§42. Кислотные аккумуляторы. Сравнение аккумуляторов различных типов

Этот обзор задумывался ещё осенью 2009, но в силу не зависящих от меня обстоятельств (мировой кризис, болезни, другие проекты, хорошая погода, уборка в комнате, банальная лень и т.д) написание всё время откладывалось и поэтому некоторые данные слегка устарели, но не потеряли своей актуальности. Тем более, что это сравнительный обзор в котором важны не абсолютные значения, а их разница.

В интернете полно информации по тем или иным типам аккумуляторов, но по большей части это кричаще-вопящее маркетинговое словоблудие, очень отдалённо напоминающее действительность. Один из самых нормальных (на мой непрофессиональный взгляд) это battery.newlist.ru , но он уже давным давно не обновлялся. Ещё меня очень радуют две статьи Олега Артамонова на сайте Ф-Центр: Тестирование батареек формата АА и Тестирование Ni-MH аккумуляторов формата AA . Человек серьёзно подошёл к этому исследованию, разработал стенд и методику , и сделал подробное и грамотное описание. И хотя с момента тестирований прошло 3-4 года, статьи актуальны, так как эти батарейки и аккумуляторы до сих пор продаются в магазинах.
В первом тестировании автор поднял, на мой взгляд, очень важный вопрос, а именно: почему ёмкость батарей и аккумуляторов производители указывают в Ампер-часах, хотя правильнее её указывать в Ватт-часах? Ведь даже внутри одной группы батарей (аккумуляторов), внутреннее сопротивление элементов настолько разниться, что те "банки" которые лидировали по Ампер-часам из-за большого внутренного сопротивления (а следовательно и более низкого напряжения), проигрывали не таким "ёмким" своим собратьям по фактически отдаваемой энергии, измеряемой в Ватт-часах. Ведь любое электронное устройство потребляет не Ампер-часы, а Ватт-часы или Ампер-часы умноженные на среднее напряжение на аккумуляторе при его разряде, то есть при получении этих самых Ампер-часов. А уж если сравнивать аккумуляторы разных типов, то тут Ампер-часы вообще не имеют никакого смысла, ведь 1А*ч литий-йонного аккумулятора по фактически отдаваемой энергии равен примерно 3А*ч NiMH аккумулятора. По сути ситуация как и с цифровыми фотоаппаратами - производитель в рекламе (и на корпусе аппарата) пишет заоблачные числа количества пикселей и кратности зума, а для качества фотографии важнее всего это размер матрицы и светосила объектива. В результате у большинства конечных пользователей недоуменее, почему фотографии старой 3-мегапиксельной зеркали лучше, чем современного 12-мегапиксельного, 18-кратного супер девайса? Вобщем мысль, я думаю, понятна - чтобы не быть обманутыми лохами, надо думать головой, а не тупо сравнивать два числа, указанных крупными цифрами на коробке или корпусе изделия.
Будучи велотуристом я задумался об универсальном источнике энергии для походов. А для этого мне надо определиться с типом аккумуляторов: какой лучше, легче, надёжнее, более ёмкий и т.д. Главная характеристика для меня как для туриста - это ёмкость, как понимаете в Ватт-часах. По сути если рассматривать аккумулятор как ёмкость для энергии, то Ватт-часы (или Джоули, 1Вт*ч = 3,6кДж) это единицы измерения его объёма (как литры для банок и кастрюль). И так же как и банки с кастрюлями могут быть и из лёгкого и тонкого пластика, и из тяжёлого и толстого чугуна, так среди аккумуляторов есть большие по размерам и тяжёлые, с небольшой ёмкостью, и маленькие и лёгкие с большой ёмкостью. Так как городить стенд для тестирования, а потом покупать разные виды аккумуляторов для тестирования долго и весьма накладно, я решил обойтись "малой кровью". Многие производители выкладывают на свою продукцию так называемые Data sheet-ы, в которых печатаются (ну или должны печататься) основные характеристики изделия, графики, характеризующие определённые параметры работы и др. Вот эти графики я и задумал использовать для анализа ситуации. Конечно я полностью осознаю, что в некоторых случаях эти графики несколько условны и искуственны, и созданы больше для рекламы нежели отразить реальные характеристики, но так как другого выхода нет, пойдём этим путём. А сравнение нескольких однотипных аккумуляторов от разных производителей покажет примерное положение истины, которая, как правило, где-то посередине.
Подробно описывать методику получения данных из графиков не буду. В двух словах: график из pdf-файла сохраняется в jpeg-изображение, дальше эти графики оцифровываются с помощью программы GetData Graph Digitizer . Эта программа выдаёт координаты точек кривых графика и сохраняет их в формате MS Excel. После этого идёт математическая обработка полученых данных в OriginPro. Думаю и в Excel-е можно сделать, но Origin заточен под работу с графиками и работать с ним в этом плане легче. Все Data sheet-ы, использованные для сбора данных, можно скачать из каталога файлов.

История

Свинцовый аккумулятор разработал в 1859-1860 годах Гастон Планте, сотрудник лаборатории Александра Беккереля . В 1878 году Камилл Фор усовершенствовал его конструкцию, покрыв пластины аккумулятора свинцовым суриком .

Принцип действия

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в сернокислотной среде.

Энергия возникает в результате взаимодействия оксида свинца и серной кислоты до сульфата (классическая версия). Проведенные в СССР исследования показали, что внутри свинцового аккумулятора протекает как минимум ~60 реакций, порядка 20 из которых протекают без участия кислоты электролита (нехимические)

Во время разряда происходит восстановление диоксида свинца на катоде и окисление свинца на аноде . При заряде протекают обратные реакции, к которым в конце заряда добавляется реакция электролиза воды, сопровождающаяся выделением кислорода на положительном электроде и водорода - на отрицательном.

Химическая реакция (слева направо - разряд, справа налево - заряд):

В итоге получается, что при разряде аккумулятора расходуется серная кислота из электролита (и плотность электролита падает, а при заряде, серная кислота выделяется в раствор электролита из сульфатов, плотность электролита растёт). В конце заряда, при некоторых критических значениях концентрации сульфата свинца у электродов, начинает преобладать процесс электролиза воды. При этом на катоде выделяется водород , на аноде - кислород . При заряде не стоит допускать электролиза воды, в противном случае необходимо её долить для восполнения потерянного в ходе электролиза количества.

Устройство

Элемент свинцово-кислотного аккумулятора состоит из электродов (положительных и отрицательных) и разделительных изоляторов (сепараторов), которые погружены в электролит . Электроды представляют собой свинцовые решётки. У положительных активным веществом является перекись свинца (PbO 2), у отрицательных активным веществом является губчатый свинец .

На самом деле электроды выполнены не из чистого свинца, а из сплава с добавлением сурьмы в количестве 1-2 % для повышения прочности и примесей. Иногда в качестве легирующего компонента используются соли кальция, в обеих пластинах, или только в положительных. Применение солей кальция вносит не только положительные но и много отрицательных моментов в эксплуатацию свинцового аккумулятора, например, у такого аккумулятора при глубоких разрядах существенно и необратимо снижается емкость.

Электроды погружены в электролит, состоящий из разбавленной дистиллированной водой серной кислоты (H 2 SO 4). Наибольшая проводимость этого раствора наблюдается при комнатной температуре (что означает наименьшее внутреннее сопротивление и наименьшие внутренние потери) и при его плотности 1,23 г/см³

Однако на практике, часто в районах с холодным климатом применяются и более высокие концентрации серной кислоты, до 1,29 −1,31 г/см³.

Существуют экспериментальные разработки аккумуляторов где свинцовые решетки заменяют вспененным карбоном , покрытым тонкой свинцовой пленкой. Используя меньшее количество свинца и распределив его по большой площади, батарею удалось сделать не только компактной и легкой, но и значительно более эффективной - помимо большего КПД, она заряжается значительно быстрее традиционных аккумуляторов.

В результате каждой реакции образуется нерастворимое вещество - сернокислый свинец PbSO 4 , осаждающийся на пластинах, который образует диэлектрический слой между токоотводами и активной массой. Это один из факторов, влияющий на срок службы свинцово-кислотной аккумуляторной батареи.

Основными процессами износа свинцово-кислотных аккумуляторов являются:

Хотя батарею, вышедшую из строя по причине физического разрушения пластин, самому починить нельзя, некоторые источники описывают химические растворы и прочие способы способные «десульфатировать» пластины. Простой но вредный для жизни аккумулятора способ предполагает использование раствора сульфата магния . Раствор заливается в секции после чего батарею разряжают и заряжают несколько раз. Сульфат свинца и прочие остатки химической реакции осыпаются при этом на дно батареи, что может привести к замыканию секции поэтому обработанные секции желательно промыть и заполнить новым электролитом номинальной плотности. Это позволяет несколько продлить срок использования устройства. Если батарея имеет одну или несколько секций которые не работают (то есть не дают 2.17 вольта - например если корпус имеет трещины) возможно соединить две (или больше) батареи последовательно: к плюсовому контакту первой батареи подключаем плюсовой провод потребителя, к минусовому контакту второй батареи - минусовой провод потребителя, а две оставшихся контакта батареи соединяются кабелем. Такая батарея имеет суммарное напряжение работающих секций и поэтому количество работающих секций должно быть не более шести - то есть необходимо слить электролит из излишних секций. Такой вариант подходит для транспортных средств с большим моторным отсеком.

Вторичная переработка

Вторичная переработка для этого вида аккумуляторов играет важную роль, так как свинец, содержащийся в аккумуляторах является тяжелым металлом и наносит серьёзный вред при попадании в окружающую среду. Свинец и его соли должны быть переработаны на специальных предприятиях для возможности его вторичного использования.

Выброшенные аккумуляторы часто используются как источник свинца для кустарной переплавки, например, в рыболовные грузила, дробь или гири. Для этого из аккумулятора сливается электролит, остатки нейтрализуются промыванием каким-либо безвредным основанием (например, гидрокарбонатом натрия), после чего корпус батареи разбивается и извлекается металлический свинец .

См. также

Примечания

Ссылки

  • ГОСТ 15596-82
  • ГОСТ Р 53165-2008 Батареи аккумуляторные свинцовые стартерные для автотракторной техники. Общие технические условия. Взамен ГОСТ 959-2002 и ГОСТ 29111-91
  • Видео, демонстрирующее принцип работы аккумулятора на YouTube
  • Обслуживание и Восстановление свинцовых АКБ системы AGM"


Принцип действия. Аккумулятором называется химический источник тока, который способен накапливать (аккумулировать) в себе электрическую энергию и по мере необходимости отдавать ее во внешнюю цепь. Накапливание в аккумуляторе электрической энергии происходит при пропускании по нему тока от

постороннего источника (рис. 158,а). Этот процесс, называемый зарядом аккумулятора , сопровождается превращением электрической энергии в химическую, в результате чего аккумулятор сам становится источником тока. При разряде аккумулятора (рис. 158, б) происходит обратное превращение химической энергии в электрическую. Аккумулятор обладает большим преимуществом по сравнению с гальваническим элементом. Если элемент разрядился, то он приходит в полную негодность; аккумулятор же. после разряда может быть вновь заряжен и будет служить источником электрической энергии. В зависимости от рода электролита аккумуляторы разделяют на кислотные и щелочные.

На локомотивах и электропоездах наибольшее распространение получили щелочные аккумуляторы, которые имеют значительно больший срок службы, чем кислотные. Кислотные аккумуляторы ТН-450 применяют только на тепловозах, они имеют емкость 450 А*ч, номинальное напряжение - 2,2 В. Аккумуляторная батарея 32 ТН-450 состоит из 32 последовательно соединенных аккумуляторов; буква Т означает, что батарея установлена на тепловозе, буква Н - тип положительных пластин (намазные).

Устройство. В кислотном аккумуляторе электродами являются свинцовые пластины, покрытые так называемыми активными массами, которые взаимодействуют с электролитом при электрохимических реакциях в процессе заряда и разряда. Активной массой положительного электрода (анода) служит перекись свинца PbO 2 , а активной массой отрицательного электрода (катода) - чистый (губчатый) свинец Pb. Электролитом является 25-34 %-ный водный раствор серной кислоты.

Пластины аккумулятора могут иметь конструкцию поверхностного или намазного типа. Пластины поверхностного типа отливают из свинца; поверхность их, на которой происходят электрохимические реакции, увеличена благодаря наличию ребер, борозд и т. п. Их применяют в стационарных аккумуляторных батареях и некоторых батареях пассажирских вагонов.

В аккумуляторных батареях тепловозов применяют пластины намазного типа (рис. 159, а). Такие пластины имеют остов из сплава свинца с сурьмой, в котором устроен ряд ячеек, заполняемых пастой.

Ячейки пластин после заполнения пастой закрывают свинцовыми листами с большим количеством отверстий. Эти листы предотвращают возможность выпадания из пластин активной массы и не препятствуют в то же время доступу к ней электролита.

Исходным материалом для изготовления пасты для положительных пластин служит порошок свинца Pb, а для отрицательных- порошок, перекиси свинца PbO 2 , которые замешиваются на водном растворе серной кислоты. Строение активных масс в таких пластинах пористое; благодаря этому в электрохимических реакциях участвуют не только поверхностные, но и глубоколежащие слои электродов аккумулятора.

Для повышения пористости и уменьшения усадки активной массы в пасту добавляют графит, сажу, кремний, стеклянный порошок, сернокислый барий и другие инертные материалы, называемые расширителями . Они не принимают участия в электрохимических реакциях, но затрудняют слипание (спекание) частиц свинца и его окислов и предотвращают этим уменьшение пористости.

Намазные пластины имеют большую поверхность соприкосновения с электролитом и хорошо им пропитываются, что способствует уменьшению массы и размеров аккумулятора и позволяет получать при разряде большие токи.

При изготовлении аккумуляторов пластины подвергают специальным зарядно-разрядным циклам. Этот процесс носит название формовки аккумулятора . В результате формовки паста положительных пластин электрохимическим путем превращается в перекись (двуокись) свинца PbO 2 и приобретает коричневый цвет. Паста отрицательных пластин при формовке переходит в чистый свинец Pb, имеющий пористую структуру и называемый поэтому губчатым; отрицательные пластины приобретают серый цвет.

В некоторых аккумуляторах применены положительные пластины панцирного типа. В них каждая положительная пластина заключена в специальный панцирь (чехол) из эбонита или стеклоткани. Панцирь надежно удерживает активную массу пластины от осыпания при тряске и толчках; для сообщения же активной массы пластин с электролитом в панцире делают горизонтальные прорези шириной около 0725 мм.

Для предотвращения замыкания пластин посторонними предметами (щупом для измерения уровня электролита, устройством для заливки электролита и др.) пластины в некоторых аккумуляторах покрывают полихлорвиниловой сеткой.

Для увеличения емкости в каждый аккумулятор устанавливают несколько положительных и отрицательных пластин; одноименные пластины соединяют параллельно в общие блоки, к которым приваривают выводные штыри. Блоки положительных и отрицательных пластин обычно устанавливают в эбонитовом аккумуляторном сосуде (рис. 159,б) так, чтобы между каждыми двумя

пластинами одной полярности располагались пластины другой полярности. По краям аккумулятора ставят отрицательные пластины, так как положительные пластины при установке по краям склонны к короблению. Пластины отделяют одну от другой сепараторами, выполненными из микропористого эбонита, полихлорвинила, стекловойлока или другого изоляционного материала. Сепараторы предотвращают возможность короткого замыкания между пластинами при их короблении.

Пластины устанавливают в аккумуляторном сосуде так, чтобы между их нижней частью и дном сосуда имелось некоторое свободное пространство. В этом пространстве скапливается свинцовый осадок (шлам), образующийся вследствие отпадания отработавшей активной массы пластин в процессе эксплуатации.

Разряд и заряд. При разряде аккумулятора (рис. 160, а) положительные ионы H 2 + и отрицательные ионы кислотного остатка
S0 4 -, на которые распадаются молекулы серной кислоты H 2 S0 4 электролита 3, направляются соответственно к положительному
1 и отрицательному 2 электродам и вступают в электрохимические реакции с их активными массами. Между электродами возникает
разность потенциалов около 2 В, обеспечивающая прохождение электрического тока при замыкании внешней цепи. В результате
электрохимических реакций, возникающих при взаимодействии ионов водорода с перекисью свинца PbO 2 положительного
электрода и ионов сернокислого остатка S0 4 — со свинцом Pb отрицательного электрода, образуется сернокислый свинец PbS0 4 (сульфат свинца), в который превращаются поверхностные слои активной массы обоих электродов. Одновременно при этих реакциях образуется некоторое количество воды, поэтому концентрация серной кислоты понижается, т. е. плотность электролита уменьшается.

Аккумулятор может разряжаться теоретически до полного превращения активных масс электродов в сернокислый свинец и истощения электролита. Однако практически разряд прекращают гораздо раньше. Образующийся при разряде сернокислый свинец представляет собой соль белого цвета, плохо растворяющуюся в электролите и обладающую низкой электропроводностью. Поэтому разряд ведут не до конца, а только до того момента, когда в сернокислый свинец перейдет около 35 % активной массы. В этом случае образовавшийся сернокислый свинец равномерно распределяется в виде мельчайших кристалликов в оставшейся активной массе, которая сохраняет еще достаточную электропроводность, чтобы обеспечить напряжение между электродами 1,7-1,8 В.

Разряженный аккумулятор подвергают заряду, т. е. присоединяют к источнику тока с напряжением, большим напряжения аккумулятора. При заряде (рис. 160,б) положительные ионы водорода перемещаются к отрицательному электроду 2, а отрицательные ионы сернокислого остатка S0 4 — - положительному электроду 1 и вступают в химическое взаимодействие с сульфатом свинца PbS0 4 , покрывающим оба электрода. В процессе возникающих электрохимических реакций сульфат свинца PbS0 4 растворяется и на электродах вновь образуются активные массы: перекись свинца PbO 2 на положительном электроде и губчатый свинец Pb - на отрицательном. Концентрация серной кислоты при этом возрастает, т. е. плотность электролита увеличивается.

Электрохимические реакции при разряде и заряде аккумулятора могут быть выражены уравнением

PbO 2 + Pb + 2H 2 SO 4 ? 2PbSO 4 + 2H 2 O

Читая это уравнение слева направо, получаем процесс разряда, справа налево - процесс заряда.

Номинальный разрядный ток численно равен 0,1С НОМ, максимальный при запуске дизеля (стартерный режим) - примерно 3С НОМ, зарядный ток - 0,2 С НОМ, где С НОМ - номинальная емкость.

Полностью заряженный аккумулятор имеет э. д. с. около 2,2 В. Таково же приблизительно и напряжение на его зажимах, так как внутреннее сопротивление аккумулятора весьма мало. При разряде напряжение аккумулятора довольно быстро падает до 2 В, а затем медленно понижается до 1,8-1,7 В (рис. 161), при этом напряжении разряд прекращают во избежание повреждения аккумулятора. Если разряженный аккумулятор оставить на некоторое время в бездействии, то напряжение его снова восстанавливается до среднего значения 2 В. Это явление носит название «отдыха» аккумулятора. При нагрузке подобного «отдохнувшего» аккумулятора напряжение быстро понижается, поэтому измерение напряжения аккумулятора без нагрузки не дает правильного суждения о степени разряда .

При заряде напряжение аккумулятора быстро поднимается до 2,2 В, а затем медленно повышается до 2,3 В и, наконец, снова довольно быстро возрастает до 2,6-2,7 В. При 2,4 В начинают выделяться пузырьки газа, образующегося в результате разложения воды на водород и кислород. При 2,5 В оба электрода выделяют сильную струю газа, а при 2,6-2,7 В аккумулятор начинает как бы кипеть, что служит признаком окончания заряда. При отключении аккумулятора от источника зарядного тока напряжение его быстро снижается до 2,2 В.

Уход за аккумуляторами. Кислотные аккумуляторы быстро теряют емкость или даже приходят в полную негодность при

неправильной эксплуатации. В них происходит саморазряд, в результате которого они теряют свою емкость (примерно 0,5- 0,7 % в сутки). Для компенсации саморазряда неработающие аккумуляторные батареи необходимо периодически подзаряжать. При загрязнении электролита, а также крышек аккумуляторов, их выводов и междуэлементных соединений происходит повышенный саморазряд, быстро истощающий батарею.

Батарея аккумулятора должна быть всегда чистой, а выводы для предохранения от окисления покрыты тонким слоем технического вазелина. Периодически нужно проверять уровень электролита и степень заряженности аккумуляторов. Аккумуляторы должны периодически заряжаться. Хранение незаряженных аккумуляторов недопустимо. При неправильной эксплуатации аккумуляторов (разряде ниже 1,8-1,7 В, систематическом недозаряде, неправильном проведении заряда, длительном хранении незаряженного аккумулятора, понижении уровня электролита, чрезмерной плотности электролита) происходит повреждение их пластин, называемое сульфатацией . Это явление заключается в переходе мелкокристаллического сульфата свинца, покрывающего пластины при разряде, в нерастворимые крупнокристаллические химические соединения, которые при заряде не переходят в перекись свинца РbO 2 и свинец РЬ. При этом аккумулятор становится непригодным для эксплуатации.

Свинцовый аккумулятор — это источник питания, конструкция которого осталась неизменной со времени его изобретения. Основное предназначение аккумуляторной батареи – оказать помощь при пуске двигателя и обеспечить питанием бортовую сеть автомобиля при неработающем двигателе. Сама аккумуляторная батарея электрический ток не вырабатывает – за счет химической реакции она его накапливает.

Иногда мы задаемся вопросом — что внутри автомобильного аккумулятора? А внутри — кислотный электролит, содержащий серную кислоту и свинцовые пластины. Это конечно упрощённо, далее расскажем поподробней.

Автомобильный аккумулятор является вторичным гальваническим элементом. Внимательное изучение его свойств и устройства поможет правильно выбрать необходимый нам продукт при покупке.

Что же такое гальванические элементы

Гальванический элемент — прибор, который преобразует химическую энергию в энергию электрическую. Главными составными частями любого гальванического элемента являются два электрода — катод и анод, размещенные в сосуде из не проводящего ток материала и заполненного электролитом.

Все многообразие применяемых гальванических элементов можно разделить на два главных типа: первичные элементы и вторичные элементы.

К числу первичных элементов относятся, например, всем известные так называемые «сухие» элементы. К вторичным элементам относятся аккумуляторные батареи всех типов. Различие между типами элементов обусловливается характером химических реакций, протекающих в них при эксплуатации.

Во вторичных элементах происходящие химические реакции обратимые. Отработавшая или разряженная АКБ может быть восстановлена (заряжена), если пропускать через неё постоянный электрический ток в обратном направлении. В процессе заряда электрическая энергия преобразуется в химическую. При следующем цикле разряда происходит обратная реакция.

Типы автомобильных аккумуляторов

Типы аккумуляторов бывают обслуживаемые и необслуживаемые.

У обслуживаемого аккумулятора можно:

  • физически просто выкрутить пробки с банок;
  • визуально определить уровень электролита и состояние свинцовых пластин;
  • замерить плотность, кипение электролита при заряде;
  • при необходимости добавить дистиллированную воду.

Если говорить языком автомобилиста – «добраться до внутренностей». Мы можем делать с аккумулятором все что захотим.

Но обслуживаемые АКБ имеют ряд недостатков:

  • из-за негерметичности батареи в процессе эксплуатации электролит может выкипать, что приводит к снижению его уровня и, как следствие, падает ёмкость, итог – проблемы с запуском автомобиля;
  • испарение воды приводит к повышению плотности электролита, следствием чего является разрушение пластин;
  • необходимо постоянно контролировать уровень электролита;
  • при нагревании электролита на внешней крышке аккумулятора (в местах расположения пробок) образуется специфический белый налет, что может привести к замыканию клемм и преждевременному частичному разряду.

Все эти недостатки – проблемы прошедших лет. Изобретатели долгие годы трудились над решением этих проблем и, наконец, нашли выход из положения – сделали аккумулятор необслуживаемым.

Необслуживаемый АКБ.

Отличительной чертой является отсутствие пробок на верхней крышке и как бы вы не хотели заглянуть внутрь – ничего не получится. Он стал полностью герметичным.

Какие достоинства у данного типа?

  • при нагревании электролита испаряемая жидкость в виде конденсата оседает на внутренних стенках батареи и стекает вниз.
  • АКБ можно кантовать как угодно, не боясь пролива электролита.
  • решена главная проблема – пластины всегда находятся в электролите.

Но без недостатков не бывает ни одного устройства.

На необслуживаемых батареях перемычки между банками расположены внутри корпуса. Проверить напряжение на банках практически невозможно.

На необслуживаемые аккумуляторы начали устанавливать так называемые «клапаны аварийного сброса давления». Срабатывает он в экстренных случаях, когда происходит сильный перезаряд. Наружу выходит часть испаряемого электролита, но вот обратно добавить его в батарею возможность отсутствует напрочь. Несколько перезарядов и как итог – батарея теряет ёмкость.

Характеристики свинцово-кислотных аккумуляторов

Наверняка более 90% автомобилистов знают об устройстве своего аккумулятора только из школьных уроков физики. Да в повседневной жизни это уже и не требуется. Купил – установил – забыл.

Характеристики аккумуляторных батарей, на которые обращают внимание автомобилисты при его выборе: тип батареи (обслуживаемая или безуходная), электрическая ёмкость батареи, номинальное напряжение батареи, саморазряд.

Термин «электрическая ёмкость АКБ» означает количество электричества, отдаваемого аккумулятором при разряде. Ёмкость определяется в ампер-часах.

Разрядная ёмкостью СР — количество электричества в ампер-часах, получаемое при разряде аккумулятора до допустимого напряжения. Разрядную ёмкость определяют исходя из формуле:

Ёмкость САБ существенным образом зависит от температуры электролита, особенно на стартерных режимах разряда.

Ёмкость аккумулятора может быть выражена двояко: в амперчасах или в ваттчасах. Термин «ёмкость» обозначает то количество электричества, которое можно получить от данного источника питания. Ёмкость же в ваттчасах есть мера энергии или способности производить работу.

При определении емкости какой-либо аккумуляторной батареи необходимо отмечать режим, при котором производится разряд, температуру и конечное напряжение. Ёмкость аккумулятора в основном определяется тремя факторами: разряд, температура и конечное напряжение, а при маркировке устанавливается в амперчасах.

Стандартной величиной номинального напряжения одного элемента аккумулятора является 2 вольта. Для легковых автомобилей выпускают аккумуляторы с напряжением 12в., а на грузовых применяют с напряжением 24в. Для специальной техники могут изготавливаться АКБ с напряжением, установленным производителем.

Самопроизвольный разряд аккумулятора – потеря емкости в процессе хранения, отключения внешних потребителей, температурного режима эксплуатации и качества ТО. При этом его рабочие характеристики снижаются.

Экспериментально установлено, что для свинцово-кислотных АКБ величина саморазряда варьируется от 1,5 до 3% в месяц.

Одной из причин повышенного саморазряда обслуживаемых аккумуляторов является применение не дистиллированной воды, содержащей примеси железа, хлора и различных солей.

Также при переворачивании батареи или сильной тряске происходит осыпание активного вещества с пластин.

Заглянем что внутри?

Принципиально конструкция аккумуляторов осталась неизменной со времени их изобретения: свинцовые пластины и кислота. Внутреннее пространство заполнено электролитом, состоящим из 38%-ной серной кислоты и дистиллированной воды. В каждой батарее отрицательные и положительные электроды чередуются. Между пластинами размещаются пластмассовые сепараторы. Все перемычки между элементами и батареями изготовлены из свинца.

Разберемся в конструкции АКБ подробней

Устройство автомобильного аккумулятора простое: ёмкость для размещения электродов, пластин, сепараторов и крышки. В обслуживаемых в крышке предусмотрены горловины для заливки электролита и закручивающиеся пробки. Они позволяют при необходимости доливать дистиллированную воду.

Корпуса батарей изготавливают из прочного полипропилена.

Материал корпуса не токопроводящий и химически стоек к серной кислоте. По нижнему краю корпуса предусмотрена отбортовка для жесткого крепления в автомобиле, чтобы исключить удары и падения.

Вентиляционные (лабиринтные) пробки используются в обслуживаемых батареях. Они предохраняют от выноса и выплескивания электролита, но обеспечивают свободный выход газа. В качестве лабиринтного наполнителя могут использоваться гранулы полиэтилена.

Чтобы исключить неправильное подключение батареи к бортовой сети автомобиля, свинцовые клеммные выводы отличаются по размерам, и чём вкратце описано в статье про .

Практически все виды свинцово-кислотных автомобильных аккумуляторов неремонтопригодны.

Принцип работы автомобильного аккумулятора

Принцип работы аккумулятора в автомобиле основан на процессах двух видов. При подключении к батарее потребителей (стартер, фары, приборы панели управления автомобили и др.) происходит её разряд.

При этом химическая энергия превращается в электрическую, которая, в свою очередь, может быть превращена в тепловую, механическую и световую.

Если к такому источнику питания подключить электродвигатель, то часть электроэнергии превратится в механическую, а какая-то — в тепловую.

При заряде происходит обратный процесс — электрическая энергия преобразуется в химическую.

Во время заряда на пластинах- катоде, аноде и в электролите образуются те вещества, которые вступают в электрохимическую реакцию при разряде. Химические реакции при заряде идут в обратном направлении по сравнению с химическими реакциями при разряде. Этим и объясняется то, что АКБ называют обратимым источником тока, его работа носит циклический характер: разряд-заряд.

Как заряжать аккумулятор автомобиля?

Способов зарядки существует великое множество.

Зарядка аккумуляторных батарей производится постоянно при работающем двигателе или специальным зарядным устройством.

Для заряда аккумулятора заводской готовности его нужно залить электролитом и выдержать требуемое для пропитки время, после чего подключить к зарядному устройству. Положительный полюс батареи необходимо соединить с положительным полюсом ЗУ, а отрицательный — с отрицательным. Начать заряд можно при условии, что температура электролита в банках не выше 30°С в холодной и не выше 35°С в жаркой и теплой влажной зонах, в противном случае ему надо дать остыть.

Сам процесс заряда подробно расписан в инструкциях к зарядным устройствам. О зарядке кальциевых батарей Вы можете почитать .

В заключение можно отметить, что практически все виды свинцово-кислотных автомобильных АКБ не ремонтопригодны.

В настоящее время вышедшие из строя АКБ, в лучшем случае, умельцы выжигают на кострах с целью получения свинца. А в основном отработавшие батареи сдают в пункты приема цветных металлов или обменивают на новые с доплатой.

Изобретенный французским физиком Рэймондом Луи Гастоном Планте в 1859 году, свинцово-кислотный аккумулятор был первым аккумулятором для коммерческого использования. Сегодня, заливные свинцово-кислотные аккумуляторы широко используется в автомобилях, электропогрузчиках, источниках бесперебойного питания (ИБП).

Заливные свинцово-кислотные батареи состоят из свинцовых пластин, выступающих в качестве электродов, погруженных в воду и серную кислоту. Эти батареи требуют некоторого технического обслуживания за счет потери водорода с течением времени.

В середине 1970-х годов, исследователи разработали необслуживаемые свинцово-кислотные аккумуляторы, которые могут работать в любом положении в пространстве. Жидкий электролит был заменен увлажненными сепараторами и была решена проблема изоляции. Были добавлены предохранительные клапаны, которые сделали возможным удаление воздуха во время заряда и разряда. Тем не менее, необслуживаемые батареи стоят дороже и имеют более короткий срок эксплуатации, чем заливные батареи.

Свинцово-кислотные батареи могут иметь жидкий или гелеобразный электролит.

В зависимости от областей применения, появились два обозначения свинцово-кислотно батарей. Это небольшие герметичные свинцово-кислотные (SLA , sealed lead acid ) батареи и большие клапанные регулируемые свинцово-кислотные (VRLA , valve regulated lead acid ) батареи . Конструктивно, обе батареи одинаковы. (Некоторые могут возразить, что название «герметичная свинцово-кислотная батарея » является неправильным, потому что свинцово-кислотный аккумулятор не может быть полностью герметичен. Я соглашусь — это действительно так, название не совсем корректное, но это не мешает ему быть широкораспространенным). Я сделаю акцент на портативных батареях, поэтому буду ориентироваться на SLA .

В отличие от заливной свинцово-кислотной батареи, как SLA , так и VRLA имеют низкий потенциал перенапряжения, чтобы исключить выделение газа во время зарядки. Перезаряд вызывает газообразование и обезвоживание батареи. Следовательно, эти батареи не могут быть заряжены до их полного потенциала.

Свинцово-кислотные батареи не имеют эффекта памяти. Если оставить аккумулятор на подзарядке в течение длительного времени, то это не вызывает его повреждения. Время удержания заряда свинцово-кислотным аккумулятором является лучшим среди различных типов аккумуляторных батарей. В то время, как никель-кадмиевая батарея саморазряжается примерно на 40 процентов от ее накопленной энергии за три месяца, SLA саморазряжается на ту же величину в течение одного года. SLA являются относительно недорогими источниками энергии.

SLA не поддается быстрой зарядке — типичный цикл заряда длится 8-16 часов.

SLA всегда должны храниться в заряженном состоянии. Оставив батарею в разряженном состоянии, вы запустите в ней процесс под названием сульфатация (по сути, это окисление и кристаллизация), что может привести к невозможности ее последующей перезарядки.

В отличие от никель-кадмиевых аккумуляторов, SLA не любит глубокого разряда. Полный разряд вызывает дополнительную деформацию, и каждый цикл лишает батарею небольшого количества мощности. Эта спадающая характеристика износа относится и к другим химическим батареям в той или иной степени. Для того, чтобы предотвратить частые глубокие разряды батареи, лучше использовать SLA несколько большей, чем требуется емкости.

В зависимости от глубины разряда и рабочей температуры, SLA обеспечивает от 200 до 300 циклов заряда/разряда. Основной причиной столь относительно короткого жизненного цикла является коррозия сетки положительного электрода, истощение активного материала и расширение плюсовых пластин. Эти изменения более ярко выражены при более высоких рабочих температурах.

Оптимальной рабочей температурой для батарей SLA и VRLA , является температура в 25°C . Как правило, повышение температуры на 8°C сокращает срок службы батареи в два раза. VRLA , работающая в течение 10 лет при 25°C проработает только 5 лет при 33°C, и чуть более года при температуре 42°C.

Среди современных аккумуляторных батарей, семейство свинцово-кислотных аккумуляторов имеет самую низкую плотность энергии, которая измеряется в Ватт/кг, что делает его непригодным для портативных устройств, которым требуется компактный источник питания. Кроме того, КПД таких аккумуляторов при низких температурах оставляет желать лучшего.

Свинцово-кислотные батареи хорошо работают на высоких импульсных токах. Полная мощность может быть выдана в нагрузку за короткое время. Это делает их идеальными для использования там, где может внезапно понадобиться большое количество энергии. Именно поэтому они используются для электрического запуска двигателей внутреннего сгорания в большинстве транспортных средств.

С точки зрения утилизации, SLA является менее вредными, чем никель-кадмиевые батареи, но высокое содержание свинца делает SLA неэкологичными.

Преимущества свинцово-кислотных аккумуляторов

  • Недорогие и простые в изготовлении — с точки зрения затрат на Вт·ч, SLA является наименее дорогими. Например, аккумулятор 12В емкостью 3.2 А·ч, имеющий размеры 134x67x60мм, стоит порядка 400 рублей.
  • Зрелая, надежная и хорошо освоеная технология — при правильном использовании, SL A достаточно долговечны
  • Низкий саморазряд — скорость саморазряда является одной из самой низких в аккумуляторных системах (3-20% в месяц)
  • Низкие требования к обслуживанию — нет эффекта памяти, нет необходимости доливать электролит
  • Способность к большой токоотдаче. Для упомянутого выше аккумулятора с C = 3.2 А·ч токоотдача составляет не менее 16А. Аккумулятор отдает большой пусковой ток в нагрузку, при этом не просаживая напряжение питания.

Недостатки свинцово-кислотных аккумуляторов

  • Не могут храниться в разряженном состоянии
  • Высокая чувствительность к изменению температуры — влияет и на продолжительность работы и на срок жизни аккумулятора
  • Низкая плотность энергии — слабая весо-энергетическая плотность аккумулятора ограничивает область применения стационарными и колесными приложениями, поэтому их целесообразно использовать только в больших и средних по размерам роботах (если уж говорить о роботах)
  • Позволяет только ограниченное количество полных циклов разряда — хорошо подходит для резервных приложений, в которых происходят только случайные глубокие разряды
  • Экологически вредные — электролит и содержание свинца делают их небезопасными для окружающей среды
  • Транспортные ограничения для заливных свинцово-кислотных батарей — в случае аварии может произойти утечка кислоты

Типичные характеристики свинцово-кислотных аккумуляторов

Приведу типичные значения параметров, встречающиеся для необслуживаемых 6 и 12 вольтовых батарей с емкостью порядка 0.8-7 А·ч:

  • Теоретическая энергоемкость: 135 Вт·ч/кг
  • Удельная энергоемкость: 30-60 Вт·ч/кг
  • Удельная энергоплотность: 1250 Вт·ч/дм 3
  • ЭДС заряженного аккумулятора: 2.11В
  • Рабочее напряжение: 2.1В (3 или 6 секций дают стандартные 6.3 или 12.6В)
  • Напряжение полностью разряженного аккумулятора: 1.75-1.8В (на одну секцию). Более низкий заряд не допускается
Напряжение Заряд
12.70В 100%
12.46В 80%
12.24В 55%
12.00В 25%
11.90В 0%
  • Рабочая температура: от -40 до +40ºС
  • КПД: 80-90%