Анализ и сравнение характеристик аккумуляторов основных типов. Кислотные и щелочные аккумуляторы

Свинцовые аккумуляторы были изобретены еще в 1859 году, являясь своеобразным «классическим» решением в мире автономных источников питания. Несмотря на давность технологии, свинцовые аккумуляторы наиболее часто используются в современном обществе.

Особенности свинцовых аккумуляторов

В основе свинцовых аккумуляторов лежат химические реакции между диоксидом свинца и чистым свинцом. Электролитом в таком устройстве выступает раствор серной кислоты. Потому такие аккумуляторные батареи часто еще называют свинцово-кислотными.

Сама внутренняя структура аккумуляторов достаточно проста. Существует два типа электродов: положительные (диоксида свинца) и отрицательные (свинец). Кроме того, в электроды, кроме основных элементов, часто добавляют немного (1-2%) примесей для большей эффективности работы. Сами же электроды опущены в электролит.

Сфера применения свинцовых аккумуляторов

Условно, такой тип автономных источников питания можно поделить на 4 группы:

Стартерные аккумуляторы. Используются для запуска двигателей современных автомобилей и обеспечения электропитанием внутренних систем транспортного средства.

Стационарные свинцовые аккумуляторы. Широко используются в роли аварийных источников питания. Работа при этом, осуществляется в режиме непрерывного заряда.

Тяговые аккумуляторы. Большой ресурс, возможность глубокого разряда и небольшая стоимость позволяет их активно применять в электромобилях различного направления.

Портативные. Активно используются для питания небольшого инструмента, лампочек и обладают широкими рабочими температурами.

Преимущества и недостатки

Преимущества свинцовых аккумуляторов:

Широкий диапазон емкостей;

Невысокая цена;

Небольшой показатель саморазряда;

Стабильность работы и подаваемого напряжения;

Отработанная технология переработки свинцовых аккумуляторов позволяет снизить нагрузку на окружающую среду.

Вместе с явными преимуществами, свинцовым аккумулятором присущи такие недостатки:

Большой вес и габариты батареи;

Остро негативное влияние на цикл жизни батареи в случае глубокого разряда;

Большие (до 30%) потери электроэнергии при заряде;

Не герметичные (обслуживаемые) , необходимо регулярно подливать дистиллированную воду;

Сложно спрогнозировать момент выхода из строя батареи;

Нельзя оставлять сильно разряженный аккумулятор на морозе.

Благодаря своей стабильной работе и невысокой цене, свинцовые аккумуляторы не собираются сдавать свои позиции на рынке без боя. Впрочем, в ближайшее будущее возможен прорыв в создании кардинально более эффективных автономных источников питания.

Министерство науки и образования Республики Казахстан

Актюбинский государственный университет им. К. Жубанова

Факультет: технический.

Специальность: металлургия.

Реферат.

По дисциплине: Физическая химия.

На тему: Аккумуляторы и принцип их работы.

Выполнил: студент Тихонов Тимур

Проверил(а):Байманова

Актобе 2010.

1. Свинцово-кислотный аккумулятор

2.Принцип действия

3. Устройство

4. Физические характеристики

5. Эксплуатационные характеристики

6. Эксплуатация

7. Свинцово-кислотный аккумулятор при низких температурах

8. Хранение

9. Износ свинцово-кислотных аккумуляторов

10. Электри́ческий аккумуля́тор

11. Принцип действия

12. Никель-ка́дмиевый аккумуля́тор

13. Параметры

14. Области применения

Свинцово-кислотный аккумулятор - наиболее распространенный на сегодняшний день тип аккумуляторов, изобретен в 1859 году французским физиком Гастоном Планте. Основные области применения: стартерные батареи в автомобильном транспорте, аварийные источники электроэнергии.

Принцип действия

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в сернокислотной среде. Во время разряда происходит восстановление диоксида свинца на катоде и окисление свинца на аноде. При заряде протекают обратные реакции, к которым в конце заряда добавляется реакция электролиза воды, сопровождающаяся выделением кислорода на положительном электроде и водорода - на отрицательном.

Химическая реакция (слева-направо - разряд, справа-налево - заряд):

В итоге получается, что при разрядке аккумулятора расходуется серная кислота с одновременным образованием воды (и плотность электролита падает), а при зарядке, наоборот, вода «расходуется» на образование серной кислоты (плотность электролита растет). В конце зарядки, при некоторых критических значениях концентрации сульфата свинца у электродов, начинает преобладать процесс электролиза воды. При этом на катоде выделяется водород, на аноде - кислород. При зарядке не стоит допускать электролиза воды, в противном случае необходимо ее долить.

Устройство


Элемент свинцово-кислотного аккумулятора состоит из положительных и отрицательных электродов, сепараторов (разделительных решеток) и электролита. Положительные электроды представляют собой свинцовую решётку, а активным веществом является перекись свинца (PbO 2). Отрицательные электроды также представляют собой свинцовую решётку, а активным веществом является губчатый свинец (Pb). На практике в свинец решёток добавляют сурьму в количестве 1-2 % для повышения прочности. Сейчас в качестве легирующего компонента используются соли кальция, в обеих пластинах, или только в положительных (гибридная технология). Электроды погружены в электролит, состоящий из разбавленной серной кислоты (H 2 SO 4). Наибольшая проводимость этого раствора при комнатной температуре (что означает наименьшее внутреннее сопротивление и наименьшие внутренние потери) достигается при его плотности 1,26 г/см³. Однако на практике, часто в районах с холодным климатом применяются и более высокие концентрации серной кислоты, до 1,29 −1,31 г/см³. (Это делается потому, что при разряде свинцово-кислотного аккумулятора плотность электролита падает, и температура его замерзания, т.о, становится выше, разряженный аккумулятор может не выдержать холода.)

В новых версиях свинцовые пластины (решетки) заменяют вспененным карбоном, покрытым тонкой свинцовой пленкой, а жидкий электролит может быть желирован силикагелем до пастообразного состояния. Используя меньшее количество свинца и распределив его по большой площади, батарею удалось сделать не только компактной и легкой, но и значительно более эффективной - помимо большего КПД, она заряжается значительно быстрее традиционных аккумуляторов.

Физические характеристики

· Теоретическая энергоемкость: около 133 Вт·ч/кг.

· Удельная энергоемкость (Вт·ч/кг): 30-60 Вт·ч/кг.

· Удельная энергоплотность (Вт·ч/дм³): около 1250 Вт·ч/дм³.

· ЭДС заряженного аккумулятора = 2,11 В, рабочее напряжение = 2,1 В (6 секций в итоге дают 12,7 В).

· Напряжение полностью разряженного аккумулятора = 1,75 - 1,8 В (из расчета на 1 секцию). Ниже разряжать их нельзя.

· Рабочая температура: от минус 40 до плюс 40

· КПД: порядка 80-90%

Напряжение ~ Заряд
12.70 V 100 %
12.46 V 80 %
12.24 V 55 %
12.00 V 25 %
11.90 V 0 %

Эксплуатационные характеристики

· Номинальная ёмкость , показывает количество электричества, которое может отдать данный аккумулятор. Обычно указывается в ампер-часах, и измеряется при разряде малым током (1/20 номинальной емкости, выраженной в а/ч).

· Стартерный ток (для автомобильных). Характеризует способности отдавать сильные токи при низких температурах. В большинстве случаев замеряется при -18°С (0°F) в течение 30 секунд. Различные методики замера отличаются, главным образом, допускаемым конечным напряжением.

· Резервная емкость (для автомобильных). Характеризует время, в течение которого аккумулятор может отдавать ток 25А. Обычно составляет порядка 100 минут.

Эксплуатация

Ареометр может быть использован для проверки удельного веса электролита каждой секции

При эксплуатации «обслуживаемых» аккумуляторов (с открываемыми крышками над банками) на автомобиле при движении по неровностям неизбежно происходит просачивание проводящего электролита на корпус акуумулятора. Во избежание сильного саморазряда необходимо периодически нейтрализовывать электролит протиранием корпуса, например слабым раствором пищевой соды. Кроме того, особенно в жаркую погоду, происходит испарение воды из электролита, что увеличивает его плотность и может оголить свинцовые пластины. Поэтому необходимо следить за уровнем электролита и своевременно доливать дистиллированную воду.

Такие нехитрые операции вместе с проверкой автомобиля на утечку тока и периодической подзарядкой аккумулятора могут на несколько лет продлить срок эксплуатации батареи.

Свинцово-кислотный аккумулятор при низких температурах

По мере снижения окружающей температуры, параметры аккумулятора ухудшаются, однако в отличие от прочих типов аккумуляторов, свинцово-кислотные снижают их относительно медленно, что не в последнюю очередь обусловило их широкое применение на транспорте. Очень приблизительно можно считать, что емкость снижается вдвое при снижении окружающей температуры на каждые 15°С начиная от +10°С, то есть, при температуре -45°С свинцово-кислотный аккумулятор способен отдать лишь несколько процентов первоначальной емкости.
Снижение емкости и токоотдачи при низких температурах обусловлено, в первую очередь, ростом вязкости электролита, который уже не может в полном объеме поступать к электродам, и вступает в реакцию лишь в непосредственной близости от них, быстро истощаясь.
Еще быстрее снижаются зарядные параметры. Фактически, начиная с, примерно -15°С, заряд свинцово-кислотного аккумулятора почти прекращается, что приводит к быстрой прогрессирующей разрядке аккумуляторов при эксплуатации в режиме коротких частых поездок (так называемый, "режим доктора"). В этих поездках аккумулятор практически не заряжается, его необходимо регулярно заряжать внешним зарядным устройством.
Считается, что не полностью заряженный аккумулятор в мороз может растрескаться из-за замерзания электролита. Однако раствор серной кислоты в воде замерзает совсем не так, как чистая вода - он постепенно густеет, плавно переходя в твердую форму. Такой режим замерзания вряд ли способен вызвать разрыв стенок незамкнутого сосуда (а банка аккумулятора - незамкнутый объем). Электролит, в массовой литературе называемый "замерзшим" фактически еще можно перемешивать.
Растрескивание стенок аккумулятора при морозах действительно бывает, но в основном является следствием изменения свойств применяемого для стенок материала, а не расширением электролита при замерзании.

Хранение

Свинцово-кислотные аккумуляторы необходимо хранить только в заряженном состоянии. При температуре ниже −20 °C заряд аккумуляторов должен проводиться постоянным напряжением 2,275 В/секцию, 1 раз в год, в течение 48 часов. При комнатной температуре - 1 раз в 8 месяцев постоянным напряжением 2,35 В/секцию в течение 6-12 часов. Хранение аккумуляторов при температуре выше 30 °C не рекомендуется.

Слой грязи и накипи на поверхности аккумулятора создает проводник для тока от одного контакта к другому и приводит к саморазряду аккумулятора, после чего начинается преждевременная сульфатизация пластин и поэтому поверхность аккумулятора необходимо поддерживать в чистоте (то есть его надо мыть перед хранением) Хранение свинцово-кислотных аккумуляторов в разряженном состоянии приводит к быстрой потере их работоспособности.

При длительном хранении аккумуляторов и разряде их большими токами (в стартерном режиме), или при уменьшении ёмкости аккумуляторов, нужно проводить контрольно-тренировочные (лечебные) циклы, то есть разряд-заряд токами номинальной величины.

Износ свинцово-кислотных аккумуляторов

При использовании технической серной кислоты и недистиллированной воды ускоряются саморазрядка, сульфатация, разрушение пластин и уменьшение емкости аккумуляторной батареи.

Главная > Конспект

Лекция 3. Аккумуляторы

    Основные понятия. Электрические характеристики и классификация аккумуляторов. Свинцовые аккумуляторы. Щелочные аккумуляторы. Стартерные батареи. Аккумуляторы с расплавленным и твердым электролитом. Применение аккумуляторов на железнодорожном транспорте.

1. Основные понятия. Электрические характеристики и классификация аккумуляторов.

Аккумуляторами называются устройства, в которых электрическая энергия превращается в химическую, а химическая – снова в электрическую. То есть они служат для накопления химической энергии, превращаемой по мере необходимости в электрическую. Аккумуляторы или аккумуляторные батареи (АКБ) относятся к вторичным (перезаряжаемым) химическим источникам тока , характеризующимся многократностью использования и обратимостью. После работы (разрядки) аккумулятора его можно перевести в исходное состояние путём зарядки – пропускания через него постоянного электрического тока от внешнего источника. При заряде аккумулятор работает как электролизер, а при разряде – как гальванический элемент. Аккумулятор состоит из двух электродов (отрицательного заряженного анода и положительного заряженного катода) и электролита (ионного проводника) между ними. Анодом является электрод, на котором протекает окисление; катодом – электрод, на котором протекает восстановление. Ёмкость аккумулятора – такое количество электричества, которое можно получить при работе элемента в режиме разряда до достижения минимального значения напряжения: С = I·t (А·ч). Ёмкость зависит от природы и количества активных масс в электродах, их конструкции и состояния, тока разряда, концентрации электролита и так далее. ЭДС аккумулятора – разность электродных потенциалов катода и анода при разомкнутой внешней цепи: Е ак = φ к – φ а. ЭДС АКБ равна сумме ЭДС аккумуляторов. При разряде напряжение аккумулятора меньше ЭДС (из-за поляризации и омических потерь (внутреннего сопротивления)). В процессе его работы изменяется состав активных масс, и соответственно – ЭДС и напряжение. Кривые изменения напряжения аккумулятора во времени называют зарядными и разрядными кривыми. Зарядное напряжение увеличивается, а разрядное - уменьшается во времени (см. рисунок 3.1.). U, ЭДС, В U, ЭДС, В 2,5 2,2 1,8 1,7
100 Степень 100 Степень заряда разряда

Рисунок 3.1. Зарядные и разрядные кривые аккумуляторов

Энергия аккумулятора – это произведение его ёмкости на напряжение: W = C·U (Вт·ч). Она определяет то количество энергии, которое при разряде передается во внешнюю цепь. Мощность аккумулятора – количество энергии, отдаваемое в единицу времени: Р = W / t (Вт). Часто используют удельные значения энергии и мощности аккумуляторов – на единицу массы или объема или в единицу времени. КПД аккумулятора – отношение энергии, полученной при разряде, к энергии, подведённой при заряде аккумулятора: η = W p / W з. Срок службы аккумулятора – чаще измеряется в годах или в количестве разрядно-зарядных циклов. На практике для оценки работы АКБ используют зависимость напряжения аккумулятора от силы тока (рисунок 3.2.). Резкое снижение напряжения на участках АВ и СД обусловлено электрохимической поляризацией электродов; на участке ВС изменение напряжения почти линейное (обусловлено ещё и омическими падениями). Чем меньше падение U с ростом I, тем лучше работает аккумулятор. Классификацию аккумуляторов проводят в основном по химической природе электролита (рисунок 3.3). Кроме этого, они различаются по типу электродов и по конструкции. U,В А В рисунок 3.2. Вольт-амперная кривая С Д I, А

Аккумуляторы

Кислотные Щелочные с твёрдым электролитом с расплавленным (свинцовые) Ni-Cd, Ni-Fe (S-Na) электролитом

Рисунок 3.3. Классификация аккумуляторов по типу электролита

2. Свинцовые аккумуляторы

Свинцовые аккумуляторы в настоящее время являются наиболее распространёнными, в том числе на железнодорожном транспорте. Они состоят из двух решетчатых свинцовых пластин (для увеличения площади поверхности и ёмкости). Отрицательный электрод заполняется металлическим свинцом, положительный – диоксидом свинца PbO 2 . Электрохимическая схема:

Анод (-) Pb / H 2 SO 4 / PbO 2 (+) Катод

Электроды погружены в электролит – 25-30% раствор серной кислоты с плотностью 1,18 – 1,22 г/см 3 . Кроме электролита, решётки электродов разделяются пористыми сепараторами. Суммарная (токообразующая) реакция в аккумуляторе:

2 PbSO 4 + 2 H 2 O ↔ Pb + PbO 2 + 2H 2 SO 4 .

Прямая реакция в этой записи соответствует заряду аккумулятора, а обратная – его разряду (то есть его работе). При зарядке аккумулятора протекают следующие реакции: На аноде Pb +2 SO 4 + 2H 2 O – 2e - = Pb +4 O 2 + H 2 SO 4 , На катоде Pb +2 SO 4 + 2e - = Pb 0 + SO 4 2- . При разрядке аккумулятора (во время его работы): На аноде Pb +4 O 2 + 2H 2 SO 4 + 2e - = Pb +2 SO 4 + 2H 2 O + SO 4 2- ; На катоде Pb 0 + SO 4 2- - 2e - = Pb +2 SO 4 . Когда при разрядке напряжение падает до ≈ 1,8 В, дальнейшую разрядку производить нельзя – электроды покрываются толстым слоем сульфата свинца, аккумулятор выходит из строя. При работе кислотного свинцового аккумулятора нужно соблюдать ряд особенностей:

    Строго контролировать плотность электролита, с учётом условий работы аккумулятора; в частности, его концентрация зимой должна быть выше, чем летом. Следить за процессом заряда аккумулятора. Напряжение при заряде выше ЭДС (см рисунок 3.1.) и растёт в течение заряда, что ведёт в конце заряда к разложению воды по реакции 2Н 2 О = 2Н 2 + О 2 . Поэтому выделение пузырьков газа («кипение») служит признаком окончания заряда.
Достоинства кислотных аккумуляторов: высокие значения КПД (≈ 80%) и ЭДС (≈ 2 В), малое изменение напряжения при разряде, простота, невысокая цена, высокая удельная мощность (до 300 Вт/кг). Недостатки кислотных аккумуляторов: небольшая удельная энергия, высокий саморазряд при длительном хранении, относительно малый срок службы (около 5 лет), токсичность свинца.

3. Щелочные аккумуляторы

Среди аккумуляторов с щелочным электролитом наиболее распространены никель-кадмиевые (Ni-Cd) и никель-железные (Ni-Fe) аккумуляторы. Здесь положительный электрод содержит гидроксид никеля (III) Ni(OH) 3 (или NiOOH), а отрицательный – соответственно кадмий или железо. В качестве электролита используется 20-23% раствор гидроксида калия КОН, с плотностью 1,21 г/см 3 . Так, при работе Ni-Fe аккумулятора суммарное уравнение

Fe + 2Ni(OH) 3 ↔ Fe(OH) 2 + 2Ni(OH) 2 .

При разрядке на аноде Fe – 2e - = Fe 2+ , на катоде Ni(OH) 3 + e - = Ni(OH) 2 + OH - . Достоинства щелочных аккумуляторов: большой срок службы (до 10 лет), высокая механическая прочность; недостатки – невысокие КПД и разрядное напряжение. В последнее время получили распространение серебряно-цинковые и серебряно-кадмиевые аккумуляторы. Их достоинства – малый объём и вес, небольшое падение мощности при интенсивной работе; недостатки – высокая стоимость и нестабильная работа при низких температурах.

4. Стартерные батареи

Аккумуляторные стартерные батареи собираются в одном моноблоке – многоячеечном пластмассовом или эбонитовом корпусе. В каждой ячейке разделенные сепараторами электроды собраны в блок. Каждый электрод состоит из активной массы и металлической решетки, которая служит каркасом и токоотводом. Сепараторы изготавливают из пористой кислотостойкой пластмассы. В пробке, закрывающей отверстие для заливки электролита, имеются вентиляционное отверстие (для выхода газов) и отражатель (для предотвращения выплескивания). В последнее время в электродные массы таких АКБ добавляют сурьму и сплавы на основе свинца и кальция. Это приводит к более низкому газовыделению, снижению скорости саморазряда и незначительному расходу электролита. Основные неисправности стартерных батарей.

    Внешние – трещины в моноблоках, крышках, повреждение пробок, окисление или излом токоотводов. Внутренние – разрушение электродов, коррозия, оплывание активной массы, короткое замыкание, переполюсовка электродов, их сульфатация, повышенный саморазряд и т.д.
Для борьбы с внутренними неисправностями нужно избегать частых и длительных перезарядов АКБ, соблюдать плотность электролита, не допускать в нём посторонних примесей, применять для приготовления электролита только дистиллированную воду. Хранить заряженные АКБ с электролитом нужно в прохладных помещениях при постоянной температуре.

5. Аккумуляторы с расплавленным и твёрдым электролитом

В последние годы разрабатываются аккумуляторы с литиевым отрицательным электродом, неводным раствором электролита и положительным электродом на базе углерода, оксидов ванадия, никеля, кобальта и марганца. Представителем аккумуляторов с расплавленным электролитом является хлор-литиевый аккумулятор. На графитовом стержне адсорбирован газообразный хлор:

(–) Li / LiCl, KCl / Cl 2 , C (+)

Суммарный электрохимический процесс: 2Li + Cl 2 ↔ 2 LiCl. Преимущества такого аккумулятора – высокая удельная энергия (до 400 Вт*ч/кг) и мощность (до 2000 Вт/кг). Недостатки – высокая коррозионная активность электролита, токсичность хлора, взрывоопасность. Сейчас перспективными считаются аккумуляторы, где вместо чистого лития используются его сплавы с кремнием, алюминием, а катод состоит из хлористого теллура: (–) Li, Al / LiCl, KCl / TeCl 4 (+). Также активно разрабатываются аккумуляторы с твёрдыми и неводными электролитами (пропиленкарбонатом, фторуглеродами CF x , тионилхлоридом SOCl 2 и др.). Такие аккумуляторы уже сейчас дешевы, их ресурс составляет более 1000 циклов, у них высокая удельная энергия, однако пока они работают при малых токах.

6. Применение аккумуляторов на железнодорожном транспорте

Наиболее распространены и популярны на подвижном составе кислотные свинцовые аккумуляторы – этим они обязаны прежде всего стартерным батареям, предназначенным для различных средств передвижения. Они применяются для запуска двигателей внутреннего сгорания и являются тяговыми устройствами на маневровых электровозах, электрокарах и т.д. Закрытые свинцовые аккумуляторы (АБН-72, АБН-80 - антиблокировочные намазанные) используются в стационарных и напольных условиях для питания устройств железнодорожной автоматики, телемеханики и связи, а также на железнодорожных путях и сортировочных горках, имеющих электрическую и диспетчерскую централизацию. На их базе комплектуется большинство стационарных и вагонных батарей. Так, на тепловозах в основном применяют стартерные батареи 3-СТ-60 и 6-СТ-42 («3» или «6» - число последовательно соединенных аккумуляторов в АКБ, «60» или «42» - номинальная емкость при 10-часовом непрерывном режиме разряда). Щелочные аккумуляторы применяются также достаточно широко: на тепловозах, пассажирских вагонах, электрокарах, погрузчиках, рудничных электровозах, в переносной аппаратуре, для питания аппаратуры связи и электронной аппаратуры. Для переносных и портативных приборов и бытовой техники всё чаще используют литиевые аккумуляторы с расплавленным и твёрдым электролитом. Они имеют ёмкость до 10 А·ч и рассчитаны на длительный режим разрядки; являются многоцелевыми: обеспечивают работу радиоэлектронных и светотехнических изделий, переносных приборов и т.д. (транзисторных радиоприемников, карманных фонарей, тестеров, электрочасов, табло и пр.).

Лекция 4. Топливные элементы

    Основные понятия. Устройство топливных элементов (ТЭ). Водородно-кислородные элементы с различными электролитами. Установки с электрохимическим генератором. Применение топливных элементов.

1. Основные понятия

Топливные элементы (ТЭ) – это химические источники тока, в которых электроэнергия возникает за счёт химической реакции между топливом (восстановителем) и окислителем. Такие элементы могут работать длительное время, так как окислитель и восстановитель хранятся отдельно, вне элемента, а в процессе работы подаются к электродам – непрерывно и раздельно. В качестве топлива используются жидкие и газообразные восстановители: водород, метан и другие углеводороды, метиловый спирт, гидразин; основные окислители – это кислород и перекись водорода. Удельная энергия топливных элементов выше, чем у обычных гальванических элементов. Для большинства ТЭ ЭДС равна 1,0 – 1,5 В. Для уменьшения внутреннего сопротивления в ТЭ применяют электроды с высокой электрической проводимостью. Для уменьшения поляризации используют электроды с высокоразвитой поверхностью, на которые наносят различные катализаторы: платину, палладий, серебро, борид никеля и другие.

    Устройство топливных элементов (ТЭ). Водородно-кислородные элементы с различными электролитами.

Рассмотрим устройство ТЭ на примере наиболее распространенного кислородно-водородного элемента с щелочным электролитом. Превращение химической энергии в электрическую происходит при протекании реакции 2Н 2 +О 2 =2Н 2 О. При этом генерируется постоянный ток. К аноду подводится топливо (Н 2), к катоду – окислитель (О 2 или воздух). Между электродами находится электролит – раствор щелочи (в основном КОН).
Н 2 О N 2 1 2 3 Н 2 О 2 (воздух)

Рисунок 4.1. Устройство топливного элемента. 1 – анод, 2 – электролит, 3 – катод.

Схема данного элемента:

А (-) Н 2 , М / КОН/ М, О 2 (+) К

Здесь М – катализатор (проводник первого рода). Анодный процесс: Н 2 + 2 ОН - - 2е - = 2 Н 2 О; Катодный процесс: О 2 + 2 Н 2 О + 4е - = 4 ОН - . Суммарный процесс: 2 Н 2 + О 2 = 2 Н 2 О. Во внешней цепи происходит движение электронов от анода к катоду, а в растворе – движение ионов от катода к аноду. На практике также широко применяется кислородно-гидразиновый элемент, схема которого:

(-) Ni, N 2 H 4 / KOH / О 2 , С (+)

Здесь анодом является никелевый электрод, а катодом – графитовый стержень. При работе такого ТЭ на аноде N 2 H 4 + 4 OH - = N 2 + 4H 2 O + 4 e - , на катоде О 2 + 2Н 2 О + 4е - = 4 ОН - . Суммарная реакция N 2 H 4 + O 2 = N 2 + 2H 2 O. Вышеперечисленные ТЭ способны работать уже при комнатной температуре (их ещё называют низкотемпературными). Другие ТЭ (с электролитами из фосфорной кислоты, полимерными ионообменными мембранами) работают при температурах от 100 до 300 0 С. У данных ТЭ на аноде: 2Н 2 – 4е - = 4 Н + ; на катоде О 2 + 2Н 2 О + 4е - = 4 ОН - . Основные проблемы при функционировании ТЭ: чистота топлива (влияющая на его окисляемость), выбор катализатора (с целью удешевления ТЭ), повышение срока службы ТЭ. Сейчас в основном водород для ТЭ получают конверсией метана: СН 4 + 2Н 2 О = СО 2 + 4Н 2 .

3. Установки с электрохимическим генератором

В отличие от гальванических элементов ТЭ не могут работать без вспомогательных устройств. Для повышения напряжения, силы тока и мощности ТЭ соединяют в батареи. Система, состоящая из батареи ТЭ, устройств для подвода топлива и окислителя (а также их хранения и обработки), отвода продуктов реакции, регулировки температуры и преобразования тока и напряжения называется электрохимическим генератором (ЭХГ), или электрохимической установкой. Схема ЭХГ показана на рисунке 4.2.

Отвод продуктов реакции генератор отвод тепла Нагрузка Подача топлива батарея ТЭ подача окислителя

Система контроля температуры

Рисунок 4.2. Схема установки с ЭХГ.

4. Применение топливных элементов

ТЭ придаётся большое значение в связи с тем, что их КПД близок к 100%, и они могут применяться во многих отраслях хозяйства, не загрязняя окружающую среду. С каждым годом их применение всё шире. Основные сферы применения ТЭ: космические корабли и станции, электромобили и транспорт, стационарные энергоустановки. В настоящее время созданы кислородно-гидразиновые ЭХГ, имеющие мощность 50 кВт. Срок их службы – 2000 ч. Они производят электроэнергию в любое время суток, надёжны в эксплуатации, имеют малые размеры и способны выдерживать различные перегрузки. На космических кораблях и подводных лодках ЭХГ обеспечивают людей не только электроэнергией, но и водой. Наиболее распространены ЭХГ с щелочным электролитом, они обладают удельной энергией 400-800 Вт·ч/кг и КПД 70%, мощностью около 10 кВт. В последние годы всё больше уделяется внимание разработке ТЭ для различных мобильных приборов и устройств (ноутбуков, видеокамер и т.п.), а также ЭХГ для электромобилей, работающих на водороде или метаноле. Многочисленные публикации в научно-популярной прессе, сюжеты по ТВ подтверждают то, что дальнейшее совершенствование ТЭ является одним из самых перспективных направлений в развитии энергетики. ЭХГ ещё пока относительно дороги, однако сейчас ведутся интенсивные работы по их удешевлению с целью широкого использования экологически чистой энергии.

Лекция 5. Коррозия.

Теоретические вопросы в области коррозии

    Определение коррозии и значение коррозионной проблемы. Прямые и косвенные потери от коррозии. Причины возникновения коррозии. Химическая коррозия. Электрохимическая коррозия. Влияние водородного показателя среды на скорость коррозии. Оценка коррозионной стойкости металлов.

    Определение коррозии и значение коррозионной проблемы

Коррозия – это разрушение металлов в результате химической или электрохимической реакции. Разрушение металла, происходящее по физическим причинам, не является коррозией, а известно как эрозия, износ или истирание. В некоторых случаях химическое воздействие сопровождается физическим разрушением и называется коррозионным износом или фреттинг-коррозией. Это определение не распространяется на неметаллические материалы (пластмасса, дерево, гранит, цемент и бетон). Ржавлением называется коррозия железа и его сплавов, с образованием продуктов, состоящих в основном из гидратированных оксидов железа. При коррозии цветных металлов о ржавлении обычно не говорят. Ввиду того, что коррозия включает в себя химические превращения, для понимания теории коррозии необходимо знать основы электрохимии, так как коррозионные процессы в большинстве своем являются электрохимическими. Значение коррозионных исследований определяется тремя аспектами. Первый аспект – экономический. Его цель – уменьшение материальных потерь (в результате коррозии трубопроводов, резервуаров, котлов, деталей машин, судов, мостов, железнодорожных рельсов, подвижного состава). Второй аспект – повышение надежности оборудования, которое в результате коррозии может разрушаться с катастрофическими последствиями (трубопроводы высокого давления, контейнеры для токсичных материалов, лопасти и роторы турбин, деталей самолетов, АЭС, систем захоронения радиоактивных отходов и т.п.). Третий аспект – сохранность металлического фонда.

2. Прямые и косвенные потери от коррозии.

Различают прямые и косвенные потери от коррозии. Под прямыми потерями понимают стоимость замены прокорродированных конструкций или их частей. Другими примерами прямых потерь могут служить затраты на перекраску конструкций для предотвращения ржавления или эксплуатационные затраты, нанесение защитных металлических покрытий. Прямые потери легко подсчитать. Гораздо труднее поддаются расчетам косвенные потери, даже по приближенным оценкам они исчисляются миллиардами долларов по всему миру. Так, в США общая сумма прямых потерь – 4,2 % валового национального продукта. В России ежегодно до 20 % всего выплавляемого металла подвергается коррозии. Примеры косвенных потерь от коррозии:

    Простои (например, замена прокорродированной трубы или участка железнодорожного пути) – учитывается недовыработка продукции за время простоя. Потеря готовой продукции (утечка нефти, газа, воды). Потеря мощности – из-за отложения продуктов коррозии, так как, например, нарушается теплообмен или уменьшается полезный рабочий просвет трубопроводов. А в результате коррозии поршневых колец и стенок цилиндров ДВС увеличивается расход бензина и масла. Загрязнение продукции. Небольшие количества металлов в результате коррозии могут испортить партию продукции – поменять цвет красителей, ухудшить качество (особенно продуктов питания). Допуски на коррозию. Речь идёт о том, что приходится в ряде случаев в расчёте на коррозию изготавливать толщину стенок изделий больше, чем надо, а это затраты средств.
В ряде случаев косвенные потери не могут быть вообще выражены в денежных единицах – к ним можно отнести аварии, взрывы, пожары, крушения и пр., особенно связанные с человеческими жертвами. Как бы то ни было, коррозия приносит народному хозяйству огромные убытки. Коррозия сопровождается не только потерей металла, но и понижением его механической прочности.

3. Причины возникновения коррозии.

Основной причиной коррозии является термодинамическая неустойчивость металлов и сплавов в окружающей среде. Подавляющее большинство металлов в земной коре находится в виде оксидов, сульфидов и других соединений. При получении металлов в металлургии их переводят из такого стабильного состояния в элементарную форму, которая нестабильна. При контакте металла с внешней окислительной средой появляется движущая сила, стремящаяся превратить его в стабильные соединения, подобные тем, которые находятся в рудах. Примером является коррозия стали: железо переводится из элементарного состояния в окисленное (двух- и трехвалентное), которое соответствует таким минералам, как магнетит Fe 3 O 4 или лимонит Fe 2 O 3 ·H 2 O. Термодинамическая неустойчивость металлов количественно оценивается знаком и величиной изобарно-изотермического потенциала ΔG (энергии Гиббса). Самопроизвольно протекают те процессы, которые сопровождаются уменьшением энергии Гиббса, то есть для которых ΔG меньше нуля. Металлы, стоящие в ряду напряжений до водорода, имеют по сравнению с водородом более отрицательный потенциал, их окисленное состояние более устойчиво термодинамически, чем восстановленное. Для металлов, расположенных после водорода, восстановленное состояние термодинамически более устойчиво, то есть для них ΔG процесса окисления больше нуля. К этой группе металлов относятся коррозионно-стойкие золото, серебро, платина и др.

Учебно-методический комплекс

Основной целью преподавания дисциплины является формирование у студентов единого представления о процессе проектирования вагоноремонтного предприятия (вагонного депо или вагоноремонтного завода) как специализированного промышленного

  • Учебно-методический комплекс по дисциплине «Основы технической диагностики» (название)

    Учебно-методический комплекс
  • Учебно-методический комплекс по дисциплине «Холодильное оборудование вагонов» (название)

    Учебно-методический комплекс

    составлен в соответствии с требованиями Государственного образовательного стандарта высшего профессионального образования/основной образовательной программы по специальности/ направлению

  • Свинцово-кислотный аккумулятор - один из самых распространенных типов батарей, использующийся в качестве источника электроэнергии для автомобиля, мотоцикла, мопеда, или в случае необходимости создания запасных источников питания.

    Первая модель свинцово-кислотного аккумулятора была создана в середине XIX века ученым Гастоном Планте. Тогда его конструкция подразумевала две свинцовых пластины, стеклянную колбу с серной кислотой и обычное полотно в роли сепаратора. Это устройство обладало малой емкостью заряда и не получило достаточного распространения. Но идею оценили другие ученые и стали экспериментировать с составом электродов. В итоге самой удачной оказалась решетчатая конструкция из сплава с добавлением сурьмы. Изобретение генераторов постоянного тока решило проблему с подходящим источником энергии, и свинцово-кислотные аккумуляторные батареи наконец-таки получили широкое распространение.

    В конце ХХ века их конструкция усложнилась, появились , в электроды которых был добавлен кальций. Это нововведение позволило существенно сократить расход воды. В идеале, батареи такого типа способны работать без пополнения количества воды в электролите весь срок службы. Кстати, при необходимости утратившее работоспособность устройство можно попробовать восстановить, используя принцип действия кислотных аккумуляторов.

    По конструктивным особенностям современные батареи делятся на три типа:

    1. С жидким электролитом. Могут быть как обслуживаемыми, так и необслуживаемыми. Электролит - смесь серной кислоты и воды, находящаяся в жидком виде. В версии, требующей обслуживания, пластины изготавливаются из свинца с добавлением сурьмы и мышьяка. В таких батареях высок расход воды, что делает обслуживание аккумулятора не очень простой задачей. После замены сурьмы на кальций в состав сплава отрицательной пластины появились так называемые гибридные аккумуляторы, более удобные в эксплуатации, чем их предшественники. И, наконец, с добавлением кальция в обе пластины началась эра устройств, не требующих восстановления количества воды весь срок службы. Несмотря на совершенство конструкции, у них есть один минус - плохо переносят почти полный разряд, особенно в условиях отрицательной температуры.
    2. Гелевые АКБ. В этих конструкциях электролит находится в сгущенном состоянии благодаря добавлению кремния. Плюс такой конструкции в том, что батарея становится абсолютно герметичной. Газ, выделяющийся в процессе химических реакций, находит себе место в порах геля, а при обратных реакциях вновь присоединяется к раствору серной кислоты. Но это очень капризные батареи. Они требуют неукоснительного соблюдения условий эксплуатации, чувствительны к перепадам температур, справляются с высокой нагрузкой хуже, чем их жидкостные собратья. Но они хорошо справляются с сильной разрядкой, действительно не требуют дополнительного обслуживания. Гелевые АКБ чаще используются в качестве стационарно резервного источника питания и редко устанавливаются на транспорт.
    3. AGM-аккумуляторы. Это самый современный вид батарей, сочетающий все достоинства предыдущих вариантов. Электролит остается жидким, но циркулирует в пористой конструкции из тончайших стеклянных волокон. Два вида пор - большие и маленькие - обеспечивают свободное перемещение газа до того, как запустится обратная реакция. Конструкция устройства такова, что аккумулятор может работать, даже если его оболочка незначительно повреждена. Не боятся они и холода, глубокой разрядки, вибраций. Единственная уязвимость такого устройства - чувствительность к перепадам напряжения. Эту проблему можно решить, контролируя работу генератора и пользуясь надежным ЗУ.

    Емкость и напряжение

    У любого есть два основных параметра: емкость и напряжение. Емкость определяет количество энергии, которое аккумулятор может отдать при рабочем напряжении, измеряется в Ампер-часах. Она зависит от площади свинцовых пластин, участвующих в химических реакциях. При износе аккумулятора его емкость уменьшается из-за естественных потерь в размере пластин.

    Напряжение - количество электрического тока, отдаваемое батареей. Измеряется в вольтах, зависит от плотности электролита. Оба параметра необходимо контролировать, так как от них зависит работоспособность устройства.

    Для измерения напряжения используется вольтмер, правильные показатели - от 11 до 13 вольт (раньше производились аккумуляторы с напряжением 6 вольт, теперь они считаются устаревшими).

    Чтобы измерить емкость, существует несколько методов:

    • « » - измерение напряжения при эталонной нагрузке. Аккумулятор должен быть полностью заряжен.
    • Специальный индикатор, способный посылать сигнал, определяющий площадь свинцовых пластин, и преобразовывать его в цифры. Не требует особых условий использования.
    • В домашних условиях можно подключить мощную автомобильную галогеновую лампу и замерить в это время напряжение. Ели в течение 2 минут оно держится на уровне ~11 вольт, а свет лампы ровный и сильный - все в порядке.

    Эксплуатация и восстановление

    В зависимости от типа используемого аккумулятора, условия его эксплуатации будут сильно отличаться. Единственная общая черта - всех их необходимо вовремя заряжать. Так, обслуживаемая батарея требует долива воды в аккумулятор, что может представлять собой опасность - кислота нагревает воду, и кипяток может ощутимо обжечь автовладельца.

    Конструкция необслуживаемых аккумуляторов не предполагает возможности пополнения запаса воды в них. Но, даже если произвести небольшие изменения в конструкции, обжечься кипятком все равно будет проблематично. Для батарей такого типа важно не допускать больших колебаний напряжения. Это справедливо и для автомобильного, и для мотоциклетного аккумулятора. Но герметичный корпус уменьшает варианты восстановления устройства.

    Как ? Часто снижение емкости или напряжения аккумулятора происходит из-за того, что некоторые участки электролита слишком уплотнились. При многоразовой небольшой зарядке эти области разжижаются, и потенциал устройства восстанавливается. Существует несколько рецептов восстанавливающего раствора, который несколько улучшает состояние устройства. К сожалению, его использование несколько затруднено на батареях с герметизированным корпусом, так как слить из него этот раствор будет проблематично.

    Какой бы аккумулятор ни был установлен на транспортном средстве, важно соблюдать инструкцию по его использованию, вовремя заряжать и, при необходимости, пополнять запас воды в электролите. Тогда батареи будет максимально долгим.

    Этот обзор задумывался ещё осенью 2009, но в силу не зависящих от меня обстоятельств (мировой кризис, болезни, другие проекты, хорошая погода, уборка в комнате, банальная лень и т.д) написание всё время откладывалось и поэтому некоторые данные слегка устарели, но не потеряли своей актуальности. Тем более, что это сравнительный обзор в котором важны не абсолютные значения, а их разница.

    В интернете полно информации по тем или иным типам аккумуляторов, но по большей части это кричаще-вопящее маркетинговое словоблудие, очень отдалённо напоминающее действительность. Один из самых нормальных (на мой непрофессиональный взгляд) это battery.newlist.ru , но он уже давным давно не обновлялся. Ещё меня очень радуют две статьи Олега Артамонова на сайте Ф-Центр: Тестирование батареек формата АА и Тестирование Ni-MH аккумуляторов формата AA . Человек серьёзно подошёл к этому исследованию, разработал стенд и методику , и сделал подробное и грамотное описание. И хотя с момента тестирований прошло 3-4 года, статьи актуальны, так как эти батарейки и аккумуляторы до сих пор продаются в магазинах.
    В первом тестировании автор поднял, на мой взгляд, очень важный вопрос, а именно: почему ёмкость батарей и аккумуляторов производители указывают в Ампер-часах, хотя правильнее её указывать в Ватт-часах? Ведь даже внутри одной группы батарей (аккумуляторов), внутреннее сопротивление элементов настолько разниться, что те "банки" которые лидировали по Ампер-часам из-за большого внутренного сопротивления (а следовательно и более низкого напряжения), проигрывали не таким "ёмким" своим собратьям по фактически отдаваемой энергии, измеряемой в Ватт-часах. Ведь любое электронное устройство потребляет не Ампер-часы, а Ватт-часы или Ампер-часы умноженные на среднее напряжение на аккумуляторе при его разряде, то есть при получении этих самых Ампер-часов. А уж если сравнивать аккумуляторы разных типов, то тут Ампер-часы вообще не имеют никакого смысла, ведь 1А*ч литий-йонного аккумулятора по фактически отдаваемой энергии равен примерно 3А*ч NiMH аккумулятора. По сути ситуация как и с цифровыми фотоаппаратами - производитель в рекламе (и на корпусе аппарата) пишет заоблачные числа количества пикселей и кратности зума, а для качества фотографии важнее всего это размер матрицы и светосила объектива. В результате у большинства конечных пользователей недоуменее, почему фотографии старой 3-мегапиксельной зеркали лучше, чем современного 12-мегапиксельного, 18-кратного супер девайса? Вобщем мысль, я думаю, понятна - чтобы не быть обманутыми лохами, надо думать головой, а не тупо сравнивать два числа, указанных крупными цифрами на коробке или корпусе изделия.
    Будучи велотуристом я задумался об универсальном источнике энергии для походов. А для этого мне надо определиться с типом аккумуляторов: какой лучше, легче, надёжнее, более ёмкий и т.д. Главная характеристика для меня как для туриста - это ёмкость, как понимаете в Ватт-часах. По сути если рассматривать аккумулятор как ёмкость для энергии, то Ватт-часы (или Джоули, 1Вт*ч = 3,6кДж) это единицы измерения его объёма (как литры для банок и кастрюль). И так же как и банки с кастрюлями могут быть и из лёгкого и тонкого пластика, и из тяжёлого и толстого чугуна, так среди аккумуляторов есть большие по размерам и тяжёлые, с небольшой ёмкостью, и маленькие и лёгкие с большой ёмкостью. Так как городить стенд для тестирования, а потом покупать разные виды аккумуляторов для тестирования долго и весьма накладно, я решил обойтись "малой кровью". Многие производители выкладывают на свою продукцию так называемые Data sheet-ы, в которых печатаются (ну или должны печататься) основные характеристики изделия, графики, характеризующие определённые параметры работы и др. Вот эти графики я и задумал использовать для анализа ситуации. Конечно я полностью осознаю, что в некоторых случаях эти графики несколько условны и искуственны, и созданы больше для рекламы нежели отразить реальные характеристики, но так как другого выхода нет, пойдём этим путём. А сравнение нескольких однотипных аккумуляторов от разных производителей покажет примерное положение истины, которая, как правило, где-то посередине.
    Подробно описывать методику получения данных из графиков не буду. В двух словах: график из pdf-файла сохраняется в jpeg-изображение, дальше эти графики оцифровываются с помощью программы GetData Graph Digitizer . Эта программа выдаёт координаты точек кривых графика и сохраняет их в формате MS Excel. После этого идёт математическая обработка полученых данных в OriginPro. Думаю и в Excel-е можно сделать, но Origin заточен под работу с графиками и работать с ним в этом плане легче. Все Data sheet-ы, использованные для сбора данных, можно скачать из каталога файлов.