настройки с использованием СМС-сообщений. Могут применяться команды, которые отправляются из программного обеспечения для мониторинга.

Подробнее о командах, которые указываются после CanRegime:

  1. Mode — определяет режим функционирования. Если показана цифра 0 — то цифровой интерфейс отключен, если 1 — используется стандартный фильтр. Цифры 2 и 3 указывают на принадлежность пакетов к 29- либо 11-битному классу.
  2. BaudRate. Команда предназначена для определения скорости работы цифрового интерфейса. Важно, чтобы этот параметр соответствовал скорости передачи информации в авто.
  3. TimeOut — определяет время ожидания для каждого сообщения. Если полученная величина слишком низкая, то цифровой интерфейс сможет отловить не все передающиеся сообщения.

Режимы работы

Существует несколько режимов функционирования терминала:

  1. FMS — в нем автовладелец может узнать общий расход горючего, обороты, пробег транспортного средства, нагрузку на оси, температуру силового агрегата. Допускается получение данные об объеме горючего в баке. Для работы в данном режиме выполняется вход в меню выбора типа фильтров программы «Конфигуратор». Указывается тип режима FMS, скорость цифрового интерфейса, после чего нажимается кнопка «Применить».
  2. Режим прослушки используется для получения сообщений, передающий через цифровой интерфейс. Чтобы работать с ним, надо зайти в программе в настройки шины CAN и выбрать один из рабочих параметров. Это может быть скорость интерфейса или время ожидания, тип фильтра в данном случае не играет роли. После указания параметров «кликается» клавиша «Прослушать».
  3. Для привязки информации, полученной посредством прослушивания цифрового интерфейса, используются пользовательские фильтры. После прослушки данных надо выбрать тип фильтрующей технологии (для 11 или 29 бит). Расшифровка данных производится в соответствии с технической документацией.
  4. Режим тестирования OBD2 используется для сканирования скорости отправки информации, а также класса идентификатора. Чтобы запустить эту функцию, автовладельцу надо подключиться напрямую к цифровому интерфейсу или . Включение режима осуществляется посредством входа в меню «Настройка» и выбора опции «Тест OBD2». В результате терминалом начнется отправка запросов с конкретными идентификаторами на различных скоростях интерфейса. Во вкладке «Устройство» можно ознакомиться с извлеченной и расшифрованной информацией.

Настройка мониторингового ПО

После успешного подключения терминала надо произвести диагностику правильности отправки информации. Эти данные передаются на сервер мониторинга.

Отображение информации в системе сервера мониторинга

Скачать бесплатно инструкцию по установке и пользованию в формате PDF

Загрузить сервисное руководство по монтажу и эксплуатации по ссылкам в таблице.

Можно ли сделать анализатор своими руками?

Для выполнения этой задачи автовладелец должен иметь профессиональные навыки в области электроники:

  1. Сборка устройства производится по схеме, представленной на первом фото в галерее. Предварительно нужно купить все детали, необходимые для изготовления. Основным компонентов является плата STM32F103С8Т6, оснащенная контроллером. Также потребуется электрическая схема стабилизатора и CAN-трнасивер. Можно использовать устройство МСР2551 или другой аналог.
  2. Если требуется сделать анализатор более технологичным, в него можно добавить модуль Bluetooth. Благодаря этому автовладелец может сохранять важную информацию в память смартфона.
  3. Для программирования анализатора используется любое подходящее для этого программное обеспечение. Согласно отзывам, оптимальный вариант - утилиты Arduino или CANHacker. Во второй утилите есть больше опций и имеется функция фильтрации информации.
  4. Чтобы произвести прошивку, понадобится преобразователь USB-TTL. Это устройство требуется для отладки, при его отсутствии можно использовать ST-Link.
  5. После загрузки утилиты на компьютер основной файл с расширением ЕХЕ прошивается в блок с применением программатора. Если процедура выполнена успешно, то надо дополнительно установить перемычку на Bootloader. Собранное устройство надо синхронизировать с компьютером, используя USB-провод.
  6. Следующим этапом будет добавление прошивки в анализатор. Для выполнения задачи потребуется утилита MPHIDFlash.
  7. После успешного обновления программы кабель от компьютера отключается и снимается перемычка. Выполняется установка драйверов. Если сборка выполнена корректно, то при подключении к ПК анализатор будет определяться в качестве СОМ-порта.

Фотогалерея

Фото схем для самостоятельного изготовления анализатора приведены в этом разделе.

Сколько стоит?

Примерные цены на покупку КАН-устройств приведены в таблице.

Видео «Работа с CAN-шиной»

Канал «CAN-Hacker Automotive Data Bus Sollutions» показал способ работы с цифровым интерфейсом на примере автомобиля Рено Каптюр.

Шина CAN-bus была создана в конце 80-х годов фирмой Robert Bosch GmbH (Германия) как решение для распределенных систем, работающих в режиме реального времени. Отличительной особенностью шины является ее высокая помехозащищенность. Дополнительным преимуществом шины CAN выступает ее устойчивость к механическим повреждениям - замыкание проводников шины на общий провод, питание или между собой не приводит к выходу из строя устройств. Более того, некоторые модификации шины способны функционировать при обрыве одного из проводников.

CAN-шина в промышленных сетях

Полевая шина CAN (Controller Area Network) характеризуется высокими скоростью передачи данных и помехоустойчивостью, а также способностью обнаруживать любые возникающие ошибки. Благодаря этому CAN сегодня широко используется в таких областях, как автомобильный и железнодорожный транспорт, промышленная автоматика, авиация, системы доступа и контроля. По данным ассоциации CiA (CAN in Automation, www.can-cia.de), в настоящее время в эксплуатации находится около 300 млн CAN-узлов по всему миру. В Германии CAN-шина занимает первое место по популярности среди остальных полевых шин.

Характеристики протокола CAN Преимущества CAN

Общая тенденция в области автоматизации состоит в замене традиционной централизованной системы управления на распределенное управление путем размещения интеллектуальных датчиков и исполнительных механизмов рядом с управляемым процессом. Это вызвано ростом числа проводов связи, увеличением количества соединений, сложностью диагностики ошибок и проблемами с надежностью. Связь между узлами такой системы осуществляется с помощью полевой шины. CAN - это система связи для многоконтроллерных систем. Рассмотрим более подробно преимущества CAN и причины, по которым CAN приобретает все большее распространение.

Испытанный стандарт. Протокол CAN активно используется уже более 20 лет, что очень важно для таких консервативных областей как железнодорожный транспорт или судостроение. CAN был разработан в 1980 г. фирмой Robert Bosch для автомобильной промышленности. CAN-интерфейс регламентирован международными стандартами ISO 11898 для высокоскоростных и ISO 11519-1 для низкоскоростных приложений. Низкая стоимость определяется хорошим соотношением цена/производительность, также широкой доступностью CAN-контроллеров на рынке. Надежность определяется линейной структурой шины и равноправностью ее узлов, так называемой мультимастерностью (Multi Master Bus), при которой каждый узел CAN может получить доступ к шине. Любое сообщение может быть послано одному или нескольким узлам. Все узлы одновременно считывают с шины одну и ту же информацию, и каждый из них решает, принять данное сообщение или игнорировать его. Одновременный прием очень важен для синхронизации в системах управления. Отказавшие узлы отключаются от обмена по шине.



Высокая помехоустойчивость достигается благодаря подавлению синфазных помех дифференциальным приемопередатчиком, работе встроенных механизмов обнаружения ошибок (одна необнаруженная ошибка за 1000 лет при ежедневной 8-часовой работе сети на скорости 500 Кбит/с), повтору ошибочных сообщений, отключению неисправных узлов от обмена по шине и устойчивости к электромагнитным помехам.

Гибкость достигается за счет простого подключения к шине и отключения от шины CAN-узлов, причем общее число узлов не лимитировано протоколом нижнего уровня. Адресная информация содержится в сообщении и совмещена с его приоритетом, по которому осуществляется арбитраж. В процессе работы возможно изменение приоритета передаваемого сообщения. Следует также отметить возможность программирования частоты и фазы передаваемого сигнала и арбитраж, не разрушающий структуру сообщений при конфликтах. На физическом уровне есть возможность выбора разнотипных линий передачи данных: от дешевой витой пары до оптоволоконной линии связи.

Работа в реальном времени становится возможной благодаря механизмам сетевого взаимодействия (мультимастерность, широковещание, побитовый арбитраж) в сочетании с высокой скоростью передачи данных (до 1 Мбит/с), быстрой реакцией на запрос передачи и изменяемой длиной сообщения от 0 до 8 байт.

Приложения CAN

CAN является идеальным решением для любого приложения, где микроконтроллеры обмениваются сообщениями друг с другом и с удаленными периферийными устройствами. Изначально CAN использовался в автомобилях для обеспечения критичного по времени управления и обмена информацией между двигателем и коробкой передач при гарантированном времени ожидания сообщения и допуске каждого из участников сети к работе с текущими данными. Наряду с достаточно дорогими высокоскоростными решениями существуют и экономичные решения для подключения к сети инерционных устройств, которые работают в шкале времени сотен микросекунд (система управления дверьми, подъемник окна, управление зеркалом). При этом мощные жгуты электрических проводов заменяются двухпроводной CAN-сетью, узлами которой являются, в том числе, тормозные огни и указатели поворота.

Широкое применение CAN нашел в промышленной автоматике, где имеется большое число устройств управления, датчиков, механизмов, электроприводов и других объектов, которые связаны единым технологическим циклом (системы отопления и кондиционирования, насосы, конвейеры, лифты, эскалаторы, транспортеры и т. д.). Важной особенностью таких систем является возможность диагностики и управления объектами, расположенными на большой территории, по адаптивным алгоритмам. В результате достигается существенное уменьшение потребляемой мощности, шума, износа оборудования. Подобная картина наблюдается и в железнодорожных бортовых системах, где решающую роль играет обмен данными между подсистемами при наборе скорости, торможении, управлении дверьми и диагностике.

Физический уровень

Физический уровень CAN-шины представляет собой соединение «монтажное И» между всеми устройствами, подключенными к ней. Дифференциальные сигнальные линии называются CAN_H и CAN_L и в статическом состоянии находятся под потенциалом 2,5 В. Лог. 1 (рецессивный бит) обозначает состояние шины, при котором уровень на линии CAN_H выше, чем уровень CAN_L. При лог. 0 (доминантный бит) уровень на линии CAN_H ниже, чем уровень CAN_L. Принято следующее соглашение о состоянии шины: пассивное состояние шины соответствует уровню лог. 1, а активное - уровню лог. 0. Когда сообщения не передаются по шине, она находится в пассивном состоянии. Передача сообщения всегда начинается с доминантного бита. Логика работы шины соответствует «проводному И»: доминантный бит «0» подавляет рецессивный бит «1» (рис. 12.1).

Рис. 12.1. Логика работы CAN шины

При физической реализации конкретного проекта с CAN необходимо определить свойства шины и ее узлов: где располагаются обрабатывающие устройства, какими свойствами они обладают, какие датчики и исполнительные механизмы присутствуют в системе, являются они интеллектуальными или нет, что можно сказать об их физическом расположении. В зависимости от условий эксплуатации могут использоваться однопроводная линия (в пределах печатной платы), двухпроводная линия, витая пара или волоконно-оптическая линия. При дифференциальном методе формирования сигналов двухпроводная линия позволяет значительно повысить помехоустойчивость. При использовании дифференциальных напряжений CAN-сеть продолжает функционировать в чрезвычайно шумной среде или при обрыве одной из сигнальных линий. Даже при простой витой паре дифференциальные входы CAN эффективно нейтрализуют шум.

Максимальная скорость передачи данных составляет 1 Мбит/с при длине шины 40 м и около 40 Кбит/с при длине шины 1000 м.

Разновидности CAN

В настоящее время доступны различные устройства с CAN-интерфейсом, которые помимо передачи данных из одной точки в другую позволяют реализовать синхронизацию процессов и обслуживание по приоритетам. Более ранние реализации CAN-контроллеров используют кадры с 11-разрядным идентификатором и возможностью адресации до 2048 сообщений и соответствуют спецификации CAN V. 2.0A. Такие контроллеры носят название Basic CAN и характеризуются сильной загруженностью центрального процессора (ЦПУ), так как каждое входящее сообщение запоминается в памяти и ЦПУ решает, нужны ему данные сообщения или нет (рис. 12.2). Контроллеры Basic CAN содержат один передающий буфер и один или два приемных буфера сообщений. Чтобы послать или получить сообщение, требуется задействовать ЦПУ через прерывания «сообщение_послано» и «сообщение_получено». В результате проверки каждого входящего сообщения загрузка ЦПУ очень велика, что ограничивает реальную скорость обмена по сети. По этой причине такие контроллеры используются в сетях CAN с низкой скоростью обмена и/или малым количеством сообщений.

Рис. 12.2. Структура контроллера Basic CAN

Большинство выпускаемых сегодня CAN-контроллеров используют расширенные кадры сообщений с идентификатором длиной 29 разрядов, что позволяет адресовать до 536 млн сообщений. Такие контроллеры соответствуют спецификации CAN V. 2.0B (active) и называются контроллеры Full-CAN. В них предусмотрен буфер для нескольких сообщений, причем каждое сообщение имеет свою маску, и фильтрация осуществляется по соответствию идентификатора маске.

В случае Full-CAN ЦПУ максимально разгружено, поскольку не обрабатывает ненужные сообщения (рис. 12.3). При приеме сообщения с идентификатором, соответствующим маске, оно запоминается в специальной зоне двухпортового ОЗУ, и работа ЦПУ прерывается. Full-CAN имеет также специальный тип сообщения, которое означает: «у кого бы ни находилась эта информация, пожалуйста, пошлите ее сейчас же». Контроллер Full-CAN автоматически прослушивает все сообщения и посылает запрошенную информацию.

Рис. 12.3. Структура контроллера Full-CAN

До недавнего времени в промышленности был широко распространен Basic CAN с 11-разрядным идентификатором. Этот протокол допускает простую связь между микроконтроллерами и периферийными устройствами при скорости обмена вплоть до 250 Кбит/с. Однако при стремительном удешевлении CAN-контроллеров использование Full-CAN стало оправданным и для связи с медленными устройствами. Если в промышленных приложениях требуется высокоскоростной (до 1 Мбит/с) обмен данными, то непременно следует использовать Full-CAN.

Арбитраж узлов CAN-шины

CAN имеет много уникальных свойств, отличающих его от других шин. В протоколе CAN осуществляется посылка сообщений по общей CAN-шине, при этом отсутствуют адреса отправителя и получателя сообщения. Каждый узел постоянно «просматривает» шину и осуществляет локальную фильтрацию при приеме, используя битовые маски, и решает, какие сообщения извлекать из шины.

В результате, узел принимает и обрабатывает только те сообщения, которые предназначены именно для него.

Каждое сообщение имеет свой приоритет, значение которого содержится в идентификаторе сообщения. Кроме того, идентификаторы используются для обозначения типа сообщения. Сообщению с младшим номером идентификатора соответствует высший приоритет; наивысшим приоритетом обладает сообщение с идентификатором, состоящим полностью из нулей. Передача сообщения начинается с отправки на шину идентификатора. Если доступ к шине требуют несколько сообщений, то сначала будет передано сообщение с наиболее высоким приоритетом, то есть с меньшим значением идентификатора, независимо от других сообщений и текущего состояния шины. Каждый узел перед передачей сообщения проверяет, работает ли узел с более высоким приоритетом. Если да, то он возвращается в состояние приемника и пытается передать сообщение в другое время. Это свойство имеет особое значение при использовании в системах управления реального времени, поскольку значение приоритета жестко определяет время ожидания.

Если передача узла А приостанавливается узлом B, посылающим сообщение с более высоким приоритетом, то, как только шина освободится, будет сделана другая попытка передачи сообщения от узла A. Этот принцип получил название CSMA/CA: Carrier Sense Multiple Access/Collision Avoidance (общий доступ с опросом/предотвращение конфликтов). Такой режим в отличие от Ethernet не позволяет конфликтующим узлам в шине выяснять отношения, а сразу выявляет победителя и сокращает время обмена.

Итак, благодаря арбитражу шины сообщение с высшим приоритетом передается первым, обеспечивая функционирование системы в реальном масштабе времени и быструю передачу информации. Распределение приоритетов между различными типами сообщений задается разработчиком при проектировании сети.

Формат сообщений

Если не учитывать процедуру повтора сообщения, принятого с ошибкой, существует два вида связи между узлами: один узел передает информацию, а другой получает, или узел A запрашивает узел B о данных и получает ответ.

Рис. 12.4. Кадр данных (Data Frame)

Для передачи данных служит кадр данных - Data Frame (рис. 12.4), который содержит:

  • идентификатор, указывающий на тип сообщения («скорость_двигателя», «температура_масла») и на приоритет доступа к шине. Поле идентификатора содержит различное количество бит в зависимости от разновидности протокола: в стандартном формате CAN V2.0A предусмотрен 11-разрядный идентификатор, а в расширенном CAN V2.0B - 29-разрядный;
  • поле данных, содержащее соответствующее сообщение («скорость_двигателя»= 6000 об/мин, «температура_масла»=110 °C) длиной до восьми байт;
  • два байта контрольной суммы - Cyclic Redundancy Check (CRC) для выявления и коррекции ошибок передачи.

Для запроса информации узел CAN использует кадр запроса данных Remote Frame (рис. 12.5), который содержит:

  • идентификатор, определяющий тип запрашиваемой информации («скорость_ двигателя», «температура_масла») и приоритет сообщения;
  • два байта контрольной суммы CRC .

Рис. 12.5. Кадр запроса данных Remote Frame

В этом случае за идентификатором не следуют данные и код длины данных не имеет прямого отношения к количеству байт данных. Узел, которому предложено передать информацию (датчик температуры масла), передает кадр данных, содержащий требуемую информацию. Таким образом, если узел А направляет узлу В кадр запроса с идентификатором «температура_масла», то узел В опрашивает датчик температуры и направляет узлу А кадр данных, содержащий идентификатор «температура_масла» и требуемую информацию.

Дополнительная информация, содержащаяся в кадре, позволяет определить формат и синхронизацию протокола передачи сообщения и тип посылки:

  • какое сообщение послано - запрос о данных или собственно данные определяют бит удаленного запроса передачи (RTR для 11-разрядного идентификатора и SRR для 29-разрядного);
  • код длины данных, сообщающий, сколько байтов данных содержит сообщение; все узлы принимают кадр данных, но те из них, которым эта информация не нужна, ее не сохраняют;
  • для обеспечения синхронизации и контроля кадр содержит поля начала кадра Start of Frame, конца кадра End of Frame и подтверждения Acknowledgement Field;
  • вход в режим синхронизации на шине осуществляется первым битом поля Start of Frame, далее синхронизация поддерживается фронтом при смене уровня посылаемых битов;
  • используется механизм битстаффинга - вставка дополнительного бита при следующих подряд пяти нулях или единицах.

Обнаружение ошибок

Сигнализация об ошибках происходит путем передачи кадра ошибки Error Frame. Он инициируется любым узлом, обнаружившим ошибку. CAN-контроллеры используют метод статистической обработки ошибок. Каждый узел содержит счетчики ошибок при передаче и приеме Transmit Error Counter и Receive Error Counter. Если передатчик или приемник обнаруживают ошибку, значение соответствующего счетчика увеличивается. Когда значение счетчика превышает некоторый предел, текущая передача прерывается. Узел выдает сигнал об ошибке в виде Error Frame, где выставляет активный доминантный флаг ошибки длиной 6 бит. После этого узел, передача которого была прервана, повторяет сообщение. Ненадежным или частично поврежденным узлам разрешено посылать лишь пассивный рецессивный флаг ошибки.

В CAN существует несколько разновидностей ошибок. Из них три типа на уровне сообщений:

  • CRC Error - ошибка контрольной суммы (при несовпадении принятой в поле CRC и вычисленной контрольных сумм).
  • Form Error - ошибка формата кадра при несоответствии принятого сообщения формату CAN.
  • Acknowledgement Error - ошибка подтверждения приема сообщения, если ни один из узлов не подтвердил правильного получения сообщения.

Кроме того, существует два типа ошибок на битовом уровне:

  • Bit Error - обнаружение активным узлом расхождения между посланным в шину уровнем и фактическим значением за счет реализации узлом механизма самоконтроля.
  • Stuff Error - наличие в поле сообщения шести следующих подряд бит 0 или 1 (ошибка битстаффинга).

Благодаря этим механизмам обнаружения и коррекции ошибок вероятность пропуска ошибки крайне мала. Например, при скорости 500 Кбит/с, загруженности шины 25 % и использовании в течение 2000 часов в год возникает лишь одна необнаруженная ошибка за 1000 лет. Кроме того, в шине невозможна ситуация блокировки неисправным узлом работы всей сети. Такие узлы обнаруживаются и отключаются от обмена по шине.

Для того чтобы упорядочить работу всех контроллеров, которые облегчают управление и повышают контроль вождения автомобилем, используется CAN-шина. Подключить такое устройство к сигнализации машины можно своими руками.

[ Скрыть ]

Что такое CAN-шина и принцип ее работы

КАН-шина представляет собой сеть контроллеров. Устройство используется для объединения всех управляющих модулей автомобиля в одну рабочую сеть с общим проводом. Этот девайс состоит из одной пары кабелей, которая называется CAN. Информация, передающаяся по каналам из одного модуля на другой, отправляется в закодированном виде.

Схема подключения устройств к CAN-шине в Мерседесе

Какие функции может выполнять CAN-шина:

  • подключение к автомобильной бортовой сети любых девайсов и устройств;
  • упрощение алгоритма подсоединения и функционирования вспомогательных систем машины;
  • блок может одновременно получать и передавать цифровые данные из разных источников;
  • использование шины снижает воздействие внешних электромагнитных полей на функционирование основных и вспомогательных систем машины;
  • CAN-шина позволяет ускорить процедуру передачи информации к определенным устройствам и узлам автомобиля.

Эта система работает в нескольких режимах:

  1. Фоновый. Все устройства отключены, но на шину подается питание. Величина напряжения слишком мала, поэтому разрядить аккумуляторную батарею шина не сможет.
  2. Режим запуска. Когда автолюбитель вставляет ключ в замок и проворачивает его либо жмет кнопку Старта, происходит активация устройства. Включается опция стабилизации питания, которое подается на контроллеры и датчики.
  3. Активный режим. В этом случае между всеми контроллерами и датчиками происходит обмен данными. При работе в активном режиме параметр потребления энергии может быть увеличен до 85 мА.
  4. Режим засыпания или отключения. При глушении силового агрегата контроллеры КАН перестают функционировать. При включении режима засыпания все узлы машины отключаются от бортовой сети.

Канал Виалон СУшка в своем видео рассказал о КАН-шине и что надо знать про ее эксплуатацию.

Плюсы и минусы

Какими преимуществами обладает КАН-шина:

  1. Простота установки устройства в автомобиль. Владельцу машины не придется тратиться на монтаж, поскольку выполнить эту задачу можно самостоятельно.
  2. Быстродействие устройства. Девайс позволяет быстро обмениваться информацией между системами.
  3. Устойчивость к воздействию помех.
  4. Все шины обладают многоуровневой системой контроля. Ее использование дает возможность предотвратить появление ошибок при передаче и приеме данных.
  5. В процессе функционирования шина автоматически разбрасывает скорость по разным каналам. Это позволяет обеспечить оптимальную работу всех систем.
  6. Высокая безопасность устройства, при надобности система блокирует несанкционированный доступ.
  7. Большой выбор устройств различных типов от разных производителей. Можно подобрать вариант, предназначенный для конкретной модели авто.

Какие недостатки характерны для устройства:

  1. В девайсах бывают ограничения по объему передаваемых данных. В современных автомобилях используется множество электронных девайсов. Их большое количество приводит к высокой загруженности канала передачи информации. Это становится причиной увеличения времени отклика.
  2. Большая часть отправляющихся по шине данных обладает конкретным назначением. На полезную информацию отводится маленькая часть трафика.
  3. При использовании протокола высшего уровня автовладелец может столкнуться с проблемой отсутствия стандартизации.

Виды и маркировки

Самым популярным типом шин являются устройства, разработанные Робертом Бошем. Девайс может функционировать последовательно, то есть сигнал передается за сигналом. Такие устройства называются Serial BUS. В продаже можно встретить и параллельные шины Parallel BUS. В них передача данных осуществляется по нескольким каналам связи.

О разновидностях, принципе действия, а также возможностях КАН-шины можно узнать из видео, снятого каналом DIYorDIE.

С учетом разных типов идентификаторов можно выделить несколько видов устройств:

  1. КАН2, 0А Актив. Так маркируются устройства, которые поддерживают 11-битный формат обмена данными. Эти узлы не обозначают ошибки на импульсы 29-битного узла.
  2. КАН2, 0В Актив. Так маркируются девайсы, функционирующие в 11-битном формате. Основное отличие заключается в том, что при обнаружении идентификатора на 29 бит в системе они будут передавать на управляющий модуль сообщение об ошибке.

Надо учесть, что в современных машинах такие типы устройств не применяются. Это связано с тем, что работа системы должна быть согласованной и логичной. А в данном случае она может функционировать при нескольких скоростях передачи импульсов — на 125 либо 250 кбит/с. Более низкая скорость используется для управления дополнительных устройств, таких как осветительные приборы в салоне, электрические стеклоподъемники, стеклоочистители и т. д. Высокая скорость нужна для обеспечения рабочего состояния трансмиссии, силового агрегата, системы ABS и т. д.

Разновидность функций шин

Рассмотрим, какие существуют функции у различных девайсов.

Девайс для автомобильного двигателя

При соединении устройства обеспечивается быстрый канал передачи данных, по которому информация распространяется со скоростью 500 кбит/с. Основное предназначение шины заключается в синхронизации работы управляющего модуля, к примеру, коробки передач и мотора.

Устройство типа Комфорт

Скорость передачи данных по этому каналу более низкая и составляет 100 кбит/с. Функция такой шины заключается в соединении всех устройств, относящихся к данному классу.

Информационно-командный девайс

Скорость передачи данных такая же, как и в случае с устройствами типа Комфорт. Главная задача шины заключается в обеспечении связи между обслуживающимися узлами, к примеру, мобильным девайсом и системой навигации.

Шины от разных производителей приведены на фото.

1. Устройство для автомобильного ДВС 2. Интерфейсный анализатор

Могут ли быть проблемы в работе CAN-шин?

В современном авто цифровая шина используется постоянно. Она работает одновременно с несколькими системами, причем по ее каналам связи постоянно передается информация. Со временем в работе устройства могут возникнуть неполадки. В результате анализатор данных будет функционировать неверно. При обнаружении неполадок автовладелец должен найти причину.

По каким причинам возникают сбои в работе:

  • повреждение или обрыв электроцепей устройства;
  • произошло замыкание в системе на аккумулятор либо массу;
  • могли замкнуть системы КАН-Хай или КАН-Лоу;
  • произошло повреждение прорезиненых перемычек;
  • разряд аккумуляторной батареи или снижение напряжения в бортовой сети, вызванное некорректной работой генераторного устройства;
  • произошла поломка катушки зажигания.

При поиске причин учитывайте, что неисправность может заключаться в некорректной работе вспомогательных устройств, устанавливающихся дополнительно. К примеру, причина может заключаться в неправильном функционировании противоугонной системы, контроллеров и девайсов.

О ремонте CAN-шины приборной панели в автомобиле Форд Фокус 2 можно узнать из ролика, снятого пользователем Brock — Video Corporation.

Процесс поиска неисправности осуществляется так:

  1. Сначала автовладелец производит диагностику состояния системы. Целесообразно осуществить компьютерную проверку, чтобы выявить все неполадки.
  2. На следующем этапе производится диагностика уровня напряжения и сопротивления электрических цепей.
  3. Если все в порядке, то проверяется параметр сопротивления прорезиненых перемычек.

Диагностика работоспособности КАН-шины требует определенных навыков и опыта, поэтому процедуру поиска неисправностей лучше доверить специалистам.

Как подключить сигнализацию по CAN-шине

Для подключения КАН-шины своими руками к автосигнализации машины с автозапуском либо без него надо знать, где находится блок управления противоугонной системой. Если установка сигнализации осуществлялась самостоятельно, то процесс поиска не вызовет сложностей у автовладельца. Управляющий модуль обычно ставится под приборной панелью в районе рулевого колеса либо за контрольным щитком.

Как произвести процедуру подключения:

  1. Противоугонная система должна быть установлена и подключена ко всем узлам и элементам.
  2. Найдите толстый кабель оранжевого цвета, он подключается к цифровой шине.
  3. Адаптер противоугонной системы подсоединяется к контакту найденной шины.
  4. Производится монтаж устройства в надежном и удобном месте, девайс фиксируется. Надо заизолировать все электрические цепи, чтобы не допустить их перетирания и утечки тока. Производится диагностика правильности выполненной задачи.
  5. На завершающем этапе настраиваются все каналы для обеспечения рабочего состояния системы. Также надо задать функциональный ряд устройству.

Администратор

18702

Для того, чтобы понять принципы работы CAN-шины мы решили написать/перевести ряд статей, посвященных этой тематике, как обычно, основываясь на материалах зарубежных источников.

Одним из подобных источников, который, как нам показалось, вполне подходящим образом иллюстрирует принципы работы CAN-шины, стал видеоролик-презентация учебного продукта CANBASIC компании Igendi Engineering (http://canbasic.com) .

Добро пожаловать на презентацию нового продукта CANBASIC, учебной системы (платы), посвященной вопросу функционирования шины КАН (CAN).

Мы начнем с основ построения сети CAN-шины. На схеме приведен автомобиль с его системой освещения.



Показана обычная проводка, в которой каждая лампа напрямую подключена с каким-либо переключателем или контактом педали тормоза.



Теперь аналогичная функциональность показана с применением технологии CAN-шины. Передние и задние световые приборы подключены к контролирующим модулям. Контролирующие модули соединены параллельно с такими же проводами шины.



Этот небольшой пример демонстрирует, что объем электропроводки снижается. Вдобавок ко всему модули управления могут обнаруживать перегоревшие лампы и информировать об этом водителя.

Автомобиль на указанном виде содержит четыре модуля управления и четко отражает построение учебной системы (платы) CANBASIC



В вышеописанном указано четыре узла шины (CAN-узла).

Передний модуль контролирует передние световые приборы.

Узел сигнализации обеспечивает контроль внутренней части автомобиля.

Основной контрольный модуль соединяет все системы транспортного средства для диагностики.

Задний узел контролирует задние световые приборы.

На тренировочной доске CANBASIC вы можете увидеть маршрутизацию (расположение) трех сигналов: «Питание», «CAN-Hi» и «земли», соединяющихся в контрольном модуле.



В большинстве транспортных средств для подключения главного модуля управления к ПК с помощью диагностического программного обеспечения вам нужен OBD-USB конвертер.



Плата CANBASIC уже содержит в себе OBD-USB конвертер и может быть напрямую подключена к ПК.

Питается плата от интерфейса USB, поэтому дополнительные кабели не нужны.



Провода шины используются для передачи множества данных. Как это работает?

Как работает CAN-шина

Эти данные передаются последовательно. Вот пример.

Человек с лампой, передатчик, хочет отправить какую-то информацию человеку с телескопом, получателю (приемнику). Он хочет передать данные.



Для того, чтобы сделать это они договорились, что получатель смотрит за состоянием лампы каждые 10 секунд.



Это выглядит так:







Спустя 80 секунд:



Теперь 8 бит данных были переданы со скоростью 0,1 бит в секунду (т.е. 1 бит в 10 секунд). Это называется последовательной передачей данных.



Для использования этого подхода в автомобильном приложении интервал времени сокращается с 10 секунд до 0,000006 секунды. Для передачи информации посредством изменения уровня напряжения на шине данных.



Для измерения электрических сигналов шины КАН используется осциллограф. Две измерительных площадки на плате CANBASIC позволяют измерить этот сигнал.



Чтобы показать полное CAN-сообщение разрешение осциллографа уменьшается.



В результате одиночные CAN-биты больше не могут быть распознаны. Для решения этой проблемы CANBASIC-модуль оснащен цифровым запоминающим осциллографом.

Мы вставляем модуль CANBASIC в свободный разъем USB, после чего он будет автоматически обнаружен. Программное обеспечение CANBASIC можно запустить прямо сейчас.



Вы можете видеть вид программного осциллографа с прикрепленными значениями битов. Красным показаны данные, переданные в предыдущем примере.

Чтобы объяснить другие части CAN-сообщения мы раскрашиваем CAN-кадр и прикрепляем на него подписи с описанием.



Каждая раскрашенная часть CAN-сообщения соответствует полю ввода того же цвета. Область, отмеченная красным, содержит информацию о пользовательских данных, которая может быть задана в формате битов, полубайтов или шестнадцатиричном формате.

Желтая область определяет количество пользовательских данных. В зеленой зоне может быть установлен уникальный идентификатор.

Синяя область позволяет задать CAN-сообщение для удаленного запроса. Это означает, что будет ожидаться ответ от другого CAN-узла. (Разработчики системы сами рекомендуют не пользоваться удаленными запросами по ряду причин приводящих к глюкам системы, но об этом будет другая статья.)

Многие системы с шиной CAN защищены от помех вторым каналом CAN-LO для передачи данных, который является инвертированным относительно сигнала CAN-HI (т.е. идет тот же сигнал, только с обратным знаком).



Шесть последовательных битов с одинаковым уровнем определяют конец CAN-кадра.



Так совпало, что другие части CAN-кадра могут содержать более пяти последовательных битов с одинаковым уровнем.



Чтобы избежать этой битовой метки, если появляется пять последовательных битов с одинаковым уровнем, в конце CAN-кадра вставляется противоположный бит. Эти биты называют стафф-битами (мусорными битами). CAN-приемники (получатели сигнала) игнорируют эти биты.



С помощью полей ввода могут быть заданы все данные КАН-кадра и поэтому каждое КАН-сообщение может быть отправлено.

Вставленные данные немедленно обновляются в CAN-кадре, в данном примере длина данных будет изменена с одного байта на 8 байтов и сдвинута назад на один байт.



Текст описания показывает, что сигнал поворота будет управляться с помощью идентификатора «2С1» и бит данных 0 и 1. Все биты данных сбрасываются на 0.



Идентификатор установлен в значение «»2С1». Для активации сигнала поворотов бит данных должен быть установлен с 0 на 1.



В режиме «в салоне» вы можете управлять всем модулем с помощью простых щелчков мыши. Данные CAN устанавливаются автоматически в соответствии с желаемым действием.

Лампы поворотников могут быть установлены на ближний свет для работы в качестве ДХО. Яркостью будет управлять широтно-импульсная модуляция (ШИМ), в соответствии с возможностями современной диодной техники.

Теперь мы можем активировать фары ближнего света, противотуманные фары, стоп-сигналы и фары дальнего.



С отключением ближнего света противотуманные фары также отключаются. Логика управления световой системой CANBASIC соответствует автомобилям марки Volkswagen. Особенности зажигания и «возвращения домой» также включены.

С сигнальным узлом вы можете считывать сигнал датчика после инициирующего удаленного запроса.

В режиме удаленного запроса второй CAN-кадр будет принят и показан ниже отправленного CAN-кадра.



Байт данных CAN теперь содержит результат измерения датчика. С приближением к датчику пальца вы можете изменить измеренное значение.



Клавиша паузы замораживает текущий CAN-кадр и позволяет провести точный анализ.

Как уже было показано, различные части CAN-кадра могут быть скрыты.



Кроме того поддерживается скрытие каждого бита в КАН-кадре.

Это очень полезно, если вы хотите использовать представление CAN-кадра в ваших собственных документах, например в листе упражнений.